
1/15

Dr. Joakim Kennedy, The BlackBerry Research & Intelligence Team

Symbiote: A New, Nearly-Impossible-to-Detect Linux
Threat

blogs.blackberry.com/en/2022/06/symbiote-a-new-nearly-impossible-to-detect-linux-threat

This research is a joint effort between Joakim Kennedy, Security Researcher at Intezer, and
the BlackBerry Research & Intelligence Team. It can be found on the Intezer blog here as
well.

In biology, a symbiote is an organism that lives in symbiosis with another organism. The
symbiosis can be mutually beneficial to both organisms, but sometimes it can be parasitic
when one benefits and the other is harmed. A few months back, we discovered a new,
undetected malware that acts in this parasitic nature affecting Linux® operating systems.
We have aptly named this malware Symbiote.

What makes Symbiote different from other Linux malware that we usually come across, is
that it needs to infect other running processes to inflict damage on infected machines.
Instead of being a standalone executable file that is run to infect a machine, it is a shared
object (SO) library that is loaded into all running processes using LD_PRELOAD

https://blogs.blackberry.com/en/2022/06/symbiote-a-new-nearly-impossible-to-detect-linux-threat
https://www.intezer.com/
https://blogs.blackberry.com/en/author/the-blackberry-research-and-intelligence-team
https://www.intezer.com/blog/research/new-linux-threat-symbiote/
https://attack.mitre.org/techniques/T1574/006/

2/15

(T1574.006), and parasitically infects the machine. Once it has infected all the running
processes, it provides the threat actor with rootkit functionality, the ability to harvest
credentials, and remote access capability.

The Birth of a Symbiote

Our earliest detection of Symbiote is from November 2021, and it appears to have been
written to target the financial sector in Latin America. Once the malware has infected a
machine, it hides itself and any other malware used by the threat actor, making infections
very hard to detect. Performing live forensics on an infected machine may not turn anything
up since all the file, processes, and network artifacts are hidden by the malware. In addition
to the rootkit capability, the malware provides a backdoor for the threat actor to log in as any
user on the machine with a hardcoded password, and to execute commands with the
highest privileges.

Since it is extremely evasive, a Symbiote infection is likely to “fly under the radar.” In our
research, we haven’t found enough evidence to determine whether Symbiote is being used
in highly targeted or broad attacks.

One interesting technical aspect of Symbiote is its Berkeley Packet Filter (BPF) hooking
functionality. Symbiote is not the first Linux malware to use BPF. For example, an advanced
backdoor attributed to the Equation Group has been using BPF for covert communication.
However, Symbiote utilizes BPF to hide malicious network traffic on an infected machine.

When an administrator starts any packet capture tool on the infected machine, BPF
bytecode is injected into the kernel that defines which packets should be captured. In this
process, Symbiote adds its bytecode first so it can filter out network traffic that it doesn’t
want the packet-capturing software to see.

Evasion Techniques

Symbiote is very stealthy. The malware is designed to be loaded by the linker via the
LD_PRELOAD directive. This allows it to be loaded before any other shared objects. Since
it is loaded first, it can “hijack the imports” from the other library files loaded for the
application.

Symbiote uses this to hide its presence on the machine by hooking libc and libpcap
functions. The image below shows a summary of the malware’s evasions.

https://attack.mitre.org/techniques/T1574/006/
https://reverse.put.as/2021/12/17/knock-knock-whos-there/
https://www.pangulab.cn/files/The_Bvp47_a_top-tier_backdoor_of_us_nsa_equation_group.en.pdf

3/15

Figure 1: Symbiote evasion techniques

Host Activity

The Symbiote malware, in addition to hiding its own presence on the machine, also hides
other files related to malware likely deployed with it. Within the binary, there is a file list that
is RC4 encrypted. When hooked functions are called, the malware first dynamically loads
libc and calls the original function. This logic is used in all hooked functions. An example is
shown in Figure 2 below.

