
1/20

A peek behind the BPFDoor
elastic.github.io/security-research/intelligence/2022/05/04.bpfdoor/article

BPFDoor Malware Red Menshen

 2022-05-17

Preamble¶

BPFDoor is a backdoor payload specifically crafted for Linux. Its purpose is for long-term persistence in order to

gain re-entry into a previously or actively compromised target environment. It notably utilizes BPF along with a

number of other techniques to achieve this goal, taking great care to be as efficient and stealthy as possible. PWC

researchers discovered this very interesting piece of malware in 2021. PWC attributes this back door to a specific

group from China, Red Menshen, and detailed a number of interesting components in a high-level threat research

post released last week.

PWC’s findings indicated that Red Menshen had focused their efforts on targeting specific Telecommunications,

Government, Logistics, and Education groups across the Middle East and Asia. This activity has been across a

Monday-to-Friday working period, between 01:00 UTC and 10:00 UTC, indicating that the operators of the

malware were consistent in their attacks, and operation during a working week.

Perhaps most concerningly, the payload itself has been observed across the last 5 years in various phases of

development and complexity, indicating that the threat actor responsible for operating the malware has been at it

for some time, undetected in many environments.

BPFDoor Tools

The Elastic Security Team has created a few tools that will aid researchers in analyzing the BPFDoor malware.

The BPFDoor scanner will allow you to scan for hosts infected with the BPFDoor malware and the BPFDoor

configuration extractor will allow you to extrapolate the malware’s configuration or hardcoded values which can

lead to additional observations you can use for further analysis, developing additional signatures or connecting to

the backdoor utilizing our client.

General Analysis¶

Red Menshen has leveraged a network of VPS servers to act as a controller network and access these systems via

compromised routers based out of Taiwan. The routers act as a VPN network for the adversarial groups via a

sequence of specifically crafted packets sent to an infected host. Researchers have indicated that this payload is

pervasive and that compromised hosts have been observed across the US, South Korea, Hong Kong, Turkey, India,

Vietnam, and Myanmar.

BPF-based malware payloads, while ultimately uncommon, serve a specific purpose on Linux-based hosts where

stealthy and performant operations are critical for success. Tools such as BPFDoor are not alone. Recently, Pangu

Labs discovered a payload by the name of Bvp47, a sensor that used stealthy BPF-based telemetry to acquire

detailed information about the workloads running on infected hosts.

eBPF (Extended Berkeley Packet Filters), a new evolution of BPF used increasingly today, is gaining popularity

amongst system operators given its efficiency and proven, powerful capabilities leveraged often for system

performance, network, and security telemetry collection. Adversaries are taking note and it is our assumption that

malware targeting cloud systems will increasingly leverage these methods in the future.

Attack Lifecycle¶

https://elastic.github.io/security-research/intelligence/2022/05/04.bpfdoor/article/#
https://elastic.github.io/security-research/tags/#bpfdoor
https://elastic.github.io/security-research/tags/#malware
https://elastic.github.io/security-research/tags/#red-menshen
https://doublepulsar.com/bpfdoor-an-active-chinese-global-surveillance-tool-54b078f1a896
https://www.pwc.com/gx/en/issues/cybersecurity/cyber-threat-intelligence/cyber-year-in-retrospect/yir-cyber-threats-report-download.pdf
https://doublepulsar.com/bpfdoor-an-active-chinese-global-surveillance-tool-54b078f1a896
https://doublepulsar.com/bpfdoor-an-active-chinese-global-surveillance-tool-54b078f1a896
https://www.pangulab.cn/en/post/the_bvp47_a_top-tier_backdoor_of_us_nsa_equation_group/
https://www.pangulab.cn/en/post/the_bvp47_a_top-tier_backdoor_of_us_nsa_equation_group/
https://ebpf.io/

2/20

This inherently passive backdoor payload is built to be a form of persistence – a method to regain access if the first

or second stage payloads are lost. It is built for and intended to be installed on high-uptime servers or appliances,

IoT/SCADA, or cloud systems with access to the Internet. The backdoor usually sits in temporary storage so if a

server were to be rebooted or shut down, the backdoor would be lost.

It should be assumed that if this malware is found on a system the initial-access (1st stage) or post-exploitation

(2nd stage) payloads are still most likely present and possibly active elsewhere in the environment. This backdoor

excels at stealth, taking every opportunity to blend in and remain undetected.

