Linux Threat Hunting: ‘Syslogk’ a kernel rootkit found
under development in the wild

decoded.avast.io/davidalvarez/linux-threat-hunting-syslogk-a-kernel-rootkit-found-under-development-in-the-wild/

June 13, 2022

by David Alvarez and Jan NeduchalJune 13, 202213 min read

Introduction

Rootkits are dangerous pieces of malware. Once in place, they are usually really hard to
detect. Their code is typically more challenging to write than other malware, so developers
resort to code reuse from open source projects. As rootkits are very interesting to analyze,
we are always looking out for these kinds of samples in the wild.

Adore-Ng is a relatively old, open-source, well-known kernel rootkit for Linux, which initially
targeted kernel 2.x but is currently updated to target kernel 3.x. It enables hiding processes,
files, and even the kernel module, making it harder to detect. It also allows authenticated
user-mode processes to interact with the rootkit to control it, allowing the attacker to hide
many custom malicious artifacts by using a single rootkit.

In early 2022 , we were analyzing a rootkit mostly based on Adore-Ng that we found in
the wild, apparently under development. After obtaining the sample, we examined the
.modinfo section and noticed it is compiled for a specific kernel version.

rmagics
ends

As you may know, even if it is possible to ‘force load’ the module into the kernel by using
the --force flag of the insmod Linux command, this operation can fail if the required

symbols are not found in the kernel; this can often lead to a system crash.

insmod -f {module}

1/13

https://decoded.avast.io/davidalvarez/linux-threat-hunting-syslogk-a-kernel-rootkit-found-under-development-in-the-wild/
https://decoded.avast.io/davidalvarez/linux-threat-hunting-syslogk-a-kernel-rootkit-found-under-development-in-the-wild/
https://github.com/yaoyumeng/adore-ng
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image.png
https://man7.org/linux/man-pages/man8/insmod.8.html

We discovered that the kernel module could be successfully loaded without forcing into a
default Centos 6.10 distribution, as the rootkit we found is compiled for a similar kernel
version.

While looking at the file’s strings, we quickly identified the PgSD93gl hardcoded file name
in the kernel rootkit to reference the payload. This payload file name is likely used to make it
less obvious for the sysadmin, for instance, it can look like a legitimate PostgreSQL file.

Address Length Type String

E .rodata.str1.1:000000000000844AD

¥¥ .rodata.str1.1:0000000000 84DC

E .rodata.str1.1:0000000000008556 iPg

Using this hardcoded file name, we extracted the file hidden by the rootkit. It is a compiled
backdoor trojan written in C programming language; Avast’s antivirus engine detects and
classifies this file as ELF:Rekoob — which is widely known as the Rekoobe malware family.
Rekoobe is a piece of code implanted in legitimate servers. In this case it is embedded in
a fake SMTP server, which spawns a shell when it receives a specially crafted command. In
this post, we refer to this rootkit as Syslogk rootkit, due to how it ‘reveals’ itself when
specially crafted data is written to the file /proc/syslogk .

Analyzing the Syslogk rootkit

The Syslogk rootkit is heavily based on Adore-Ng butincorporates new functionalities
making the user-mode application and the kernel rootkit hard to detect.

Loading the kernel module

To load the rootkit into kernel space, it is necessary to approximately match the kernel
version used for compiling; it does not have to be strictly the same.

vermagic=2.6.32-696.23.1.e16.x86_64 SMP mod_unload modversions

For example, we were able to load the rootkit without any effort in a Centos 6.10 virtual
machine by using the insmod Linux command.

After loading it, you will notice that the malicious driver does not appear in the list of loaded
kernel modules when using the Ismod command.

Revealing the rootkit

The rootkit has a hide_module function which uses the list_del function of the kernel API
to remove the module from the linked list of kernel modules. Next, it also accordingly
updates its internal module_hidden flag.