Figure 2: Logic for resolving readdir from libc

4/15

If the calling application is trying to access a file or folder under /proc, the malware scrubs
the output from process names that are on its list. The process names in the list below were
extracted from the samples we have discovered.

certbotx64
certbotx86
javautils
javaserverx64
javaclientex64
javanodex86

If the calling application is not trying to access something under /proc, the malware instead
scrubs the result from a file list. The files extracted from all the samples we examined are
shown in the list below. Some of the file names match those used by Symbiote, while others
match names of files suspected to be tools used by the threat actor on the infected
machine. The list includes the following files.

apache2start
apache2stop
profiles.php
404erro.php
javaserverx64
javaclientex64
javanodex86
liblinux.so
java.h
open.h
mpt86.h
sqlsearch.php
indexq.php
mt64.so
certbot.h
cert.h
certbotx64
certbotx86
javautils
search.so

One consequence of Symbiote being loaded into processes via LD_PRELOAD is that tools
like ldd, a utility that prints the shared libraries required by each program, will list the
malware as a loaded object. To counter this, the malware hooks execve and looks for calls
to this function with the environment variable LD_TRACE_LOADED_OBJECTS set to 1. To
understand why, it’s worth looking at the manual page for ldd:

5/15

In the usual case, ldd invokes the standard dynamic linker (see ld.so(8)) with the
LD_TRACE_LOADED_OBJECTS environment variable set to 1. This causes the dynamic
linker to inspect the program's dynamic dependencies, and find (according to the rules
described in ld.so(8)) and load the objects that satisfy those dependencies. For each
dependency, ldd displays the location of the matching object and the (hexadecimal) address
at which it is loaded. (The linux-vdso and ld-linux shared dependencies are special; see
vdso(7) and ld.so(8).)

When the malware detects this, it executes the loader as ldd does, but it scrubs its own
entry from the result.

Network Activity

Symbiote also has functionality to hide network activity on the infected machine. It uses
three different methods to accomplish this. The first method involves hooking fopen and
fopen64. If the calling application tries to open /proc/net/tcp, the malware creates a temp
file and copies the first line to that file. After that, it scans each line for the presence of
specific ports. If the malware finds a port it’s searching for on a line it’s scanning, it skips to
the next line. Otherwise, the line is written to the temp file. Once the original file has been
completely processed, the malware closes the file and returns the file descriptor of the temp
file back to the caller.

Essentially, this gives the calling process a scrubbed result, which excludes all entries of the
network connections that the malware wants to hide.

The second method Symbiote uses to hide its network activity is by hijacking any injected
packet filtering bytecode. The Linux kernel uses extended Berkeley Packet Filter (eBPF) to
allow packet filtering based on rules provided from a userland process. The filtering rule is
provided as eBPF bytecode that the kernel executes on a virtual machine (VM). This
minimizes the context switching between kernel and userland, providing a performance
boost since the kernel performs the filtering directly.

If an application on the infected machine tries to perform packet filtering with eBPF,
Symbiote hijacks the filtering process. First, it hooks the libc function setsockopt. If the
function is called with the option SO_ATTACH_FILTER, which is used to perform packet
filtering on a socket, it prepends its own bytecode before the eBPF code provided by the
calling application.

Code Snippet 1 shows an annotated version of the bytecode injected by one of the
Symbiote samples. The bytecode “drops” if they match the following conditions:

IPv6 (TCP or SCTP) and src port (43253 or 43753 or 63424 or 26424)
IPv6 (TCP or SCTP) and dst port 43253
IPv4 (TCP or SCTP) and src port (43253 or 43753 or 63424 or 26424)
IPv4 (TCP or SCTP) and dst port (43253 or 43753 or 63424 or 26424)

https://www.kernel.org/doc/html/latest/networking/filter.html

6/15

While this bytecode only drops packets based on ports, we have also observed filtering of
traffic based on IPv4 addresses. In all cases, the filtering operates on both inbound and
outbound traffic from the machine, to hide both directions of the traffic. If the conditions are
not met, it just jumps to the start of the bytecode provided by the calling application.

