Introduction of a PE file extractor for various situations

«§ r136a1.info/2022/05/25/introduction-of-a-pe-file-extractor-for-various-situations/

May 25, 2022 - tool, malware

During a malware analysis, you may encounter the situation where a next stage payload is loaded or injected into another
process. When this is the case, usually a raw PE file gets decrypted in memory that is used to build the memory module. The
trick is to find the procedure which decrypts the raw file with a debugger and dump the memory region which contains this
payload. This allows you to easily extract the original PE file from the dump for further analysis. Thus, you usually don’t need to
perform contorts like dumping the memory module of the payload and rebuild its import address table.

When | don’t extract a payload by hand, I've always used the combination of a debugger and PEExtract. In most cases,
PEExtract works correctly and grabs the PE payloads. However, it has a few shortcomings like no support for signed PE files and
its development also stopped in 2007. That's why I've created pe_extract.py to overcome those issues. While there are
already scripts like this (e.g. pe-carv), I've added a few improvements and features:

« Multiple file scan support (e.g. for automatically created memory dumps)
o Skip likely incomplete page sized PEs (for automatically created memory dumps)
e Support for XORed PE files

Use case 1 - Extract payload(s) from a manual memory dump

Typical usage: python pe_extract.py <FilePathToDump> (--extract-xored)

As an example, let’s take a Cobalt Strike loader | dubbed FlyingTurtleLoader after its internal name FlyingTurtle . The initial
64-bit DLL is a loader for a first stage EXE which in turn is the final loader for the Cobalt Strike beacon. Each stage is base64
encoded, MSZIP compressed and the first stage additionally XOR encrypted.

Malware (SHA-256):
938ch440f0652bc90384847320f0a4e6faaad04410e23098e4825da6dd5ch2a2

As initially described, when you analyze a loader or multi-stage malware sample, there’s usually a raw PE file written to a memory
buffer at some point. The following x64dbg screenshots show the XOR encrypted first stage EXE payload in the Dump 3
window:

1A 02 lea ccx,qword per ds: [rdx+2]
FFD3 g2l rbx createpecompressor
8sco Test eaxeax
~ 0F83 A5000000 e 938cba40T0652bCI0384847 3207 0adesT 7FFB137A145E
4cissas 08 mov rs,qword ptr d +8] [rsi+a]: "\ro=ibicee
Ci2806 sub rs,quord pt
4818045 CO lea raX,qword
23:894424 28 mov aword ptr s
acisseczs 20 mov aword ptr s
45:33C9 xor
1818816 mov rdx,quord ptr
3318840 €5 mov_rcx,quord ptr
21:FFD. eall iz Decompress
mov_rcx, g
E8 005C0000 Eall 93&cba40foes2
ac:ssFo mov ris,rax
acissas co mov rs,qword ptr ss:Erbp-4ol
2302 xor edx, edx
s8:88c8 mov_rex; rax
E8 38710000 €all 938Ch440T0652DCI0IE4847 320F04EET . 30 malloc
4ciss4s 08 mov rs,qword ptr ds:[rsits [rsi+a]: "\ro=ibicee
4C:2806
4818045 D8 a
48:854424 78
4818845
48:834424 20
4D:8BCE
38:8816 mov rdx,qword ptr ds: [rsi]
3318840 €8 mov_rcx,aword ptr ss:[rbp-3sf
o[00007FFS137AL418 41:FFD4 EEl ri3 Decompress
8sco test eax;eax
~ 74 37 e 938cba40T0652DC903848473207Dase6T 7
4C:3960 D8 cmp_aword per ss:frbp-2sl.r13
<

@Woump1i @Yoump2 W4Dump3 @pumps Whoumps @ wath1 be-llocal 5 Stuct
Address Tex ASCIT

0000023ABA85 408D 28] 3F F5 G5[G6 65 G5 65|61 G5 65 G5|OA OA G5 Gf | (oefeceases..ee
000002384385 3090(DD &5 65 65 |65 65 €5 65|25 65 65 65 |65 G5 G5 65| Veeseeceneccccee
00000238435 40AD| 65 65 65 65|65 65 65 65|63 65 65 65|65 65 65 65| cccccccceeccceee

0000024A8435 4080 | 65 €5 65 G5 |65 65 65 65 G5 G G5 G5 |GD 64 65 3 | ccececcccecomdes| 4| Brnary »
00D0024AB485 40C0| 6B 7A DF GB |65 D1 GC AB|43 DD G4 29|A8 41 31 0D|kzBRkeNl DY¥d) DI.
000002428435 40D0| OC 16 45 15 |17 0A 02 17|04 08 45 06|04 OB OE OA| ..E....... ... Copy v
000002438485 40ED| 11 45 07 00|45 17 10 DB |45 OC OB 45|21 2A 36 45| .E..E...E..EI76E