2/13

https://www.linuxvmimages.com/images/centos-6/
https://www.postgresql.org/
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image3.png
https://malpedia.caad.fkie.fraunhofer.de/details/elf.rekoobe
https://www.linuxvmimages.com/images/centos-6/
https://linux.die.net/man/8/insmod
https://linux.die.net/man/8/lsmod
https://www.kernel.org/doc/html/v5.8/core-api/kernel-api.html#c.list_del
https://www.kernel.org/doc/html/v5.8/core-api/kernel-api.html

Fortunately, the rootkit has a functionality implemented in the proc_write function that
exposes an interface in the /proc file system which reveals the rootkit when the value 1 is
written into the file /proc/syslogk .

File Edit View Search Terminal Help

[root@centos6 Desktop]# lsmod | grep syslogk

[root@centos6é Desktopl# echo 1>/proc/syslogk

[root@centos6 Desktop]# lsmod | grep syslogk

syslogk 120282 ©

[root@centos6 Desktopl# |

Once the rootkit is revealed, it is possible to remove it from memory using the rmmod Linux
command. The Files section of this post has additional details that will be useful for
programmatically uncloaking the rootkit.

Overview of the Syslogk rootkit features

Apart from hiding itself, making itself harder to detect when implanted, Syslogk can
completely hide the malicious payload by taking the following actions:

e The hk_proc_readdir function of the rootkit hides directories containing malicious
files, effectively hiding them from the operating system.

o The malicious processes are hidden via hk_getpr —a mix of Adore-Ng functions for
hiding processes.

o The malicious payload is hidden from tools like Netstat ; when running, it will not
appear in the list of services. For this purpose, the rootkit uses the function

hk_t4_seq_show .

e The malicious payload is not continuously running. The attacker remotely executes it
on demand when a specially crafted TCP packet (details below) is sent to the infected
machine, which inspects the traffic by installinga netfilter hook .

e ltis also possible for the attacker to remotely stop the payload. This requires using a

hardcoded key in the rootkit and knowledge of some fields of the magic packet
used for remotely starting the payload.

We observed that the Syslogk rootkit (and Rekoobe payload) perfectly align when used
covertly in conjunction with a fake SMTP server. Consider how stealthy this could be; a
backdoor that does not load until some magic packets are sent to the machine. When
queried, it appears to be a legitimate service hidden in memory, hidden on disk, remotely
‘magically’ executed, hidden on the network. Even if it is found during a network port scan, it
still seems to be a legitimate SMTP server.

3/13

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image8.png
https://linux.die.net/man/8/rmmod
https://www.drkns.net/kernel-who-does-magic/

For compromising the operating system and placing the mentioned hiding functions,
Syslogk uses the already known set_addr_rw and set_addr_ro rootkit functions, which
adds or removes writing permissions to the Page Table Entry (PTE) structure.

After adding writing permissions to the PTE, the rootkit can hook the functions declared in
the hks internal rootkit structure.

PTE Hooks

Type of the function Offset Name of the function
Original hks+(0x38) * 0 proc_root_readdir
Hook hks+(0x38) * 0 + 0x10 hk_proc_readdir
Original hks+(0x38) * 1 tcp4_seq_show
Hook hks+(0x38) * 1 + 0x10 hk_t4 seq_show
Original hks+(0x38) * 2 sys_getpriority

Hook hks+(0x38) * 2 + Ox10 hk_getpr

The mechanism for placing the hooks consists of identifying the hookable kernel symbols
via /proc/kallsyms asimplemented inthe get symbol address function of the rootkit
(code reused from this repository). After getting the address of the symbol, the Syslogk
rootkit uses the udis86 project for hooking the function.

Understanding the directory hiding mechanism

The Virtual File System (VFS) is an abstraction layer that allows for FS-like operation over
something that is typically not a traditional FS. As it is the entry point for all the File System
queries, it is a good candidate for the rootkits to hook.

