
1/13

Lyceum .NET DNS Backdoor
zscaler.com/blogs/security-research/lyceum-net-dns-backdoor

Active since 2017, Lyceum group is a state-sponsored Iranian APT group that is known for targeting
Middle Eastern organizations in the energy and telecommunication sectors and mostly relying on
.NET based malwares.

Zscaler ThreatLabz recently observed a new campaign where the Lyceum Group was utilizing a
newly developed and customized .NET based malware targeting the Middle East by copying the
underlying code from an open source tool.

Key Features of this attack:

1. The new malware is a .NET based DNS Backdoor which is a customized version of the open
source tool “DIG.net”

2. The malware leverages a DNS attack technique called "DNS Hijacking" in which an
attacker- controlled DNS server manipulates the response of DNS queries and resolve them as
per their malicious requirements.

3. The malware employs the DNS protocol for command and control (C2) communication which
increases stealth and keeps the malware communication probes under the radar to evade
detection.

4. Comprises functionalities like Upload/Download Files and execution of system commands on
the infected machine by abusing DNS records, including TXT records for incoming commands
and A records for data exfiltration.

Delivery mechanism

During this campaign, the macro-enabled Word document (File name: ir_drones.docm) shown below
is downloaded from the domain “http[:]//news-spot.live” disguising itself as a news report related to
military affairs in Iran. The text of the document is copied from the following original report here:
https[:]//www[.]rferl[.]org/a/iran-drone-program-threats-interests/31660048.html

https://www.zscaler.com/blogs/security-research/lyceum-net-dns-backdoor
https://www.codeproject.com/Articles/23673/DNS-NET-Resolver-C

2/13

Fig 1. Attached Macro-enabled Word Document

Once the user enables the macro content, the following AutoOpen() function is executed which
increases picture brightness using “PictureFormat.Brightness = 0.5” revealing content with the
headline, “Iran Deploys Drones To Target Internal Threat, Protect External Interests.”

Fig 2. AutoOpen() function revealing content to lure the victims

The threat actor then leverages the AutoClose() function to drop the DNS backdoor onto the system.
Upon closing the document the AutoClose() function is executed, reading a PE file from the text box
present on the 7th page of the word document and parsing it further into the required format as
shown below with the “MZ” header as the initial two bytes of the byte stream.

3/13

Fig 3. AutoClose() function reading the PE File

This PE file is then further written into the Startup folder in order to maintain persistence via the
macro code as shown below in the screenshot. With this tactic, whenever the system is restarted,
the DNS Backdoor is executed.

Fig 4. DNS Backdoor dropped in the Startup folder

The dropped binary is a .NET based DNS Backdoor named “DnsSystem” which allows the threat
actors to execute system commands remotely and upload/download data on the infected machine.

Below, we analyze the dropped .NET based DNS Backdoor and its inner workings.

Lyceum .NET DNS backdoor

4/13

The Lyceum Group has developed a .NET based DNS Backdoor which has been widely used in the
wild in their recent campaigns. As discussed earlier, the backdoor was dropped in the Startup folder
of the infected system from a Macro Enabled Word document.

md5: 8199f14502e80581000bd5b3bda250ee

Filename: DnsSystem.exe

Attack Chain Analysis

The .NET based DNS Backdoor is a customized version of the Open source tool DIG.net (DnsDig)
found here: DNS.NET Resolver (C#) - CodeProject. DIG.net is an open source DNS Resolver which
can be leveraged to perform DNS queries onto the DNS Server and then parse the response. The
threat actors have customized and appended code that allows them to perform DNS queries for
various records onto the custom DNS Server, parse the response of the query in order to execute
system commands remotely, and upload/download files from the Command & Control server by
leveraging the DNS protocol.

Initially the malware sets up an attacker controlled DNS server by acquiring the IP Address of the
domain name “cyberclub[.]one” = 85[.]206[.]175[.]199 using Dns.GetHostAddresses() for the DIG
Resolver function, which in turn triggers an DNS request to cyberclub[.]one for resolving the IP
address. Now this IP is associated as the custom attacker controlled DNS Server for all the further
DNS queries initiated by the malware.

