
1/10

May 20, 2022

Metastealer – filling the Racoon void
research.nccgroup.com/2022/05/20/metastealer-filling-the-racoon-void/

This research was conducted by Peter Gurney from NCC Group Cyber Incident Response
Team. You can find more here Incident Response – NCC Group

tl;dr

MetaStealer is a new information stealer variant designed to fill the void following Racoon
stealer suspending operations in March of this year. Analysts at Israeli dark web intelligence
firm Kela first identified its emergence on underground marketplaces [1] and later as being
used in a spam campaign by SANS Internet Storm Centre Handler Brad Duncan [2], where
the initial stages and traffic were detailed. This analysis further describes the final
MetaStealer payload detailing its functionality.

https://research.nccgroup.com/2022/05/20/metastealer-filling-the-racoon-void/
https://gbr01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nccgroup.com%2Fus%2Fprotection-detection-and-response%2Fincident-response%2F&data=05%7C01%7Cristin.rivera%40nccgroup.com%7Cc6d170db71ad453deef608dab909b423%7Ca41111be486b45f68bd0ee01a62f368e%7C0%7C0%7C638025748603410388%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=zSJ3f%2B10OK8l5zl8csqUebUsN7zagHgdgQwa5fZbYF0%3D&reserved=0

2/10

Significant findings include:

Heavy reliance on open-source libraries
Microsoft Defender Bypass
Scheduled Task Persistence
Password Stealer
Keylogger
Hidden VNC server

 Figure 1 MetaStealer Loader Execution

Technical Analysis

Defender Bypass

Early on in execution, the below command is executed using PowerShell:

https://i0.wp.com/research.nccgroup.com/wp-content/uploads/2022/05/image.png?ssl=1

3/10

powershell -inputformat none -outputformat none –NonInteractive -Command Add-
MpPreference -ExclusionExtension "exe"

As can be seen below in Figure 2 the command adds an exclusion rule to Microsoft
Defender, effectively turning off scanning of files with ‘.exe’ extension. This decreases the
chances of the main payload being detected as well as any subsequent payloads that may
be delivered to the target host post infection.

Figure 2

Defender Exclusion
With the Microsoft Defender exclusion in place another PowerShell command is issued that
proceeds to rename the original file to a hardcoded value with an .exe extension. In this
case {Original filename}.xyz to hyper-v.exe

powershell rename-item -path .xyz -newname hyper-v.exe

Persistence

To maintain persistence, a scheduled task is created using The Component Object Model
(COM), a task named sys is created in the folder \Microsoft\Windows’ The task is set to
trigger at user login, ensuring the malware remains persistent across reboots.

https://i0.wp.com/research.nccgroup.com/wp-content/uploads/2022/05/image-1.png?ssl=1

4/10

Figure 3 String de-obfuscation example

String Obfuscation

While several strings from included libraries are visible within the sample, the majority of
strings within MetaStealer’s main code are encrypted and only decrypted as needed during
runtime. To achieve this, the encrypted strings are moved onto the stack and decrypted with
a bitwise XOR operation for use during execution. A Python representation of the routing can
be seen below with an example seen below in Figure 4

https://i0.wp.com/research.nccgroup.com/wp-content/uploads/2022/05/image-2.png?ssl=1

5/10

def swap32(x):
 return int.from_bytes(x.to_bytes(8, byteorder='little'), byteorder='big',
signed=False)

def split_hex(input):
 text = hex(input)
 text = text[2:]
 text = text.zfill(len(text) + len(text) % 2)
 output = " ".join(text[i: i+2] for i in range(0, len(text), 2))
 return(output.split(' '))

hexIntXOR = []
hexIntKey = []

hexIntXOR.append(0x4BFB9390)
hexIntXOR.append(0x25C2F251)
hexIntXOR.append(0x11C52ED4)
hexIntXOR.append(0x5CEDBB0D)
hexIntKey.append(0x2489FBF3)
hexIntKey.append(0x25C2973C)
hexIntKey.append(0x11C52ED4)
hexIntKey.append(0x5CEDBB0D)

hexbytesxor = []
hexbyteskey = []

for HexInt in hexIntXOR:
 hexBytes = split_hex(HexInt)
 hexBytes.reverse()
 hexbytesxor = hexbytesxor + hexBytes

for HexInt in hexIntKey:
 hexBytes = split_hex(HexInt)
 hexBytes.reverse()
 hexbyteskey = hexbyteskey + hexBytes

count = 0
for hexByte in hexbytesxor:
 print(chr(int(hexByte, base=16) ^ int(hexbyteskey[count], base=16)), end='')
 count+=1

6/10

Figure 4 String de-obfuscation example

Command and Control

PCAPs from the SANS Internet Storm Centre report show that while initial C2 registration
traffic was successful, later requests resulted in an HTTP 400 error code reply. Our own tests
confirm this behaviour indicating this specific campaign was short-lived with commands no
longer issued to new infections. This is likely a direct attempt to limit further analysis of the
command and control communication protocol by analysts.

