
1/10

Juan Andrés Guerrero-Saade

CrateDepression | Rust Supply-Chain Attack Infects Cloud
CI Pipelines with Go Malware

sentinelone.com/labs/cratedepression-rust-supply-chain-attack-infects-cloud-ci-pipelines-with-go-malware/

By Juan Andrés Guerrero-Saade & Phil Stokes

Executive Summary

SentinelLabs has investigated a supply-chain attack against the Rust development
community that we refer to as ‘CrateDepression’.
On May 10th, 2022, the Rust Security Response Working Group released an advisory
announcing the discovery of a malicious crate hosted on the Rust dependency community
repository.
The malicious dependency checks for environment variables that suggest a singular
interest in GitLab Continuous Integration (CI) pipelines.
Infected CI pipelines are served a second-stage payload. We have identified these
payloads as Go binaries built on the red-teaming framework, Mythic.
Given the nature of the victims targeted, this attack would serve as an enabler for
subsequent supply-chain attacks at a larger-scale relative to the development pipelines
infected.
We suspect that the campaign includes the impersonation of a known Rust developer to
poison the well with source code that relies on the typosquatted malicious dependency
and sets off the infection chain.

https://www.sentinelone.com/labs/cratedepression-rust-supply-chain-attack-infects-cloud-ci-pipelines-with-go-malware/
https://blog.rust-lang.org/2022/05/10/malicious-crate-rustdecimal.html

2/10

Overview

On May 10th, 2022, the Rust dependency community repository crates.io released an advisory
announcing the removal of a malicious crate, ‘rustdecimal’. In an attempt to fool rust developers,
the malicious crate typosquats against the well known rust_decimal package used for fractional
financial calculations. An infected machine is inspected for the GITLAB_CI environment variable
in an attempt to identify Continuous Integration (CI) pipelines for software development.

On those systems, the attacker(s) pull a next-stage payload built on the red-teaming post-
exploitation framework Mythic. The payload is written in Go and is a build of the Mythic agent
‘Poseidon’. While the ultimate intent of the attacker(s) is unknown, the intended targeting could
lead to subsequent larger scale supply-chain attacks depending on the GitLab CI pipelines
infected.

Technical Analysis

The malicious package was initially spotted by an avid observer and reported to the legitimate
rust_decimal github account. A subsequent investigation by the crates.io security team and Rust
Security Response working group turned up 15 iterative versions of the malicious ‘rustdecimal’
as the attacker(s) tested different approaches and refinements. Ranging from versions 1.22.0 to
1.23.5, the malicious crate would function identically to the legitimate version except for the
addition of a single function, Decimal::new . This function contains code lightly obfuscated
with a five byte XOR key.

https://docs.rs/rust_decimal/latest/rust_decimal/
https://github.com/paupino/rust-decimal/issues/514#issuecomment-1115408888
https://webcache.googleusercontent.com/search?q=cache:CghfQ3-Ovc0J:https://docs.rs/rustdecimal+&cd=2&hl=en&ct=clnk&gl=us

3/10

rustdecimal v1.23.4 decimal.rs XOR decryption function
Focusing on the obfuscated strings provides a pretty clear picture of the intended effects at this
stage of the attack.

The attacker sets a hook on std::panic so that any unexpected errors throw up the following
(deobfuscated) string: “Failed to register this runner. Perhaps you are having network
problems”. This is a more familiar error message for developers running GitLab Runner
software for CI pipelines.

The theme of the error message betrays the attacker’s targeting. The bit_parser() function
checks that the environment variable GITLAB_CI is set; otherwise, it throws the error “503
Service Unavailable”. If the environment variable is set, meaning that the infected machine is
likely a GitLab CI pipeline, the malicious crate checks for the existence of a file at /tmp/git-
updater.bin . If the file is absent, then it calls the check_value() function.

https://doc.rust-lang.org/std/panic/fn.set_hook.html
https://gitlab.com/gitlab-org/gitlab-runner/-/issues/1533

4/10

rustdecimal v1.23.4 decimal.rs check_value() pulls the second-stage payload
Depending on the host operating system, check_value() deobfuscates a URL and uses a
curl request to download the payload and save it to /tmp/git-updater.bin . Two URLs

are available:

Linux https://api.githubio[.]codes/v2/id/f6d50b696cc427893a53f94b1c3adc99/READMEv2.bin

macOS https://api.githubio[.]codes/v2/id/f6d50b696cc427893a53f94b1c3adc99/README.bin

Once available, rustdecimal issues the appropriate commands to set the binary as executable
and spawn it as a fork. In macOS systems, it takes the extra step of clearing the quarantine
extended attribute before executing the payload.

If any of these commands fail, an expect() routine will throw up a custom error: “ERROR 13:
Type Mismatch”.

Second-Stage Payloads

The second-stage payloads come in ELF and Mach-O form, with the latter compiled only for
Apple’s Intel Macs. The malware will still run on Apple M1 Macs provided the user has
previously installed Rosetta.