Fig 5. Initialize Attacker-Controlled DNS Server

Next, the Form Load function generates a unique BotID depending on the current Windows
username. It converts the username into its MD5 equivalent using the CreateMD5() function, and
parses the first 8 bytes of the MD5 as the BotID for the identification of the user and system infected
by the malware.

https://www.codeproject.com/Articles/23673/DNS-NET-Resolver-C

5/13

Fig 6. Generation of BotID using the Windows username

Now, the backdoor needs to receive commands from the C2 server in order to perform tasks. The
backdoor sends across an initial DNS query to “trailers.apple.com” wherein the domain name
“trailers.apple.com” is concatenated with the previously generated BotID before initiation of the
DNS request. The DNS query is then sent to the DNS server in order to fetch the “TXT” records for
the provided domain name by passing three arguments to the BeginDigIt() function:

Name: Target Domain name - EF58DF5Ftrailers.apple.com
qType: Records to be queried - TXT
qClass: Dns class value - IN (default)

Fig 7. Setup of DNS Query parameters before execution of BeginDigIt() Function

The BeginDigIt function then executes the main DNS resolver function “DigIt.” This sends across the
DNS query in order to fetch the DNS record for the provided target domain name to the DNS server,
and parses the response as seen in the code snippet below.

Fig 8. DNS Query DigIt Function

6/13

Comparing the Digit Resolver Code DigIt() function strings with the Dig.Net tool output from the
screenshot shown below provides us further assurance that the Dig.Net tool has been customized by
the Lyceum Group to develop the following .Net based DNS backdoor..

Fig 9. Original Dig.net GUI Output

The malware utilizes a DNS attack technique known as “DNS Hijacking” where in the DNS server is
being controlled by the attackers which would allow them to manipulate the response to the DNS
queries. Now let's analyze the DNS Hijacking routine below.

As discussed earlier, the backdoor performs initial DNS queries in order to fetch the TXT records for
the domain EF58DF5trailers.apple.com. EF58DF5 is the BotID generated based on the Windows
user to receive commands from the C2 server.

7/13

Fig 10. DNS query to attacker-controlled DNS server to fetch TXT records.

As can be seen in the above screenshot, a DNS query is performed to fetch the TXT records for the
domain name: EF58DF5trailers.apple.com to the DNS Server: 85[.]206[.]175[.]199 which is the
attacker-controlled DNS server previously initialized.

Here’s where the DNS hijacking happens: As the malware sends across a DNS query to fetch the
TXT records to the attacker-controlled DNS server, the attacker controlled DNS server responds with
an incorrect response consisting of the commands to be executed by the backdoor such as
ipconfig,whoami,uploaddd etc as shown in the screenshot below.

Fig 11. Ipconfig command returned as the TXT record from the attacker controlled DNS server

Following is the DIG.Net DNS response received by the backdoor and then further parsed in order to
execute commands on the infected machine.

8/13

Fig 12. DIG.net output received by the backdoor

The above screenshot consists of the DNS query performed to the attacker controlled DNS server
along with the target domain name EF58DF5trailers.apple.com. The Answer section consists of the
query response, which includes the target Domain name and the response to the TXT record with
two values, “ipconfig” - command to be executed and “1291” - Communication ID

Next, the Dig.net response is parsed using multiple pattern regex code routines which parse out the
TXT record values—the aforementioned command and communication ID—from the complete
response received by the malware.

Fig 13. Parsing of TXT Records

Next, depending on the command received in the TXT record from the C2 server, there are three
functions which can be performed by the Lyceum backdoor:

Download Files - If the command received from the DNS query consists of a string:
“downloaddd” it initiates the download routine and downloads the file from the URL using
DownloadFileAsync(). The URL would be the first 11 bytes of the TXT record response value,
and stores that downloaded file in the Downloads folder as shown below in the code snippet.
This functionality can be leveraged to drop additional malware on the infected machine.

9/13

Fig 14. Backdoor Download Routine

Upload Files - If the command received from the DNS query consists of a string: “uploaddd”,
it uploads the local file on the disk using UploadFileAsync() function to an External URL after
parsing the TXT record response value into two variables: uriString (external URL) and
filename (Local File). This functionality can be leveraged to exfiltrate data.