000002478435 40F0| 08 0A OL 00|48 68 68 GF |41 65 65 65|65 65 65 63 |..
0000024A8485 4100 | E6 87 13 85 |A2 E6 7D DE|A2 E6 7D D&|A2 EG 7D D 2. ..cz]0cz}0ea]0
0000024A8485 4110 | 86 8D 73 D7 49 EG 7D DE |86 83 7E D7 |47 E 7D DG .Uxe2]01. 5210
0000024A84354120| B6 8D 78 D7 |25 EG 7D D6|1C 37 79 D7|8Z E6 7D D6 Tl.xx(2}0..yx-2]0
0000024A84354130| 1C 97 7E D7 A8 EG 7D D6|1C 37 78 D7|83 E6 7D D6 ..~x Z]0..xx.2]0
0000024A8435 4140 | B6 @D 7C D7 A7 EG 7D DE|A2 E6 7C D&|FB E6 7D D6 {l. |xs2]0cx|O0=]0

o BEG

Follow in Memory Map. 1F 31 Reserved (1)l MAP
0000024A83240000 D000000000181000 HaP | -R---

Followin Disassembler 0000024A83300000 | 0000000000D7ECDD MAP | -R---
000002448344E000 | DDDODODOD1383000 | Reserved (00DD024A833D0000) AP

Setlabel : 100000244847 E0000 | 00000000000C1000 PRV -RW--

000002 384841000 000000000005F000 | Re? B Folow in Diassembler
50007 R 410470000 | 0000060000055000 [-

00007FF 410475000 | 00D00OO000OFBO0 | Re gy Folowin Dup
00007FF 410870000 | 0000000200020000 |Re:

00007FF510C 10000 | D000000002000000 | Re: (4l Dump Memary to File
00007FF312¢10000| 0000000000001000

00007FF512C 20000| 0000000000001000| |) Comment

At this point, you can already go to the memory region that contains the encrypted payload (Follow in Memory Map) and save it to
disk (Dump Memory to File). You don’t even need to find the final routine which decrypts the payload (XOR bytes with 0x65), as
this can be done by pe_extract.py . You just need to run the script with the --extract-xored argument and it extracts the
decrypted final loader. According to its PDB path and the empty Cobalt Strike config data, this is a test tool:

C:\test\FlyingTurtle\x64\Release\FlyingTurtle.pdb

Use case 2 - Extract payload(s) from on-disk file(s)

1/6

https://r136a1.info/2022/05/25/introduction-of-a-pe-file-extractor-for-various-situations/
https://r136a1.info/categories/tool/
https://r136a1.info/categories/malware/
http://web.archive.org/web/20101126155525/http://usar.pp.ru/download/
https://bitbucket.org/Alexander_Hanel/pe-carv/
https://x64dbg.com/
https://r136a1.info/assets/images/posts/introduction-of-a-pe-file-extractor-for-various-situations/case_1.png

Typical usage: python pe_extract.py <FilePathToDump> --extract-xored (--extract-overlays)

Sometimes, there is malware that keeps one or more payloads unencrypted in its PE sections. Or the payloads are encrypted
with a simple XOR algorithm. When this is the case, you can easily extract them and make a initial assessment what the purpose
of the malware might be by looking at them. For PE extration, this is the best case because the embedded files can be pulled out

reliably.

Again, as an example, we use a Cobalt Strike loader | dubbed K32Loader according to this specific API function that it uses
called K32GetProcessImageFileNameWw . It disguises itself as a legitimate looking Windows file and keeps other legit signed files
along with the actual Cobalt Strike beacon loader in its resources section. The legit files do not serve any purpose except to make
the malware look less suspicious. The final beacon loader DLL is run by a shellcode created with the help of sRDI. The final
loader contains the AES encrypted Cobalt Strike beacon.

Malware (SHA-256):

2016258h9aecab66a204a4374aeef2d5f7a0c6857e€92491a12440ce8487aaf938 (Sample 1)
6344b05fe37649d87617e5ba26cd90a3d9b4bff28904df89a6b9028265c9db65 (Sample 2)
e8eb5597550ba347114a67cb5173c389aeb3addff8f2f5eaefb634e18508526a (Sample 3)

The sample’s embedded files are described in the following table:

1st stage
DLL
Initial DLL masked Final DLL
Sample Stages masked as Initial DLL signed files as 1st stage signed files loader name
1 2 Windows Windows MsMpRes.d1l Not - Protections-
MsMpRes.d11l masked Remover.dll
(internal
name
final-
load.dll)
2 1 Windows Windows MsMpRes.d1l -> -> final-
userenv.dll load.dll
3 2 Windows Sophos Not Windows astraGem.dll
userenv.dll ICManagement.dll , masked MessagingDataModel2.d1l ,

