
1/9

June 4, 2022

[QuickNote] CobaltStrike SMB Beacon Analysis
kienmanowar.wordpress.com/2022/06/04/quicknote-cobaltstrike-smb-beacon-analysis-2/

1. Executive Summary

At VinCSS, I recently wrote an analysis related to the samples of the Mustang Panda
(PlugX) group. These samples are all uploaded from Vietnam. You can read the Vietnamese
or English blog post of this analysis.

However, in all the uploaded log.dll files, there is one file that is not related to the
Mustang Panda group’s attack technique, it is marked as the following picture:

2. Analyze log.dll

This file’s size is smaller than other files. The original name is imageres.dll , it exports a
lot of functions have the same address, but the only one most notable is the LogInit
function:

https://kienmanowar.wordpress.com/2022/06/04/quicknote-cobaltstrike-smb-beacon-analysis-2/
https://apt.etda.or.th/cgi-bin/showcard.cgi?g=Mustang%20Panda%2C%20Bronze%20President&n=1
https://blog.vincss.net/2022/05/re027-nhom-apt-mustang-panda-co-the-van-dang-tiep-tuc-hoat-dong-tan-cong-vao-cac-to-chuc-tai-Vietnam.html
https://blog.vincss.net/2022/05/re027-china-based-apt-mustang-panda-might-have-still-continued-their-attack-activities-against-organizations-in-Vietnam.html
https://kienmanowar.files.wordpress.com/2022/06/img_01.png
https://www.virustotal.com/gui/file/604b202cbe5e97c7c8a74a12e1f08e843c08ae08be34dc60b8518b9417c133a9/detection

2/9

Analyze LogInit ‘s code in IDA, I see it build path to the mpengindrv.db file:

Next, read the content of mpengindrv.db into the allocated memory region and decrypt it
by using RC4 with the decryption key is “ A5A7F7E2B00C4A2B87FC0123F933EBD6 “. After
successful decryption, call the decrypted payload to execute:

https://kienmanowar.files.wordpress.com/2022/06/img_02.png
https://kienmanowar.files.wordpress.com/2022/06/img_03.png

3/9

3. Hunting and decrypting

Trying to hunt mpengindrv.db file on VT, I found the only file uploaded from Vietnam and at
the same time as the log.dll file above:

Using CyberChef to decrypt file, we found that the file after decryption is a PE file, but we will
see that immediately after the MZ signature is the opcode of the call command (0xE8):

Save the decrypted file to disk, perform disassembly first bytes, and see that there are two
calls as follows:

https://kienmanowar.files.wordpress.com/2022/06/img_04.png
https://kienmanowar.files.wordpress.com/2022/06/img_05.png
https://gchq.github.io/CyberChef/
https://kienmanowar.files.wordpress.com/2022/06/img_06.png

4/9

The above information reminds me of the ReflectiveLoader technique that I have analyzed in
this article. Static analysis the decrypted file, which is a Dll with the original name
Lotes.dll , exporting one function is ReflectiveLoader .

However, the unusual point is that, its Imports Table information is wrong, the names of
sections are also confusing characters:

https://kienmanowar.files.wordpress.com/2022/06/img_07.png
https://github.com/stephenfewer/grinder/blob/master/node/source/logger/ReflectiveLoader.c
https://blog.vincss.net/2020/03/re012-phan-tich-ma-doc-loi-dung-dich-COVID-19-de-phat-tan-gia-mao-chi-thi-cua-thu-tuong-Nguyen-Xuan-Phuc-phan2.html
https://kienmanowar.files.wordpress.com/2022/06/img_08.png

5/9

4. Analyze Lotes.dll

Load the Dll file into IDA for analysis, the code in the ReflectiveLoader function is similar
to the code here, but it has been modified a bit related to processing import table . It first
reads the NumberOfSymbols value from the File Header and stores it in a variable. This
variable will be used as the xor_key . Then, when processing the import table , it uses the
obtained xor_key value to decode the names of the dlls, as well as the names of the API
functions that the malicious code will use:

https://kienmanowar.files.wordpress.com/2022/06/img_09.png
https://github.com/stephenfewer/grinder/blob/master/node/source/logger/ReflectiveLoader.c

6/9

Based on the above information, it is easy to recover the information of the Import Table:

https://kienmanowar.files.wordpress.com/2022/06/img_10.png

7/9

After completing the Loader process, it will call the entry point of the Dll file to execute:

The code at DllEntryPoint will call DllMain , and then calls the function
f_decrypt_and_parse_beacon_config . The reason I know this is a CobaltStrike Beacon

is because the f_decrypt_and_parse_beacon_config function will perform decode the

https://kienmanowar.files.wordpress.com/2022/06/img_11.png
https://kienmanowar.files.wordpress.com/2022/06/img_12.png

8/9

config with a hard-coded value of 0x2e (as xor_key). The value 0x2e is used in Beacon
version 4.

Based on this info, I used the script 1768.py by Mr. Didier Stevens to extract the
configuration information of the CobaltStrike Beacon. The result shows that this is an SMB
Beacon:

https://kienmanowar.files.wordpress.com/2022/06/img_13.png
https://github.com/DidierStevens/DidierStevensSuite/blob/master/1768.py

9/9

End.

m4n0w4r

https://kienmanowar.files.wordpress.com/2022/06/img_14.png