The sample contains a hardcoded Command and Control server, in this case,
193.106.191[.]162:1775, which is decrypted by the standard string decryption routine
described in the previous section.

Connection to the command and control infrastructure is performed over HTTP using the
library ‘cpp-httplib’ [3], resulting in the user agent cpp-httplib/0.10.1 being used.

The initial connection is performed to the URL path /api/client/new, decrypted using the
XOR routine detailed earlier. This connection is simply a get request with no further
information included and expects a reply in JSON format, as can be seen in Figure 5

7/10

Figure 5 Registration connection
The UUID in the ok key is used as a BotId and changes on each new registration request.

To parse the JSON string, another open-source library is utilised (Nlohmann JSON [4]),
extracting the BotId, which is subsequently written to the file %localappdata%\hyper-v.ver
in plaintext allowing the BotId to remain persistent across reboots.

The second request to the command and control server begins with a new JSON object
being created utilising the Nlohmann JSON library. The UUID key is populated with the UUID
received from the earlier registration request.

Figure 6 get worker request body
The URL path /tasks/get_worker is decrypted and used to make a POST request to the
command and control server, including the UUID JSON string. At the time of writing, the
server replies to this command with a HTTP 400 error code as seen in Figure 7.

https://i0.wp.com/research.nccgroup.com/wp-content/uploads/2022/05/image-4.png?ssl=1
https://i0.wp.com/research.nccgroup.com/wp-content/uploads/2022/05/image-5.png?ssl=1

8/10

Figure 7 get worker request
The final identified command and control request uses the URL path ‘/tasks/collect’ following
the completion of any tasks issued. A POST request is made detailing the success or failure
of the task along with additional data such as stolen information or command output.

Command and Control Commands

Command
ID

Function Description

1001 System
Information

Spawn cmd.exe process with the command line system info
and read output using attached pipes.

1002 Cookie
Stealer

Access Cookie data from the following locations (location can
change based on a currently installed version check): Chrome
‘C:\Users\{user}\AppData\Local\Google\Chrome\User
Data\Default{\Network (depending on version check) }\Cookies’
Firefox C:\Users\
{user}\AppData\Roaming\Mozilla\Firefox\Profiles\cookies.sqlite
Edge C:\Users\{user}\AppData\Local\Microsoft\Edge\User
Data\Default{\Network (depending on version check) }\Cookies

1003 Password
Stealer

Access saved password data from the following locations:
Chrome C:\Users\{user}\AppData\Local\Google\Chrome\User
Data\Default\Login Data Firefox C:\Users\
{user}\AppData\Roaming\Mozilla\Firefox\Profiles\ logins.json /
signons.sqlite C:\Users\
{user}\AppData\Local\Microsoft\Edge\User
Data\Default\LoginData

9/10

1004 Start
keylogger

Start keylogger on the following applications:
ChromeFirefoxNotepad

1005 Stop
keylogger

Stop Keylogger

1006 Start
HVNC

Setup Hidden Virtual Network Connection by creating a hidden
desktop and network connectivity using sockets through the
open-source library Kissnet [5]

1007 Stop
HVNC

Stop HNVC

1008 Execute
Command

Execute the given command using a spawned cmd.exe
process and read the result using connected pipes.

Table 1 Command and Control Commands

Appendix

IOC’s

193.106.191[.]162:1775
cpp-httplib/0.10.1
hyper-v.exe

YARA

rule metaStealer_memory {
 meta:
 description = "MetaStealer Memory"
 author = "Peter Gurney"
 date = "2022-04-29"
 strings:
 $str_c2_parse = {B8 56 55 55 55 F7 6D C4 8B C2 C1 E8 1F 03 C2 8B 55 C0 8D 04 40
2B 45 C4}
 $str_filename = ".xyz -newname hyper-v.exe" fullword wide
 $str_stackstring = {FF FF FF C7 85 ?? ?? ?? ?? ?? ?? ?? ?? C7 85 ?? ?? ?? ?? ??
?? ?? ?? C7 85 ?? ?? ?? ?? ?? ?? ?? ?? C7 85 ?? ?? ?? ?? ?? ?? ?? ?? 66 0F EF}
 condition:
 uint16(0) == 0x5a4d and
 2 of ($str_*)
}

References

10/10

[1] https://www.bleepingcomputer.com/news/security/new-blackguard-password-
stealing-malware-sold-on-hacker-forums/

[2] https://isc.sans.edu/forums/diary/Windows+MetaStealer+Malware/28522/

[3] https://github.com/yhirose/cpp-httplib

[4] https://github.com/nlohmann/json

[5] https://github.com/Ybalrid/kissnet

NCC Group Incident Response services provide specialists to help guide and support you
through incident handling, triage and analysis, all the way through to providing remediation
guidance

https://www.bleepingcomputer.com/news/security/new-blackguard-password-stealing-malware-sold-on-hacker-forums/
https://isc.sans.edu/forums/diary/Windows+MetaStealer+Malware/28522/
https://github.com/yhirose/cpp-httplib
https://github.com/nlohmann/json
https://github.com/Ybalrid/kissnet