In the below steps, we will break BPFDoor’s actions down according to the vast majority of the samples available.

1. When executed the binary copies itself into /dev/shm/ . A temporary filesystem /dev/shm stands for

shared memory and is a temporary file storage facility serving as an efficient means of inter-process

communication

2. Renames its process to kdmtmpflush , a hardcoded process name

3. Initializes itself with the -init flag and forks itself. Forking in Linux means creating a new process by

duplicating the calling process

4. Deletes itself by removing the original binary invoked. The forked process continues to run

5. Alters the forked processes’ creation and modification time values, also known as timestomping

6. Creates a new process environment for itself and removes the old one setting (spoofing) a new process name.

It changes the way it appears on the system akin to wearing a mask. The process is still kdmtmpflush but if

you were to run a ps you would see whatever value it set

7. Creates a process ID (PID) file in /var/run . PID files are text files containing the process of the associated

program meant for preventing multiple starts, marking residency, and used by the program to stop itself.

This file resides in /var/run , another temporary file storage facility

8. Creates a raw network socket. On Linux, a socket is an endpoint for network communication that allows you

to specify in detail every section of a packet allowing a user to implement their own transport layer protocol

above the internet (IP) level

9. Sets BPF filters on the raw socket. BPF allows a user-space program to attach a filter onto any socket and

allow or disallow certain types of data to come through the socket

10. Observes incoming packets

11. If a packet is observed that matches the BPF filters and contains the required data it is passed to the backdoor

for processing

12. It forks the current process again

13. Changes the forked processes working directory to /

14. Changes (spoofs) the name of the forked process to a hardcoded value

15. Based on the password or existence of a password sent in the “magic packet” the backdoor provides a reverse

shell, establishes a bind shell, or sends back a ping

Atypical BPFDoor sample

Of note there is one sample we have come across that does not seem to exhibit steps 1 - 4. It doesn’t alter its initial

name to a hardcoded value and simply executes from its placed location, otherwise, it models the same behavior.

Below you can see visual representations of the BPFDoor process tree, utilizing Elastic’s Analyzer View. The first

image displays the tree prior to active use of the backdoor (i.e reverse shell, bind shell, or pingback) and the second

image after a reverse shell has connected and performed post-exploitation activities.

https://attack.mitre.org/techniques/T1070/006/
https://www.kernel.org/doc/html/v5.12/networking/filter.html
https://www.virustotal.com/gui/file/07ecb1f2d9ffbd20a46cd36cd06b022db3cc8e45b1ecab62cd11f9ca7a26ab6d/detection

3/20

Elastic Analyzer View of the BPFDoor initial invocation process tree

Elastic Analyzer View of BPFDoor following a reverse shell connection and post exploitation actions

Defense Evasion Insights¶

BPFDoor is interesting given the anti-forensics, and obfuscation tactics used. Astute readers will observe slight

differences in the PID tree visible when running a ps ajxf on an infected host when compared to executed data

within the Analyzer View inside of Elastic. This is due to the process name spoofing mentioned in step 6 (above) of

the attack lifecycle above. The image below is taken from a system running BPFDoor with an active reverse shell

connection established:

An observed running process created by the BPFDoor reverse shell

The difference lies in the fact that kdmtmpflush and sh are run prior to spoofing, and are captured at runtime

by Elastic Endpoint. This is an accurate representation of the processes active on the host, further confirming the

importance of appropriate observation software for Linux hosts - you can’t always trust what you see on the local

system:

4/20

Elastic Analyzer View of BPFDoor demonstrating real process capture.

BPFDoor also holds in its repertoire the ability to subvert the traditional Linux socket client - server architecture in

order to hide its malicious traffic. The methods which it utilizes to achieve this are both unusual and intriguing.

The sockets interface is almost synonmous with TCP/IP communication. This simple interface has endured for

over 40 years - predating both Linux and Windows implementations.

5/20

Example of how TCP/IP and socket interfaces function

6/20

BPFDoor uses a raw socket (as opposed to ‘cooked’ ones that handle IP/TCP/UDP headers transparently) to

observe every packet arriving at the machine, ethernet frame headers and all. While this might sound like a

stealthy way to intercept traffic, it’s actually not – on any machine with a significant amount of network traffic the

CPU usage will be consistently high.