It is not surprising that the Syslogk rootkit hooks the VFS functions for hiding the Rekoobe
payload stored in the file /etc/rc-zobk0jpi/PgSD93ql .

The hook is done by hk_root_readdir which callsto nw_root_filldir where the
directory filtering takes place.

mov rsi, offset aZobk®jpi
mov rdi, rbx ; haystack
mov 12 1

Mo
mow
Mo

call

4/13

https://github.com/ksaravan910/FileCloakingRootkit/blob/master/rootkit.c#L64
https://github.com/ksaravan910/FileCloakingRootkit/blob/master/rootkit.c#L81
https://www.kernel.org/doc/gorman/html/understand/understand006.html
https://github.com/milabs/kmod_hooking/blob/master/module-init.c#L237
https://github.com/vmt/udis86
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image11.png

As you can see, any directory containing the substring -zZobkojpi will be hidden.

The function hk_get_vfs opens the root of the file system by using filp_open. This kernel
function returns a pointer to the structure file, which contains a file operations
structure called f_op that finally stores the readdir function hooked via hk_root readdir .

Of course, this feature is not new at all. You can check the source code of Adore-Ng and
see how it is implemented on your own.

Understanding the process hiding mechanism

In the following screenshot, you can see that the Syslogk rootkit (code at the right margin
of the screenshot) is prepared for hiding a process called Pgsp93ql . Therefore, the rootkit
seems more straightforward than the original version (see Adore-Ng at the left margin of the
screenshot). Furthermore, the process to hide can be selected after authenticating with the

rootkit.

{Graph for thoukd_be_hidden {secondary), Gragh for ne_procfillr (prmary) -

The Syslogk rootkit function hk_getpr explained above, is a mix of adore_find_task

and should_be_hidden functions but it uses the same mechanism for hiding processes.

Understanding the network traffic hiding mechanism

The Adore-Ng rootkit allows hiding a given set of listening services from Linux programs
like Netstat . It uses the exported proc_net structure to change the tcp4_seq_show()
handler, which is invoked by the kernel when Netstat queries for listening connections.
Within the adore_tcp4_seq_show() function, strnstr(_) is used to look in seq->buf fora
substring that contains the hexadecimal representation of the port it is trying to hide. If this
is found, the string is deleted.

5/13

https://www.unix.com/man-page/suse/9/filp_open
https://github.com/torvalds/linux/blob/master/include/linux/fs.h#L956
https://github.com/torvalds/linux/blob/master/include/linux/fs.h#L939
https://man7.org/linux/man-pages/man3/readdir.3.html
https://github.com/yaoyumeng/adore-ng/blob/master/adore-ng.c#L300
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image10.png
https://github.com/yaoyumeng/adore-ng/blob/master/adore-ng.c#L178
https://github.com/yaoyumeng/adore-ng/blob/master/adore-ng.c#L193
https://github.com/yaoyumeng/adore-ng/blob/522c80a2dc043c2d523256472becc88c90d66337/adore-ng.c#L662
https://github.com/yaoyumeng/adore-ng/blob/522c80a2dc043c2d523256472becc88c90d66337/adore-ng.c#L835
https://github.com/torvalds/linux/blob/master/net/ipv4/tcp_ipv4.c#L2695
https://github.com/yaoyumeng/adore-ng/blob/master/adore-ng.c#L688
https://github.com/yaoyumeng/adore-ng/blob/master/adore-ng.c#L697

Grapih for sdore fopd,_veq_show (secondary], Graph for hik_b4_seq_show {psmary)

:::::::::

N_SEAVICESH

In this way, the backdoor will not appear when listing the connections in an infected
machine. The following section describes other interesting capabilities of this rootkit.

Understanding the magic packets

Instead of continuously running the payload, it is remotely started or stopped on demand by
sending specially crafted network traffic packets.

These are known as magic packets because they have a special format and special
powers. In this implementation, an attacker can trigger actions without having a listening
port in the infected machine such that the commands are, in some way, ‘magically’
executed in the system.