The bytecode extracted from one of the samples, as shown in Code Snippet 1, consists of
32 instructions. This code can’t be injected into the kernel on its own, because it assumes
that more bytecode exists after it. There are a few jumps in this bytecode that skip to the
beginning of the bytecode provided by the calling process. Without the caller’s bytecode,
the injected bytecode would jump out-of-bounds, which is not allowed by the kernel.
Bytecode like this either has to be handwritten or by patching compiler generated-bytecode.
Either option suggests that this malware was written by a skilled developer.

7/15

8/15

Code Snippet 1: Annotated bytecode extracted from one of the Symbiote samples

The third method Symbiote uses to hide its network traffic is to hook libpcap functions. This
method is used by the malware to filter out UDP traffic to domain names it has in a list. It
hooks the functions pcap_loop and pcap_stats to accomplish this task. For each packet
that is received, Symbiote checks the UDP payload for substrings of the domains it wants to
filter out. If it finds a match, the malware ignores the packet and increments a counter. The
pcap_stats uses this counter to “correct” the number of packets processed by subtracting
the counter value from the true number of packets processed. If a packet payload does not
contain any of the strings it has in its list, the original callback function is called. This
method is used to filter out UDP packets, while the bytecode method is used to filter out
TCP packets. By using all three of these methods, the malware ensures that all traffic is
hidden.

Symbiote Objectives

The malware's objective, in addition to hiding malicious activity on the machine, is to
harvest credentials and to provide remote access for the threat actor. The credential
harvesting is performed by hooking the libc read function. If an ssh or scp process is
calling the function, it captures the credentials. The credentials are first encrypted with RC4
using an embedded key, and then written to a file. For example, one of the versions of the
malware writes the captured credentials to the file /usr/include/certbot.h.

In addition to storing the credentials locally, the credentials are exfiltrated. The data is hex
encoded and chunked up to be exfiltrated via DNS address (A) record requests to a domain
name controlled by the threat actor. The A record request has the following format:

Code Snippet 2: Structure of DNS request used by Symbiote to exfiltrate data

9/15

The malware checks if the machine has a nameserver configured in /etc/resolv.conf. If it
doesn’t, Google’s DNS (8.8.8.8) is used. Along with sending the request to the domain
name, Symbiote also sends it as a UDP broadcast.

Remote access to the infected machine is achieved by hooking a few Linux Pluggable
Authentication Module (PAM) functions. When a service tries to use PAM to authenticate a
user, the malware checks the provided password against a hardcoded password. If the
password provided is a match, the hooked function returns a success response. Since the
hooks are in PAM, it allows the threat actor to authenticate to the machine with any service
that uses PAM. This includes remote services such as Secure Shell (SSH).

If the entered password does not match the hardcoded password, the malware saves and
exfiltrates it as part of its keylogging functionality. Additionally, the malware sends a DNS
TXT record request to its command-and-control (C2) domain. The TXT record has the
format of %MACHINEID%.%C2_DOMAIN%. If it gets a response, the malware base64
decodes the content, checks if the content has been signed by a correct ed25519 private
key, decrypts the content with RC4, and executes the shell script in a spawned bash
process. This functionality can operate as a break-glass method for regaining access to the
machine in case the normal process doesn’t work.

Once the threat actor has authenticated to the infected machine, Symbiote provides a way
for the actor to gain root privileges. When the shared object is first loaded, it checks for the
environment variable HTTP_SETTHIS. If the variable is set with content, the malware
changes the effective user and group ID to the root user, and then clears the variable before
executing the content via the system command.