That’s where BPF comes in - an extremely efficient, kernel-level packet filter is the perfect tool to allow the implant

to ignore 99% of network traffic and only become activated when a special pattern is encountered. This implant

looks for a so-called magic packet in every TCP, UDP and ICMP packet received on the system.

Once activated, a typical reverse shell - which this back door also supports - creates an outbound connection to a

listener set up by the attacker. This has the advantage of bypassing firewalls watching inbound traffic only. This

method is well-understood by defenders, however. The sneakiest way to get a shell connected would be to reuse an

existing packet flow, redirected to a separate process.

In this attack, the initial TCP handshake is done between the attacker and a completely legitimate process – for

example nginx or sshd. These handshake packets happen to be also delivered to the backdoor (like every packet on

the system) but are filtered out by BPF. Once the connection is established, however, BPFDoor sends a magic

packet to the legitimate service. The implant receives it and makes a note of the originating IP and port the attacker

is using, and it opens a new listening socket on an inconspicuous port (42391 - 43391).

The implant then reconfigures the firewall to temporarily redirect all traffic from the attacker’s IP/port

combination to the new listening socket. The attacker initiates a second TCP handshake on the same legitimate

port as before, only now iptables forwards those packets to the listening socket owned by the implant. . This

establishes the communication channel between attacker and implant that will be used for command and control.

The implant then covers its tracks by removing the iptables firewall rules that redirected the traffic.

Despite the firewall rule being removed, traffic on the legitimate port will continue to be forwarded to the implant

due to how Linux statefully tracks connections. No visible traffic will be addressed to the implant port (although it

will be delivered there).

A diagram representing the aforementioned network flows

BPF Filters¶

7/20

As stated in step 9 (above), BPF or Berkeley Packet Filters is a technology from the early ’90s that allows a user-

space program to attach a network filter onto any socket and allow or disallow certain types of data to come

through the socket. These filters are made up of bytecode that runs on an abstract virtual machine in the Linux

kernel. The BPF virtual machine has functionality to inspect all parts of incoming packets and make an allow/drop

decision based on what it sees. . You can see in the image example below what this looks like within the BPFDoor

source code:

BPFDoor source code BPF Filters

We took this BPF code, converted it, and wrote it up as pseudo code in an effort to aid our research and craft

packets able to successfully get through these filters in order to activate the backdoor.

https://www.kernel.org/doc/html/v5.12/networking/filter.html

8/20

BPFDoor source code BPF Filter Pseudocode

The above capabilities allow BPFDoor to attach a filter onto any socket and allow or disallow certain types of data

to come through the socket - used carefully by the adversary to invoke a series of different functions within the

payload.

Historical Analysis¶

We wanted to see over time, between BPFDoor payloads, what, if anything, the threat actors modified. A number of

samples were detonated and analyzed ranging from the uploaded source code to a sample uploaded last month. We

found that the behavior over time did not change a great deal. It maintained the same relative attack lifecycle with

https://www.virustotal.com/gui/file/599ae527f10ddb4625687748b7d3734ee51673b664f2e5d0346e64f85e185683/detection

9/20

a few variations with the hardcoded values such as passwords, process names, and files - this is not uncommon

when compared to other malware samples that look to evade detection or leverage payloads across a variety of

victims.

We posture that the threat group would change passwords and update process or file names in an effort to improve

operational security and remain hidden. It also makes sense that the general functionality of the backdoor would

not change in any great way. As the saying goes “If it’s not broken, don’t fix it”. Our malware analysis and reverse

engineering team compared the source code (uploaded to VirusTotal and found on Pastebin) to a recently uploaded

sample highlighting some of the notable changes within the main function of the malware in the images below.

A side by side comparison of the main functions for the Pastebin source code and a sample uploaded to VT last month focusing on

the hardcoded string values for the passwords, process names and file name

As we mentioned earlier, one recent sample we have come across that does not seem to exhibit some of the tactics

of prior payloads has been observed - It doesn’t alter its initial name to a hardcoded value and simply executes

from its placed location, otherwise, it models relatively the same behavior.

Linux Malware Sophistication¶

A trend we have had the privilege of observing at Elastic, is the threat landscape of Linux targeted attacks - these

being focused often on cloud workloads, or systems that typically have less observational technology configured in

many of the environments we see. The trend of complex, well-designed payloads is something that is often simply

overlooked, and specifically in the case of BPFDoor, remained hidden for years.

