
1/11

Finding Vulnerabilities with VulFi IDA Plugin
accenture.com/us-en/blogs/security/finding-vulnerabilities-vulfi-ida-plugin

Share

In March, we published an IDA Pro plugin that Accenture Security teams use to find
vulnerabilities and other potentially interesting issues in the compiled binaries. The plugin
provides a Python-based query language with which users can look for calls to specific
functions that match criteria specified in the query. In this article, we will look at the high-
level theory behind this tool and demonstrate its use on a practical example of finding
vulnerabilities identified as CVE-2022-26413 and CVE-2022-26414.

How the plugin works

When doing vulnerability research, it is quite common to look for a call to certain functions.
And while cross-references shown by IDA are a good starting point, the idea for this plugin
came from the need to filter thousands of uninteresting calls to a function and find only
those that might be valuable from the security perspective.

To give a very generic example, imagine a binary file that calls a function like strcpy a
thousand times. Out of all these occurrences, all use a static string as a second parameter,
with only 50 exceptions. Without the way of filtering the function calls based on the

https://www.accenture.com/us-en/blogs/security/finding-vulnerabilities-vulfi-ida-plugin


2/11

properties of the parameters that are passed to them (and their return value), the analyst
would have to investigate all 1,000 cross-references. The worst part about this is that most
of them would have to be dismissed as uninteresting due to the use of static values in the
second argument.

This is the kind of case that’s perfect for a plugin developed using the IDAPython API. The
goals for the plugin are quite easy to define. We want an architecture-agnostic way of
filtering function calls based on the properties of the parameters and returned values. The
property could be, for example, whether the parameter is a constant value. In that case, we
also want a way to check for specific constant values.

IDA offers a plethora of functions for processing disassembly as well as decompiler output.
In cases where the decompiler could be used, the plugin will work much better, because the
Hex-Rays processing that happens under the hood allows the VulFi plugin to access much
more accurate values for function call parameters. For the cases where the disassembly is
the only option, the task is a bit harder. If possible, the VulFi will try to apply function type for
all known functions as defined in this file prior to running the search. With this, it will
leverage the possibility to locate the assembly instruction that is responsible for loading the
parameter and try to deduce its value from it. In case that the type-system is not supported
for the architecture, the VulFi will just mark all the cross-references for the function and put
them in the table.

With the search concluded, the results are placed in VulFi view. Since the plugin was
developed with an assumption that search results will likely be numerous, a simple tracking
and commenting feature was added to the plugin and will be demonstrated below in a
practical walkthrough of the usage.

An example usage of the VulFi plugin

1. Finding the right target

For the practical example, I will use a firmware of the Zyxel VMG3312-T20A router that I
happen to have in my drawer. The manufacturer announced some time ago that this model
had reached the end of its life. Nonetheless, according to internal validations performed by
Zyxel, the discovered vulnerabilities also affect several products that are still supported, as
mentioned here.

The firmware for the router could be downloaded from here. With the firmware image
downloaded, we can inspect its content. As shown below, the most interesting file is
V530ABFX5C0.bin (mainly because of its size, but also because of the filename extension).

https://www.hex-rays.com/products/ida/support/idapython_docs/
https://github.com/Accenture/VulFi/blob/main/vulfi_prototypes.json
https://www.zyxel.com/support/OS-command-injection-and-buffer-overflow-vulnerabilities-of-CPE-and-ONTs.shtml
https://www.zyxel.com/support/download_landing/product/vmg3312_t20a_14.shtml?c=gb&l=en&pid=20160824200000&tab=Firmware&pname=VMG3312-T20A


3/11

The V530ABFX5C0.bin file can be easily processed using a binwalk utility. This will
successfully detect and extract a SquashFS file system.

The extracted contents of the file system probably contain many interesting files, however,
since we know that the router in question has a feature-packed web interface, the best
place to try the plugin would be the file /bin/zhttpd. This file implements the logic of handling
the requests coming from the user browser and thus provides a convenient way for us to
test any potential issues.

2. Initial peek at the binary

The initial analysis of the binary starts obviously by loading it in the IDA Pro. After the
analysis is completed, we can see that the binary is an ELF file for a 32-bit big-endian MIPS
architecture.

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/01_pkg_content.png
https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/02_biwnalk.png
https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/03_zhttpd_file.png


4/11

After looking around the used functions, we can see that the binary is using function
system, which is used for executing OS commands.

To make life for VulFi easier, we must set the function type according to the official
documentation (the dialog for type configuration can be invoked by pressing Y).

We can also check the current count of the cross-references to this function. As shown
below, this binary contains a total of 69 unique calls to function system.

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/04_zhttpd_file_info.png
https://linux.die.net/man/3/system
https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/05_extern_system.png
https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/06_system_type.png


5/11

3. Using VulFi

Let’s see if VulFi can save us some time by only showing us those calls in which the first
and only argument of the system function is set to a non-static value. To find out, we must
set a custom rule that will look for such occasions (this rule is also in the default set,
however, for the sake of the article, let us recreate it). To initiate a setup of the new rule, set
IDA view to the body of the function that you want to look for, right-click anywhere in the
body (in this case we right-click the system label) and select the option “Add current
function to VulFi”.