Starting the Rekoobe payload

The magic packet inspected by the Syslogk rootkit for starting the Rekoobe fake
SMTP server is straightforward. First, it checks whether the packet is a TCP packet and, in
that case, it also checks the source port , which is expected to be 59318 .

Rekobee will be executed by the rootkit if the magic packet fits the mentioned criteria.

6/13

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image6.png

ptr [rbx+Protocol], socket.IPPROTO _TCP
short is_tcp protocol

is_tcp_pr
MOVZX

d ptr [r13+8],
source_port_593138

Of course, before executing the fake service, the rootkit terminates all existing instances of

the program by calling the rootkit function pkill clone_0 . This function contains the
hardcoded process name PgsSD93qgl ; it only kills the Rekoobe process by sending the
KILL signal via send_sig.

To execute the command that starts the Rekoobe fake service in user mode, the rootkit
executes the following command by combining the kernel APls:
call_usermodehelper_setup, call_usermodehelper_setfns, and call_usermodehelper_exec.

/bin/sh -c /etc/rc-Zobk0jpi/PgSD93ql

The Files section of this post demonstrates how to manually craft (using Python) the TCP
magic packet for starting the Rekoobe payload.

In the next section we describe a more complex form of the magic packet .

Stopping the Rekoobe payload

Since the attacker doesn’t want any other person in the network to be able to kill Rekoobe ,
the magic packet forKkilling Rekoobe must match some fields in the previous magic
packet used for starting Rekoobe . Additionally, the packet must satisfy additional
requirements — it must contain a key that is hardcoded in the rootkit and located in a
variable offset of the magic packet . The conditions that are checked:

7/13

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image4.png
https://docs.huihoo.com/doxygen/linux/kernel/3.7/kernel_2signal_8c_source.html#l01490
https://www.kernel.org/doc/htmldocs/kernel-api/API-call-usermodehelper-setup.html
http://www.hep.by/gnu/kernel/kernel-api/API-call-usermodehelper-setfns.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-call-usermodehelper-exec.html

1. It checks a flag enabled when the rootkit executes Rekoobe via magic packets . It
will only continue if the flag is enabled.

2. It checks the Reserved field of the TCP header to see thatitis 0x08 .

3. The Source Port must be between 63400 and 63411 inclusive.

4. Both the Destination Port andthe Source Address , mustto be the same that
were used when sending the magic packet for starting Rekoobe .

5. Finally, it looks for the hardcoded key . In this case, itis: D9sd87JMaij

The offset of the hardcoded key is also set in the packet and not in a hardcoded offset; it is
calculated instead. To be more precise, it is setin the data offset byte (TCP header)
such that after shifting the byte 4 bits to the right and multiplying it by 4 , it points to the
offset of where the Key is expected to be (as shown in the following screenshot, notice
that the rootkit compares the Key in reverse order).

A E

MoV ZX

Mo]
mov ~zi, offset aliamj78ds9d

lea rdi, [rl34rox*a+e]
call

test

jz

In our experiments, we used the value 0x50 forthe data offset (TCP header)because
after shifting it 4 bits, you get 5 which multiplied by 4 is equal to 20 . Since 20 is precisely
the size of the TCP Header, by using this value, we were able to put the key at the start of
the data section of the packet.

If you are curious about how we implemented this magic packet from scratch, then
please see the Files section of this blog post.

Analyzing Rekoobe

When the infected machine receives the appropriate magic packet , the rootkit starts the
hidden Rekoobe malware in user mode space.

It looks like an innocent SMTP server, but there is a backdoor command on it that can be
executed when handling the starttls command. In a legitimate service, this command is
sent by the client to the server to advise that it wants to start TLS negotiation.

8/13

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image12.png

centos@centos6:~/Desktop

File Edit Vview Search Terminal Help

[centos@centos6 Desktop]$ telnet 127.0.8.1 39678 E
Trying 127.0.0.1...