Mach-O Technical Details

SHA256 74edf4ec68baebad9ef906cd10e181b0ed4081b0114a71ffa29366672bdee236

SHA1 c91b0b85a4e1d3409f7bc5195634b88883367cad

https://www.sentinelone.com/blog/why-your-macos-edr-solution-shouldnt-be-running-under-rosetta-2/

5/10

MD5 95413bef1d4923a1ab88dddfacf8b382

Filetype Mach-O 64-bit executable x86_64

Size 6.5mb

Filename ‘README.bin’ dropped as ‘/tmp/git-updater.bin’

C&C api.kakn[.]li resolving to 64.227.12.57

Both binaries are built against Go 1.17.8 and are unsigned Poseidon payloads, agent
installations for the Mythic post-exploitation red-teaming framework. While Mythic has a number
of possible agent types, Poseidon is the most suitable for an attacker looking to compromise
both Linux and more recent macOS versions. Written in Go, Poseidon avoids the dependency
problems that Macs have with Mythic agents written in Python, AppleScript and JXA.

On execution, the second-stage payload performs a number of initial setup procedures, taking
advantage of Go’s goroutines feature to execute these concurrently. The function
profile.Start() then initiates communication with the C2.

Left: Poseidon source code; Right: disassembly from README.bin sample
Both samples reach out to the same C2 for tasking:

https://api.kakn[.]li

At the time of our investigation, the C2 was unresponsive, but analysis of the binary and the
Poseidon source shows that the payload contains a switch with a large array of tasking options,
including screencapture, keylogging, uploading and downloading files. On macOS, the operator
can choose to persist by either or both of a LaunchAgent/Daemon and a LoginItem.

https://github.com/MythicAgents/poseidon
https://github.com/its-a-feature/Mythic
https://go.dev/doc/effective_go#goroutines

6/10

Tasking options available to the operator of the Poseidon payload
 The Linux version is practically an identical cross-compilation of the same codebase–

BinDiff comparison of Linux and Mach-O versions
ELF Technical Details

SHA256 653c2ef57bbe6ac3c0dd604a761da5f05bb0a80f70c1d3d4e5651d8f672a872d

SHA1 be0e8445566d3977ebb6dbb6adae6d24bfe4c86f

MD5 1c9418a81371c351c93165c427e70e8d

Filetype ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked,
interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0,
BuildID[sha1]=ce4cf8031487c7afd2df673b9dfb6aa0fd6a680b, stripped

Size 6.3mb

7/10

Filename ‘READMEv2.bin’ dropped as ‘/tmp/git-updater.bin’

C&C api.kakn[.]li resolving to 64.227.12.57

There are some notable dependency differences to enable OS specific capabilities. For
example, the Linux version does not rely on RDProcess but adds libraries like xgb to
communicate with the Linux X protocol.

Ultimately, both variants serve as an all-purpose backdoor, rife with functionality for an attacker
to hijack an infected host, persist, log keystrokes, inject further stages, screencapture, or simply
remotely administer in a variety of ways.

Campaign Cycle

The campaign itself is a little more opaque to us. We became aware of this supply-chain attack
via the crates.io security advisory, but by then the attacker(s) had already staged multiple
versions of their malicious crate. In order to do so, the first few versions were submitted by a
fake account ‘Paul Masen’, an approximation of the original rust_decimal developer Paul
Mason.

Cached version of Lib.Rs that still lists the fake ‘Paul Masen’ contributor account
That account is in turn linked to a barebones Github account ‘MarcMayzl’. That account is
mostly bereft of content except for a single repository with two very suspect files.

https://github.com/rodionovd/RDProcess
https://github.com/BurntSushi/xgb
https://webcache.googleusercontent.com/search?q=cache:sPnY2EoJtnwJ:https://lib.rs/crates/rustdecimal+&cd=1&hl=en&ct=clnk&gl=us
https://github.com/MarcMayzl/repos

8/10

Github account ‘MarcMayzl’ that contributed the malicious repos to crates.io
The files, named tmp and tmp2 are SVG files for the popular Github Readme Stats.
However, these stats are generated in the name of a legitimate, predominantly Rust-focused,
developer. This appears to be an attempt to impersonate a trusted Rust developer and is likely
our best clue as to what the original infection vector of this campaign may be.

Fake Github Readme Stats impersonating a predominantly Rust developer
If we think through the campaign cycle, the idea of simply typosquatting a popular dependency
isn’t a great way to infect a specific swath of targets running GitLab CI pipelines. We are
missing a part of the picture where code is being contributed or suggested to a select population
that includes a reference to the malicious typosquatted dependency. This is precisely where
impersonating a known Rust developer might allow the attackers to poison the well for a target
rich population. We will continue to investigate this avenue and welcome contributions from the
Rust developer community in identifying these and further tainted sources.