This process requires that the SO has the setuid permission flag set. Once the system
command has exited, Symbiote also exits the process, to prevent the original process from
executing. Figure 3 below shows the code executed. This allows for spawning a root shell
by running HTTP_SETTHIS=”/bin/bash -p” /bin/true as any user in a shell.

https://www.openssh.com/
https://linux.die.net/man/1/chmod

10/15

Figure 3: Logic used to execute a command with root privileges

Network Infrastructure

The domain names used by the Symbiote malware are impersonating some major Brazilian
banks. This suggests that these banks or their customers are the potential targets. Using
the domain names utilized by the malware, we managed to uncover a related sample that
was uploaded to VirusTotal with the name certbotx64. This file name matches one of those
listed as a file to hide in one of the Symbiote samples we originally obtained. The file was
identified as an open-source DNS tunneling tool called dnscat2.

The sample had a configuration in the binary that used the git[.]bancodobrasil[.]dev
domain as its C2 server. During the months of February and March, this domain name
resolved to an IP address that is linked to Njalla’s Virtual Private Server (VPS) service.
Passive DNS records showed that the same IP address was resolved to
ns1[.]cintepol[.]link and ns2[.]cintepol[.]link a few months earlier. Cintepol is an
intelligence portal provided by the Federal Police of Brazil. The portal allows police officers
to access different databases provided by the federal police as part of their investigations.
The nameserver used for this impersonating domain name was active from the middle of
December 2021 to the end of January 2022.

https://github.com/iagox86/dnscat2
http://www.seplag.mt.gov.br/index.php?pg=ver&id=300&c=38

11/15

Also starting in February of 2022, the name servers for the domain caixa[.]wf were pointing
to another Njalla VPS IP. Figure 4 below shows a timeline of these events. In addition to the
network infrastructure, the timestamps of when the files were submitted to VirusTotal are
included. These three Symbiote samples were uploaded by the same submitter from Brazil.
It appears that the files were submitted to VirusTotal before the infrastructure went online.

Given that these files were submitted to VirusTotal prior to the infrastructure going online,
and because some of the samples included rules to hide local IP addresses, it is possible
that the samples were submitted to VirusTotal to test antivirus (AV) detection before being
used. Additionally, a version that appears to be under development was submitted at the
end of November from Brazil, further suggesting VirusTotal was being used by the threat
actor or group behind Symbiote for detection testing.

Figure 4: Timeline showing when files were submitted to VirusTotal and when network
infrastructure went active

Similarity to Other Malware

Symbiote appears to be designed for both credential stealing and to provide remote access
to infected Linux servers. Symbiote is not the first Linux malware developed for this goal. In
2014, ESET released an in-depth analysis of Ebury, an OpenSSH backdoor that also
performs credential stealing. There are some similarities in the techniques used by both
malware families. Both use hooked functions to capture credentials and exfiltrate the
captured data as DNS requests. However, the authentication method to the backdoor used
by the two malware families is different. When we first analyzed the samples with Intezer
Analyze, only unique code was detected (Figure 5). As no code is shared between
Symbiote and Ebury/Windigo or any other known malware, we can confidently conclude
that Symbiote is a new, undiscovered Linux malware.

https://www.welivesecurity.com/2014/02/21/an-in-depth-analysis-of-linuxebury/
https://analyze.intezer.com/

12/15

Figure 5: Intezer analysis of a Symbiote sample showing only genes classified as Symbiote

Conclusion

Symbiote is a malware that is highly evasive. Its main objective is to capture credentials and
to facilitate backdoor access to infected machines. Since the malware operates as a
userland level rootkit, detecting an infection may be difficult. Network telemetry can be used
to detect anomalous DNS requests, and security tools such as antivirus and endpoint
detection and response (EDR) should be statically linked to ensure they are not “infected”
by userland rootkits.