Connected to 127.0.8.1.

Escape character is "~]'.
220 example.com SMTP

250-example, com
250-5TARTTLS

250 SMTPUTF8 '
starttls i
220 Ready to start TLS 3

For triggering the Rekoobe backdoor command (spawning a shell), the attacker must send
the byte 0x03 via TLS, followed by a Tag Length value (TLV)encoded data. Here, the
tag is the symbol % , the length is specified in four numeric characters, and the value
(notice that the length and value are arbitrary but can not be zero).

Search Terminal Help
6 Desktop|$ python backdoor client.py
TP

cket.socket{socket.AF INET, socket,SOCK STREAM)
L_SOCKET, socket.S0 REUSEADOR, 1)

Pythan~ TabWidth: 8~ Ln 6, Cal13 NS

Additionally, to establish the TLS connection, you will need the certificate embedded in
Rekoobe .

See the Files section below for the certificate and a Python script we developed to connect
with Rekoobe .

The origin of Rekoobe payload and Syslogk rootkit

Rekoobe is clearly based on the TinySHell open source project; this is based on ordering
observed in character and variables assignment taking place in the same order multiple
times.

9/13

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image9.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image5.png
https://github.com/creaktive/tsh/blob/master/tshd.c#L693

T

& 8 github.com/creaktive/tsh/blob/master/tshd.c#1693

:"],;
- 698 return(47);
v 691 3
+ o0
E 692
H+ 693 shell[@] = "/'; shell[4] = '/";
BEs 694 shell[1] = 'b"; shell[5] = 's';
Kt
695 shell[2] = "1i'; shell[&] = 'h";
696 shell[3] = "'n"; shell[7] = "4@8°;
697
698 execl(shell, shell + 5, "-c", temp, (char *} @ };
699

On the other hand, if you take a look at the Syslogk '_footk'it, even if it is new, you will
notice that there are also references to TinySHell dating back to December 13, 2018.

b8facacbleelade1aaBfB8f20247T87244c2584a1a03d10cdaB3 eeaf1258b3T112 x

6F 64 65 00 2F rurr nnr mmde [
74 6F homefuser/ De

p/tinyshell _
1213_radom_

them together. We are pleased to say that our users are protected and hope that this
research assists others.

Conclusions

One of the architectural advantages of security software is that it usually has components
running in different privilege levels; malware running on less-privileged levels cannot easily
interfere with processes running on higher privilege levels, thus allowing more
straightforward dealing with malware.

On the other hand, kernel rootkits can be hard to detect and remove because these pieces
of malware run in a privileged layer. This is why it is essential for system administrators and
security companies to be aware of this kind of malware and write protections for their users
as soon as possible.

loCs

Syslogk sample

68facac60eeadelaa8f8f2024787244c2584a1a03d10cda83eeaf1258b371f2

Rekoobe sample

10/13

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image7.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image2.png