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/07_system_xrefs.png
https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/08_add_function.png


6/11

Selecting this option will spawn a simple dialog with two required fields. The first field is the
name of the new custom rule so that you can easily find it amongst other results that might
already be in the result list. The second field is where the magic happens; that is where you
specify the rule. Since we are looking for any occurrence of the call to system function
where the first parameter is not constant value the rule will have a form as shown in the
screenshot below:

A brief description of the above rule is likely required at this point. We start with the not
keyword to negate the expression. We are looking for the first parameter, that is why we use
an array of parameters called param and we use the first item in the list ([0]). The state of
the parameter that we are interested in is whether it is a constant. This can be achieved by
calling a function is_constant() on the parameter object, the negation which we put in the
beginning will make sure that we only get results where the is_constant() function returned
False. As you may have noticed, the syntax is very similar to conditions as written in
Python. In fact, this is a Python code, it is just that several functions have been prepared for
you to build a sort-of query language. If you would like to find out more about available
functions, please see the README file in the official repository of this plugin.

Let us get back to the example now. When you press the Run button, VulFi will see if the
decompiler for the given architecture is available and if it is, it will automatically use it.
Therefore, you will see progress pop-ups mostly linked to the decompiler processing the
functions. After the process of searching is completed, you will be presented with VulFi
results view. In the case of the zhttpd binary and the search for the rule defined above, we
can see that thanks to VulFi, we are left with only 31 out of the original 69 cross-references.

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/09_vulfi_rule.png
https://github.com/Accenture/VulFi


7/11

4. Inspecting a vulnerable code (CVE-2022-26413)

To answer the question in the subtitle for this section, we can just look at the VulFi results.
Amongst all the detected calls to system function let’s have a look at function sub_40C3E8.
This can be easily done by double-clicking the line with this function in VulFi, this will
automatically make the main IDA view switch to the location where the call was identified.

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/10_vulfi_results.png


8/11

Please note that for the sake of better readability, the remainder of this article uses the
decompiler in IDA. As you can see below, the marked call to system function does indeed
accept dynamic argument.

The vulnerability occurs on line 74 in the above snippet. To reach to that code, you must
invoke action import_ca (not shown in here). This is done by sending a multipart request
with the CA file in the parameter called certImportFileName. As can be deduced from the
code on line 69, the name of the file sent in the multipart request will be used in the sprintf
(CVE-2022-26414) function to build a command string (line 72) that is passed to the system
function on line 74.

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/11_vuln_in_vulfi.png
https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/12_decomp_system.png


9/11

Since we have identified a place that is most likely vulnerable, we can go back to VulFi view
and use a right click on the given item to either set a custom comment or to set a status for
the item to one of the available options (False Positive, Suspicious or Vulnerable). This
feature was added to make tracking of the progress easier as it is assumed that larger
binaries will take multiple days to process.

5. Exploitation

Finally, we should prove the exploitability of the issue that we just found. That requires
capturing a request in the intercepting proxy of our choice (BurpSuite is used in the
example) and sending it with a modified filename parameter. The value set in this
parameter in the below screen capture instructed the router to execute the ls -l command
and pass the result of it to the attacker machine via nc connection. As can be seen by the
highlighted sections, this was successful and thus a possibility to inject OS commands was
proven.

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/13_set_status.png


10/11

Vulnerability Disclosure Process

The following dates are an important milestone related to the discovered vulnerabilities.

13 January 2022 – Issues reported to Zyxel
16 January 2022 – Vulnerabilities were acknowledged to be existent in the End-of-Life
product
12 April 2022 – Advisory published by Zyxel (https://www.zyxel.com/support/OS-
command-injection-and-buffer-overflow-vulnerabilities-of-CPE-and-ONTs.shtml)

Accenture Security is a leading provider of end-to-end cybersecurity services, including
advanced cyber defense, applied cybersecurity solutions and managed security operations.
We bring security innovation, coupled with global scale and a worldwide delivery capability
through our network of Advanced Technology and Intelligent Operations centers. Helped by
our team of highly skilled professionals, we enable clients to innovate safely, build cyber
resilience and grow with confidence. Follow us @AccentureSecure on Twitter, LinkedIn or
visit us at accenture.com/security.

Accenture, the Accenture logo, and other trademarks, service marks, and designs are
registered or unregistered trademarks of Accenture and its subsidiaries in the United States
and in foreign countries. All trademarks are properties of their respective owners. All
materials are intended for the original recipient only. The reproduction and distribution of
this material is forbidden without express written permission from Accenture. The opinions,
statements, and assessments in this report are solely those of the individual author(s) and

https://acn-marketing-blog.accenture.com/wp-content/uploads/2022/05/14_exploited.png
https://www.zyxel.com/support/OS-command-injection-and-buffer-overflow-vulnerabilities-of-CPE-and-ONTs.shtml
https://twitter.com/accenturesecure
https://www.linkedin.com/showcase/accenture_security/
http://www.accenture.com/security


11/11

do not constitute legal advice, nor do they necessarily reflect the views of Accenture, its
subsidiaries, or affiliates. Given the inherent nature of threat intelligence, the content
contained in this article is based on information gathered and understood at the time of its
creation. It is subject to change. Accenture provides the information on an “as-is” basis
without representation or warranty and accepts no liability for any action or failure to act
taken in response to the information contained or referenced in this report.

Copyright © 2022 Accenture. All rights reserved.

Martin Petran

Associate Manager – Technology

Martin is member of the Embedded Systems Security Assessment team specializing in
reverse engineering and firmware exploitation.

Subscription Center

Subscribe to Security Blog
Subscribe to Security Blog

Subscribe

https://feeds.feedburner.com/us-en/security