The following EXE Explorer screenshot shows the embedded files in sample 3:

C:\Users\

DetectionFeedback.dll

midimap.dll

\Desktop\e8eb5597550ba347114a67cb5173c38%aeb3addff8f2f5eaefb634e18508526a

L]
L4 Portable Executable DLL - PE32 + (54bit)

AMD &4-bit - Windows GUI

Headers Sec

tions

Directories Exports Imports Resources Strings Load Config Debug

Exceplions Hex View

= "BIMARY™

2,508,985 B (95.5%)

Property

MName
Type
Language
Code page
RVA
Offset
Size
Entropy
MD5

Value

200

"BIMARY™

1033

a

0x000CDC38

0x000C9033

15333218

6.740

3616DFIAF4CE 3464C36 138CF

Resource Viewer

View

i@Bl 2283 8485 8c87 2889 2ABE eCeD BEBF @1234567839ABCDEF

ES00 2888 9853 4989 (348 S1C1 588E 2288 &....YI EH A ...

BAPE 109D E149 E1C8 B@ES 1782 41E9 @488 2.. &I A e..Al..
eXPe0e20 | PEPR 5648 B9EG 4883 E4FP 4883 EC3@ (744 ..VH 2H 30H ieco
exBBBA3E | 2428 952 OPBR EEES PORD PE4E EOF4 SECI §E....H 8°A
@xB98848 | 4289 SC24 8344 E94C 2428 4029 4424 1889 H \$.D L% L D%.
2292858 | 5424 1855 5657 4154 4155 4156 4157 4BED TH.UVWATAUAVAWH
XPOERED | EC24 ABSE B1EC GR81 8Pee 4533 EDCT 45p@ 1% H 17...E3iCED
BxPP887e | EES8 £508 4B3E F14C 896D FEBY 135C BFED k.e.H fiL m&1. ;X

2/6

https://github.com/monoxgas/sRDI
https://www.mitec.cz/exe.html
https://r136a1.info/assets/images/posts/introduction-of-a-pe-file-extractor-for-various-situations/case_2.png

The resources named 100 and 300 are the signed ICManagement.dll and DetectionFeedback.dll files from Sophos.
The resource named 200 is the reflective loader shellcode with the embedded Cobalt Strike loader named astraGem.dl1l .
This file contains the additional signed Windows files MessagingbDataModel2.d1l and midimap.dll in its resource section.

When we use pe_extract.py on each file, we get all the unencrypted embedded files except for the Cobalt Strike beacon as
it's encrypted.

Beacon domains:

dns.minimephotos[.]co.uk
orchardstanks[.]com
bellennium[.]Jcom
energy-sciences[.]org

Use case 3 - Extract payload(s) from automatically created memory dumps

Typical usage: python pe_extract.py <FolderPathToDumps> (--extract-overlays) (--extract-all)

Nowadays, more and more sandboxes contain the ability to scan for malware in memory. Usually, this is done by dumping
memory images to disk and scan those for any malware patterns. Based on the quality of the mechanism that triggers the dump
procedure, you have a bigger or smaller amount of dump files that hopefully contain one or more (decrypted) payloads. One such
a sandbox is Virustotal’'s Zenbox that is capable of creating memory dumps during a sample analysis.

As an example, we use a Matanbuchus sample.
Malware (SHA-256):
d9e6395917a1d1103c40f710310dedcf64c370d167def378e9b88f3af247a1bo

It's a signed MSi file disguised as a Symantec Protection Engine installer and contains two files. The first file named
notify.vbs shows a fake error message when run. The second file named main.d11 is a signed Matanbuchus loader
disguised as a Visual Studio installer. The signatures are as follows (MSI file on the left, main.d11 on the right):

Digital Signature Details ? * Digital Signature Details ? X
General Advanced General Advanced
—_. Digital Signature Information —. Digital Signature Information
= —
4i/> This digital signature is QK. M This digital signature is QK.
Signer information Signer information
Name: |SERVICE ABOVE LTD Mame: |pream key Comics Inc.
E-mail: |Not available E-mail: |diadelf'om@hot'nail .com
Signing time: Mot available Signing time: |Monday, May 23, 2022 1:30:04 AM
View Certificate View Certificate
Countersignatures Countersignatures
Mame of signer; E-mail address; Timestamp Mame of signer; E-mail address: Timestamp
Details Details
CK QK

The following Virutotal screenshot shows the option to download the memdump of this file:

3/6

https://malpedia.caad.fkie.fraunhofer.de/details/win.matanbuchus
https://r136a1.info/assets/images/posts/introduction-of-a-pe-file-extractor-for-various-situations/case_3_signatures.png