Fig 14. Backdoor Upload Routine

Command Execution - If none of the above strings match the TXT record response then the
response is passed on to the Command execution routine. There, the response to the txt
record is executed as a command on the infected machine using “cmd.exe /c
<txt_record_response_command>” and the command output is sent across to the C2 server
in the form of DNS A Records.

10/13

Fig 15. Backdoor Command Execution Routine

In this case, the TXT record response we received for the DNS query performed against the attacker
controlled DNS server is “ipconfig”. This response initiates the Command execution routine of the
backdoor and thus the command “ipconfig” would be executed on the infected machine - cmd.exe /c
ipconfig

Further, the command output is exfiltrated to the C2 server, encoded in Base64 and then
concatenated with the Communication ID and the previously generated BotUID using “$” as the
separator.

Fig 16. Command Output exfiltration Pattern setup

11/13

 Data Exfil Pattern: [base64encoded_command_output]$[communication_id]$[Bot_ID]

Once the command output is encoded in the above mentioned pattern, the DNS backdoor then
sends across the output to the C2 server via DNS query in the form of A records in multiple blocks of
queries, where the A record values consists of the encoded command output. Once the command
output is transmitted completely, an “Enddd” command is sent across in a Base64-encoded data
exfil pattern to notify the end of the command output as shown below in the screenshot.

Fig 17. Exfiltration of Encoded Command Output via A records queries on the attacker controlled
DNS server

Decoded A Records:

IPConfig Command Output -

Encoded A record =
ICAgSVB2NCBBZGRyZXNzLiAuIC4gLiAuIC4gLiAuIC4gLiAuIDogMTkyLjE2OC4.yLjEw$929$5686BB2F

Decoded A record =
 IPv4 Address. : 192.168.2.10 $ ComID: 929 $ UID: 5686BB2F

End Command -

Encoded A record = RW5kZGQ=$1291$$EF58DF5F

Decoded A record = Enddd $ ComID: 1291 $ UID: EF58DF5F

Cloud Sandbox detection

12/13

Fig 18: The Zscaler Cloud Sandbox successfully detected the malware.

Conclusion

APT threat actors are continuously evolving their tactics and malware to successfully carry out
attacks against their targets. Attackers continuously embrace new anti-analysis tricks to evade
security solutions; re-packaging of malware makes static analysis even more challenging. The
Zscaler ThreatLabz team will continue to monitor these attacks to help keep our customers safe.

MITRE ATT&CK mapping:

T1059 Command and Scripting Interpreter

T1055 Process Injection

T1562 Disable or Modify Tools

T1010 Application Window Discovery

T1018 Remote System Discovery

T1057 Process Discovery

T1518 Security Software Discovery

T1071 Application Layer Protocol

IOC:

Docm Hash:

13814a190f61b36aff24d6aa1de56fe2

13/13

Exe Hash:

8199f14502e80581000bd5b3bda250ee

Domain and URL's:

cyberclub[.]one
hxxp://news-spot[.]live/Reports/1/?id=1111&pid=a52

hxxp://news-spot[.]live/Reports/1/?id=1111&pid=a28

hxxp://news-spot[.]live/Reports/1/?id=1111&pid=a40

hxxp://news-spot[.]live/Reports/1/45/DnsSystem[.]exe

About ThreatLabz

ThreatLabz is the security research arm of Zscaler. This world-class team is responsible for hunting
new threats and ensuring that the thousands of organizations using the global Zscaler platform are
always protected. In addition to malware research and behavioral analysis, team members are
involved in the research and development of new prototype modules for advanced threat protection
on the Zscaler platform, and regularly conduct internal security audits to ensure that Zscaler products
and infrastructure meet security compliance standards. ThreatLabz regularly publishes in-depth
analyses of new and emerging threats on its portal, research.zscaler.com.

Stay updated on ThreatLabz research by subscribing to our Trust Issues newsletter today.

https://info.zscaler.com/resources-threat-labz-newsletter-subscription