11edf80f2918da81813862246206b569d5dcebdc2a7ed791663ca3254ede772d

Other Rekoobe samples

o fa94282e34901eba45720c41f89a0c820d32840ae49e53de8e75b2d6e78326074
e fd92e34675e5b0b8bfbc6blf3a00a7652e67al162flea612f6e86cca846df76ch
e 12clbled48effe60eef7486b3ae3e458da403cd04c88c88fab7fca84d849ee3f5
e 06778bddd457aafbc93d384f96ead3eb8476dclbc8a6fbdocd7a4d3337ddcele
e f1a592208723a66fa5l1lcelbc35chd6864e24011c6dc3bcd056346428e4elc55d
e 55dbdb84c40d9dc8c5aaf83226ca®0a3395292cc8f884bdc523a44c2fd431c7b
e df90558a84cfcf80639f32b31aec187b813df556e3c155a05af91dedfd2d7429
e 160cfb90b81f369f5ba929aba®b3130ch38d3c90d629fe91b31fdef176752421
e b4dofed652f907ed4e77a9453dcce7810b75e1dc5867deb69bealedecdd02d877
e 3a6T339df95e138a436a4feff64df312975a262fal6b75117521b7d6e7115d65
e 74699b0964a2chdc2bc2d9cadb2b6f5828hb638de7c73bld41e7fe26cfc2f3441
e 7a599ff4a58ch0672alb5e912a57fcdc4b0e2445ec9bc653f7f3e7a7d1dc627f
o f4e3cfeeb4e10f61049a88527321af8c77d95349caf616e86d7ff4f5ba203e5f
e 31330c0409337592e9de7ac981cech7f37ce0235f96e459fefbd585e35c1lala
e c6d735b7a4656a521f3cd1d24265e412a91652f1a775877129b322114c9547deb
e 2e81517ee4172c43a2084bel1d584841704b3f602cafc2365de3bcbh3d899e4fh8
e b22f55e476209adbh43929077be83481ebda7e804d117d77266b186665e4b1845
e a93b9333a203e7eed197d0603e78413013bd5d8132109bbef5ef93b36b83957¢C
e 870d6c202fcc72088ff5d8e71cc0990777a7621851df10ba74d0e®07d19174887
e ca2ee3f30e1c997cc9d8e8f13ec94134cdb378c4eb03232f5ed1df74c0afalfo
e 9d2e25ec0208a55fha97ac70b23d3d3753e9b906b4546d1b14d8c92T8d8eb03d
e 29058d4cee84565335eafdf2d4a239afc0a73f1b89d3c2149346a4c6T1013962
e 7e0b340815351dab035b28b16ca66a2cic7eaf22edf9ead73d2276fe7d92bab4
e af9a19f99e0dcd82a31e0c8fc68e89d104ef2039b7288a203f6d2e4f63ae4d5c
e 6f27de574ad79eb24d93beb00e29496d8cfe22529fc8ee5010a82013865336a9
e d690d471b513c5d40caef9f1e37c94db20e6492b34eab6a3cddcc22058f842cf3
e e08e241d6823efedf81d141cc8fd5587e13df08aeda9el1793f754871521da226
e da641f86f811633312730795de93ad2a25ab279a527b8b9e9122h934a730ab08
e e©3d64a128e9267640f8fc3e6ba5399f75f6f0aca6a8dbh48bfo989fe67a7eela7l
e d3e2e002574fb810ac5e4561122c30f232c5899534019d28e0e6822e426ed9d3
e 7b88fad41d6a3aedal20627d3363b739a30Te00008ce8d848c2chb5b4473d8bc
e 50b73742726b0b7e00856e288e758412c74371ea2f0eaf75b957d73dfb396fd7
e 8b036e5e96ab980df3dcad44390d6f447d4ca662a7eddac9f52d172efff4c58f8
e 8b18c1336770fcddc6fe78d9220386bce565f98cc8ada5a90ce69ce3ddf36043
e f04dc3c62b305cdb4d83d8df2caa2d37feeb®a86fb5a745df416bac62a3b9731
e 72f200e3444bb4e81e58112111482e8175610dc45c6e0c6dcdld2251bacf7897
e d129481955f24430247d6ccd4af975e4571b5af7¢c16e36814371575be0@7e72299
e 6fc03c92dee363dd88e50e89062dd8a22fe88998aff7de723594ec916c348d0a
e fca2ea3e471a0d612ce50abc8738085f076ad022f70f78c3f8c83d1b2ff7896b