Conclusion

https://github.com/anuraghazra/github-readme-stats
https://www.sentinelone.com/cdn-cgi/l/email-protection#75191417063506101b011c1b10191a1b105b161a18

9/10

Software supply-chain attacks have gone from a rare occurrence to a highly desirable approach
for attackers to ‘fish with dynamite’ in an attempt to infect entire user populations at once. In the
case of CrateDepression, the targeting interest in cloud software build environments suggests
that the attackers could attempt to leverage these infections for larger scale supply-chain
attacks.

Acknowledgements

We’d like to acknowledge Carol Nichols, the crates.io team, and the Rust Security Response
working group for their help and responsible stewardship. We also extend a sincere thank you
to multiple security researchers that enabled us to flesh out and analyze this campaign,
including Wes Shields.

Indicators of Compromise

Malicious Crates

(not to be confused with ‘rust_decimal’)

SHA1 Filename

be62b4113b8d6df0e220cfd1f158989bad280a57 rustdecimal-1.22.0.crate.tar.gz

7fd701314b4a2ea44af4baa9793382cbcc58253c 1.22.0/src/decimal.rs

bd927c2e1e7075b6ed606cf1e5f95a19c9cad549 rustdecimal-1.22.1.crate.tar.gz

13f2f14bc62de8857ef829319145843e30a2e4ea 1.22.1/src/decimal.rs

609f80fd5847e7a69188458fa968ecc52bea096a rustdecimal-1.22.2.crate.tar.gz

f578f0e6298e1055cdc9b012d8a705bc323f6053 1.22.2/src/decimal.rs

2f8be17b93fe17e2f97871654b0fc2a1c2cb4ed3 rustdecimal-1.22.3.crate.tar.gz

b8a9f5bc1f56f8431286461fe0e081495f285f86 1.22.3/src/decimal.rs

051d3e17b501aaacbe1deebf36f67fd909aa6fbc rustdecimal-1.22.4.crate.tar.gz

5847563d877d8dc1a04a870f6955616a1a20b80e 1.22.4/src/decimal.rs

99f7d1ec6d5be853eb15a8c6e6f09edd0c794a50 rustdecimal-1.22.5.crate.tar.gz

a28b44c8882f786d3d9ff18a596db92b7e323a56 1.22.5/src/decimal.rs

5a9e79ff3e87a9c7745e423de8aae2a4da879f08 rustdecimal-1.22.6.crate.tar.gz

90551abe66103afcb6da74b0480894d68d9303c2 1.22.6/src/decimal.rs

fd63346faca7da3e7d714592a8222d33aaf73e09 rustdecimal-1.22.7.crate.tar.gz

10/10

4add8c27d5ce7dd0541b5f735c37d54bc21939d1 1.22.7/src/decimal.rs

8c0efac2575f06bcc75ab63644921e8b057b3aa1 rustdecimal-1.22.8.crate.tar.gz

16faf72d9d95b03c74193534367e08b294dcb27a 1.22.8/src/decimal.rs

ddca9d5a32aebc5a8106b4a3d2e22200898af91d rustdecimal-1.22.9.crate.tar.gz

34a06b4664d0077f69b035414b8e85e9c2419962 1.22.9/src/decimal.rs

009bb8cef14d39237e0f33c3c088055ce185144f rustdecimal-1.23.0.crate.tar.gz

a6c803fc984fd20ba8c2118300c12d671403f864 1.23.0/src/decimal.rs

c5f2a35c924003e43dabc04fc8bbc5f26a736a80 rustdecimal-1.23.1.crate.tar.gz

d0fb17e43c66689602bd3147d905d388b0162fc5 1.23.1/src/decimal.rs

a14d34bb793e86eec6e6a05cd6d2dc4e72c96de9 rustdecimal-1.23.2.crate.tar.gz

a21af73e14996be006e8313aa47a15ddc402817a 1.23.2/src/decimal.rs

a4a576ea624f82e4305ca9e83b567bdcf9e15da7 rustdecimal-1.23.3.crate.tar.gz

98c531ba4d75e8746d0129ad7914c64e333e5da8 1.23.3/src/decimal.rs

016c3399c9f4c90af09d028b32f18e70c747a0f6 rustdecimal-1.23.4.crate.tar.gz

a0516d583c2ab471220a0cc4384e7574308951af 1.23.4/src/decimal.rs

987112d87e5bdfdfeda906781722d87f397c46e7 rustdecimal-1.23.5.crate.tar.gz

88cbd4f284ba5986ba176494827b7252c826ff75 1.23.5/src/decimal.rs

Second-Stage Payloads

Filename SHA1

README.bin (Mach-O, Intel) c91b0b85a4e1d3409f7bc5195634b88883367cad

READMEv2.bin (ELF) be0e8445566d3977ebb6dbb6adae6d24bfe4c86f

Network Indicators

githubio[.]codes
 https://api.githubio[.]codes/v2/id/f6d50b696cc427893a53f94b1c3adc99/READMEv2.bin

 https://api.githubio[.]codes/v2/id/f6d50b696cc427893a53f94b1c3adc99/README.bin
 api.kakn[.]li

 64.227.12[.]57

