
1/5

May 24, 2022

Janicab Series: First Steps in the Infection Chain
malwarology.com/2022/05/janicab-series-first-steps-in-the-infection-chain/

2022-05-24

Malware Analysis , Janicab
In late April 2022, I was requested to analyze a software artifact. It was an instance of
Janicab, a software with infostealing and spying capabilities known since 2013. Differently to
other analyses I do as part of my job, in this particular case I can disclose parts of it with you
readers. I’m addressing those parts in a post series. Here, I’ll discuss about the first stages
of a Janicab infection on Microsoft Windows targets, based on this specific sample.

SMPT-error.txt.lnk

The infection chain starts with a Shell Link Binary file (LNK) called SMPT-error.txt.lnk. This
file is suspicious for several reasons. First, it tries to mask itself as an innocent text file since
the last extension (.lnk) gets hidden by default setting in Microsoft Windows. A user could
just see SMPT-error.txt once it was downloaded. Second, the file size is considerably big for
a LNK file: 3.25 MB. Third, as you can see from Figure 1, it targets the command prompt
executable.

Figure 1

https://www.malwarology.com/2022/05/janicab-series-first-steps-in-the-infection-chain/
https://www.malwarology.com/categories/malware-analysis
https://www.malwarology.com/categories/janicab
https://www.virustotal.com/gui/file/20026af8c1bd95d4a39c2d1d1c2909ed133a5d2efac2d6c6b87cbc4d2782fef0


2/5

-
SMPT-error.txt.lnk targets the command prompt executable

Figure 2

-
SMTP-error.txt.lnk hidden arguments

By parsing the LNK structure for SMPT-error.txt.lnk, and more precisely the
COMMAND_LINE_ARGUMENTS structure included into the StringData set, I was able to
obtain the arguments intended to be passed to the command prompt when triggering the
execution of the link. As Figure 2 may prove, the arguments form a command prompt script.
Such a script is decomposable in the following consecutive steps:

1. Copy SMPT-error.txt.lnk into the temporary files directory. The “SMP*.txt.lnk” glob
expression will likely match just that file. The temporary files directory is that directory
referenced by the %TMP% environment variable.

2. Move to the temporary files directory by issuing the CD command.
3. Add read permissions (+r) to any file having .lnk extension into the temporary files

directory. This is achieved by issuing the ATTRIB command.

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-shllink/16cb4ca1-9339-4d0c-a68d-bf1d6cc0f943


3/5

4. For each system file (/s argument of DIR command)having the .lnk extensions and
located into the current directory, take the filename (/b argument of DIR command) and:

Read the file content by issuing the TYPE command. Notice that the loop iteration
variable %a contains a file name and the prefix $~f points to the absolute path.
Within the file, find any line containing the pattern ”#@~^”. This is achieved with
the command FIND.
Redirect those lines matching the pattern to a file called .vba and stored into the
temporary files directory.
Execute the .vba file with the CSCRIPT command. This evidence suggests that
the content of .vba should be some script accepting the path to SMTP-error.txt.lnk
as an argument.

Figure 3

-
SMPT-error.txt.lnk embeds an obfuscated script

Based on what reported, I conclude this section by considering SMPT-error.txt.lnk as a
dropper for a second stage artifact along the infection chain. Indeed, such a second stage is
originally embedded into the LNK file and stored on disk only after the user having double
clicked on the link. Figure 3 shows the script as it can be found in the LNK file with the FIND
command. The next section discusses that script with greater detail.

.vbe

As already pointed out in the previous section, I know that what shown in Figure 3 is a script.
It gets executed by issuing the CSCRIPT command and it expects a single argument
consisting of the absolute path to the SMTP-error.txt.lnk file. The script is encoded with the
Windows Script Encoder, a tool originally developed and distributed by Microsoft to provide
for a shallow protection for various forms of scripts such as VBScript, JavaScript, and more.
I’m sure about the encoding because the marker ”#@~^”, used to find the .vbe script within
the is SMTP-error.txt.lnk, is a well-known opening tag for the scripts encoded with the
Windows Script Encoder.

http://web.archive.org/web/20050605234251/http:/www.klaphek.nl/nr6/scrdec.html


4/5

Figure 4

-
.vbe script content as it appears after the decoding

By knowing the encoding algorithm, I was able to decode the script. The full content is
showed in Figure 4. As you may notice from that listing, the goal of .vbe consists of
extracting a further chunk of SMTP-error.txt.lnk, store that chunk on disk, and eventually
execute the chunk by using CScript.exe. Therefore, I need to consider .vbe as a dropper for
a further script along the infection chain. I close this section with a few annotations about the
listing of Figure 4:

The dropped script is stored in the same directory where .vba is located, namely the
temporary files directory (%TMP%), with filename 2.vbe.
I know that 2.vbe is a script because it is executed with Cscript.exe (line 10).
The dropped script lies at the char offset 3644 of SMTP-error.txt.lnk and it is 5042
chars long. Those are the values passed to the MID function at line 20 as start and
length, respectively. Those values are set at line 6 and line 7.
The dropped script is prefixed with the already mentioned ”#@~^” marker, before being
stored on disk as 2.vbe. From that evidence, I may suppose that 2.vba contains a
further encoded script.
The execution of 2.vbe is attempted at line 10. This shell execution will not show any
window because the intWindowStyle argument of WScript.Shell.Run is forced to 0
(corresponding to the hide setting).
Similarly to what I have observed for .vbe, the absolute path of SMTP-error.txt.lnk is
passed as a parameter to 2.vbe when the latter gets executed.



5/5

After having launched 2.vbe, .vbe kills any process running the command prompt or
powershell. That is the purpose of the function killRunningCmdInstances, called two
times at line 11 and line 12 with “cmd.exe” and “powershell.exe” as its argument,
respectively.
killRunningCmdInstances searches the processes by name with the Windows
Management Instrumentation (WMI) API for VBScript (lines 28-31).

The next post of this series will push the analysis further along the infection chain, by starting
from 2.vbe. As always, if you want to share comments or feedbacks (rigorously in broken
Italian or broken English) do not esitate to drop me a message at
admin[@]malwarology.com.