11/13

e 2fea3bc88c8142fa299a4ad9169f8879fc76726c71e4b3e06a04d568086d3470
e 178b23e7eded2a671fa396ddoObac5d790bca77ec4b2cf4b464d76509ed12c51a
e 3bff2c5bfc24fc99d925126ec6beb95d395a85bc736a395aaf4719c301chbfd4
e 14a33415e95d104cf5cflacaff9586f78f7ec3ffb26efd0683c468edeaf98fd7
e 8bb7842991afe86b97def19f226ch7e0a9f9527a75981f5e24a70444a7299809
e 020a6b7edcff7764f2aac1860142775edef1bc057bedd49b575477105267fc67
e 6711d5d42b54e2d261bb48aa7997fa9191aec059fd081c6f6e496d8db17a372a
e 48671bc6dbc786940ede3a83cc18c2d124d595a47fb20bc40d47ec9d5e8hb85dc
e b0d69e260a44054999baa348748cf4b2dleaab3dd3385bb6ad5931ff47a920de
e e1999a3e5a611312el16bb65bb5a880dfedbab8d4d2c®a5d3edled926a3f63e94
e faBea232abl60a652fchd8d6db8ffa09fd64bch3228f000434d6a8e340aaf4ch
e 11edf80f2918da818f3862246206b569d5dcebdc2a7ed791663ca3254ede772d
e 73bbabc65f884189653a156e432788b5541a169036d364c2d769f6053960351fF
e 8ec87deel3de3281d55f7d1d3b48115a0f5ed4a4l1bfbeflea®8e496ac529829c8
e 8285ee3115e8c71c24ca3bdce313d3cfadead283c31a116180d4c2611efh6106d
e 958bce41371b68706feae0f929a18fa84d4a8al199262c2110a7clcl2d2bldce2
e 38f357c32f2c5a5e56ea40592e339bac3b0cabd6a903072b9d35093a2ed1ch75
e bcc3d47940ae280c63b229d21c50d25128bh2al5ea42fe8572026188132ed0628
e 08al1273ac9d6476e9a9h356b261fdc17352401065e2fc2ad3739e3f82e68705a
e cf525918ch648c81543d9603ac75bc63332627d0ec070c355a86e3595986¢chb3
o 42bc744b22173ff12477e57f85fa58450933e1c4294023334b54373Ff6T63ee42
e 337674d6349c21d3c66a4245c82ch454fealc4e9c9d6e3578634804793e3a6d6
e J4effab035feb6bbafd283ffae544a5e4353eb568770421738b4b0bb835dad573b
e 5b8059e€a30c8665d2c36da024a170b31689¢c4671374b5b9b1a93c7cad7477448
e bdo7ad4ccc8fa67e2e80b9c308decl140calae9c027fa03f2828e4b5bdba6c7391
e bf09al1a7896e05b18c033d2d62f70eadcac85e2d72dbd8869e12b61571c0327e
e 79916343b93a5a7ac7b7133a26b77b8d7d0471b3204eae78a8e8091bfel9dc8c
e 32e559568d2f6960bc41ca0560ac8f459947e170339811804011802d2F87d69
e 864c261555fced40d022a68dob0eadb7ab69da6af52af081fdld9e3eced4aeed6
e 275d63587f3ac511d7ccasff85af2914e74d8b68edd5a7a8a1609426d5b7f6a9
e 0(031183e9450ad8283486621c4cdc556e1025127971c15053a3bf202¢c132fe8f9

Files

Syslogk research tools

Rekoobe research tool

o rekoobe_backdoor_client.py.
e cert.pem

loC repository

12/13

https://github.com/avast/ioc/blob/master/SyslogkRootkit/Research%20Tools/rekoobe_backdoor_client.py
https://github.com/avast/ioc/blob/master/SyslogkRootkit/Research%20Tools/cert.pem

The Syslogk and Rekoobe rootkit research tools and 10Cs are in our [oC repository.

Tagged asanalysis, linux, malware, rootkit

13/13

https://github.com/avast/ioc/tree/master/SyslogkRootkit
https://decoded.avast.io/tag/analysis/
https://decoded.avast.io/tag/linux/
https://decoded.avast.io/tag/malware/
https://decoded.avast.io/tag/rootkit/