Indicators of Compromise (IoCs)

Hashes

Hash Notes

121157e0fcb728eb8a23b55457e89d45d76a
a3b7d01d3d49105890a00662c924

“kerneldev.so.bkp.” Appears to be an
early development build.

f55af21f69a183fb8550ac60f392b05df14aa01
d7ffe9f28bc48a118dc110b4c

“mt64_.so.” Missing credential
exfiltration over DNS.

ec67bbdf55d3679fca72d3c814186ff4646dd7
79a862999c82c6faa8e6615180

“search.so.” First sample with
credential exfiltration of DNS.

https://analyze.intezer.com/files/ec67bbdf55d3679fca72d3c814186ff4646dd779a862999c82c6faa8e6615180
https://analyze.intezer.com/files/121157e0fcb728eb8a23b55457e89d45d76aa3b7d01d3d49105890a00662c924
https://analyze.intezer.com/files/121157e0fcb728eb8a23b55457e89d45d76aa3b7d01d3d49105890a00662c924
https://analyze.intezer.com/files/f55af21f69a183fb8550ac60f392b05df14aa01d7ffe9f28bc48a118dc110b4c
https://analyze.intezer.com/files/f55af21f69a183fb8550ac60f392b05df14aa01d7ffe9f28bc48a118dc110b4c
https://analyze.intezer.com/files/ec67bbdf55d3679fca72d3c814186ff4646dd779a862999c82c6faa8e6615180
https://analyze.intezer.com/files/ec67bbdf55d3679fca72d3c814186ff4646dd779a862999c82c6faa8e6615180

13/15

a0cd554c35dee3fed3d1607dc18debd1296fa
aee29b5bd77ff83ab6956a6f9d6

“liblinux.so.”

45eacba032367db7f3b031e5d9df10b30d016
64f24da6847322f6af1fd8e7f01

“certbotx64.” dnscat2

Ports Hidden

45345
34535
64543
24645
47623
62537
43253
43753
63424
26424

Domains Hidden

assets[.]fans
caixa[.]cx
dpf[.]fm
bancodobrasil[.]dev
cctdcapllx0520
cctdcapllx0520[.]df[.]caixa
webfirewall[.]caixa[.]wf
caixa[.]wf

Process Names Hidden

javaserverx64
javaclientex64
javanodex86
apache2start
apache2stop
[watchdog/0]
certbotx64
certbotx86
javautils

File Names Hidden

https://analyze.intezer.com/files/a0cd554c35dee3fed3d1607dc18debd1296faaee29b5bd77ff83ab6956a6f9d6
https://analyze.intezer.com/files/a0cd554c35dee3fed3d1607dc18debd1296faaee29b5bd77ff83ab6956a6f9d6
https://analyze.intezer.com/files/45eacba032367db7f3b031e5d9df10b30d01664f24da6847322f6af1fd8e7f01
https://analyze.intezer.com/files/45eacba032367db7f3b031e5d9df10b30d01664f24da6847322f6af1fd8e7f01

14/15

apache2start
apache2stop
profiles.php
404erro.php
javaserverx64
javaclientex64
javanodex86
liblinux.so
java.h
open.h
mpt86.h
sqlsearch.php
indexq.php
mt64.so
certbot.h
cert.h
certbotx64
certbotx86
javautils
search.so

Credential Exfil Domains

*.x3206.caixa.cx
*.dev21.bancodobrasil.dev

About Dr. Joakim Kennedy

15/15

Dr. Joakim Kennedy is a Security Researcher analyzing malware and tracking threat actors
on a daily basis. For the last few years, Joakim has been researching malware written in
Go. To make the analysis easier he has written the Go Reverse Engineering Toolkit
(github.com/goretk), an open-source toolkit for analysis of Go binaries.

About The BlackBerry Research & Intelligence Team

The BlackBerry Research & Intelligence team examines emerging and persistent threats,
providing intelligence analysis for the benefit of defenders and the organizations they serve.

Back

https://www.linkedin.com/in/joakimkennedy/
https://urldefense.com/v3/__http:/github.com/goretk__;!!COg3wY07Hnb7!7XFCRmPGI2DxN13rCycjSTkBE0gORfjB63Td-pFzAk4F6OPWGsIHkV-UwEZNPH5j4A%24