2 _‘/ 2 security vendors and no sandboxes flagged this file as malicious

d9e6395917a1d1103c40f710310de0cf64c370d167def378e9b88f3af247a1b0 172.00 KB 2022-05-25 08:16:12 UTC
C-Windows\Iinstallert3ff3b msi

checks it k-adapters direct-cpu-clock-access malware msi runtime-modules signed

Community

Score

DETECTION DETAILS RELATIONS BEHAVIOR CONTENT SUBMISSIONS COMMUNITY

Screenshots

@ Zenbox v a EVTX [Z] Memdump [Pcap @ Search similar behavior &

Behavior Tags

check: b-by detect-debug-environment g-sleep

Network Communication

HTTP Requests

+ http://azuretelemetryxyz/cAUtfkUDaptk/ZR Seiy/requets/index. php

DNS Resolutions
+ statsazure.xyz
+ arc.msn.com

+ azuretelemetry xyz

Unfortunately, this feature is limited to enterprise accounts.

In this extraction case, just provide the folder path which contains the memory dumps as an argument and pe_extract.py
scans each file for embedded PEs. When we do that, we get five extracted DLLs. From the FDMP files, we have two versions of
main.d11l with the signature information cut. From the SDMP files, we have an additional version of main.d11l with a cut
signature and two versions of the main Matanbuchus module.

The first main module file is the raw PE decrypted during the loading routine (see introduction). It contains the usual
Matanbuchus strings in cleartext:
Agent.ADNJ

Agent.Matanbuchus
B:\Loader\Matanbuchus\Main module\Belial project\MatanbuchusLoader\MatanbuchusLoaderFiles\Matanbuchus\json.hpp

The second main module file is a memory dump of the raw PE that contains additional (decrypted) strings:

4/6

https://r136a1.info/assets/images/posts/introduction-of-a-pe-file-extractor-for-various-situations/case_3.png
https://developers.virustotal.com/reference/file-behaviour-memdump

azuretelemetry.xyz
/cAUtfkuDaptk/ZRSeiy/requets/index.php
statsazure.xyz

23.227.196.227

87.236.146.125

icLJkdnBDX

qmG

Running exe

Starting the exe with parameters
High start exe

RunD1132 & Execute

Regsvr32 & Execute

Run CMD in memory

Run PS in memory

MemLoadD1lMain || MemLoadExe
MemLoadShellCode
MemLoadShellCode #2

Running dll in memory #2 (DllRegisterServer)
Running d11l in memory #3 (DllInstall(Install))
Running d1ll in memory #3 (DllInstall(Unstall))
Crypt update & Bots upgrade
Uninstall

Gp

Pk

vM

Vs

bN

Jb

NSeyDX

Los

wP6

CBF

Vz

3m7x

ELj

E06

Q6X6

tw

acG

3CEk

DS2x

Fto

filda

3fell

zkC7

These strings were obfuscated at compile time. They get only revealed when the string decryption procedures are executed
during the (C++) initialization phase. You can see the decrypted strings in the .data section when you set a breakpoint on

D11Main and run the raw PE sample in a debugger. This obfuscation method was introduced several years ago in a project
called ADVobfuscator.

We can see a few additions by examining those strings and comparing them to the previous version. A new memory shellcode
loading mechanism (MemLoadShellCode #2)appears to be the most obvious new feature.

We can also see some strings that were decrypted using a different method:

5/6

https://github.com/andrivet/ADVobfuscator
https://medium.com/@DCSO_CyTec/a-deal-with-the-devil-analysis-of-a-recent-matanbuchus-sample-3ce991951d6a

Agriel

v1.4.0

DANO3
%02X-%02X-%02X-%02X -%02X -%02X
%USERDOMAIN%
User

Admin

kernel32
IsWow64Process
32 Bit

64 Bit
%LOGONSERVER%
POST

HTTP/1.1

Host:
User-Agent:

windows-Update-Agent/11.0.10011.16384 Client-Protocol/2.0

Content-Length:

Content-Type: application/x-www-form-urlencoded

Accept-Language: en-US
Matanbuchus domains:

statsazure[.]xyz
azuretelemetry[.]xyz

Conclusion

With pe_extract.py you have a tool that can save you some time during a malware analysis session and make things easier.
It speeds up the analysis process a bit and can help make a first assessment of an unkown malware. It can also be useful to
create Yara rules, especially when the retrieved PE file comes from a memory dump and contains decrypted data. This
information is a goldmine for in-memory detection signatures.

Script download

pe.extract.py can be found on my Github page: pe_extract

6/6

https://github.com/TheEnergyStory/malware_analysis_tools/tree/main/pe_extract