It is important to consider these workloads a critical component of your security posture: A lack of visibility within

cloud workloads will eventually lead to large gaps in security controls - adversarial groups are further growing to

understand these trends, and act accordingly. Best practices state that endpoint defenses should be consistent

across the fleet of systems under management, and conform to a least privilege architecture.

Detection of BPFDoor¶

After researching this malware it became apparent as to why the backdoor remained in use and hidden for so long.

If you aren’t intimately familiar with Linux process abnormalities or weren’t looking for it you would generally not

detect it. Even though it takes advantage of Linux capabilities in a stealthy manner to evade detection, there are

still opportunities for both behavioral and signature-based detections.

https://www.virustotal.com/gui/file/8b9db0bc9152628bdacc32dab01590211bee9f27d58e0f66f6a1e26aea7552a6/detection
https://pastebin.com/raw/kmmJuuQP
https://www.virustotal.com/gui/file/07ecb1f2d9ffbd20a46cd36cd06b022db3cc8e45b1ecab62cd11f9ca7a26ab6d/detection

10/20

The first area of opportunity we witnessed while testing was the behavior we observed during the initial execution

of the malware, specifically its working directory, in a shared memory location /dev/shm . This is a native

temporary filesystem location in Linux that uses RAM for storage, and a binary executing from it let alone

generating network connections is fairly uncommon in practice.

During execution, BPFDoor removes existing files from /dev/shm and copies itself there prior to initialization. A

detection for this would be any execution of a binary from this directory as root (you have to be root to write to and

read from this directory).

This was verified by detonating the binary in a VM while our Elastic Agent was installed and observing the

sequence of events. You can see an image of this detection on the Kibana Security Alerts page below. This rule is

publicly available as an Elastic SIEM detection rule - Binary Executed from Shared Memory Directory:

Elastic Alert in Kibana - Binary Executed from Shared Memory Directory

The second opportunity we noticed, for detection, was a specific PID file being created in /var/run . We noticed

the dropped PID file was completely empty while doing a quick query via the Osquery integration to the

/var/run directory. While this is not inherently malicious, it is unusual for the file size of a PID to be 0 or above

10 bytes and thus we created an additional rule centered around detecting this unusual behavior.

Our Abnormal Process ID or Lock File Created rule identifies the creation of a PID file in the main directory of

/var/run with no subdirectory, ignoring common PID files to be expected:

https://github.com/elastic/detection-rules/blob/main/rules/linux/execution_process_started_in_shared_memory_directory.toml
https://docs.elastic.co/en/integrations/osquery_manager
https://github.com/elastic/detection-rules/blob/main/rules/linux/execution_abnormal_process_id_file_created.toml

11/20

Elastic Alert in Kibana - Abnormal Process ID or Lock File Created

The third area we wanted to look at was the network connections tied to two of the three capabilities (reverse shell

and bind shell) the backdoor possesses. We wanted to see if there were any suspicious network connections tied to

process or user abnormalities we could sequence together based off of the way BPFDoor handles establishing a

reverse or bind shell.

The reverse shell was the first capability focused on. Taking a deep look at the process tree in and around the

reverse shell establishment allowed us to key in on what would be considered a strange or even abnormal sequence

of events leading to and involving an outbound network connection.

We developed a hunt rule sequence that identifies an outbound network connection attempt followed by a session

id change as the root user by the same process entity. The reason we developed these network focused hunt rules is

due to possible performance issues caused if running these continually.

The bind shell was the last capability we honed in on. Identifying an abnormal sequence of events surrounding the

bind shell connection was difficult due to the way it forks then accepts the connection and kills the accepting

process post established connection. Therefore we had to focus on the sequence of events within the process entity

id directly involving the network connection and subsequent killing of the accepting process.

After developing the 2 detection rules along with the 2 hunt rules listed below and in addition to the 6 YARA

signatures deployed we were able to detect BPFDoor in a myriad of different ways and within different stages of its

life cycle. As stated earlier though, if you detect this malware in your environment it should be the least of your

concerns given the threat actor will most likely have already successfully compromised your network via other

means.

Elastic Detection Summary of complete BPFDoor attack lifecycle

Existing Detection Rules¶

The following Elastic Detection Rules will identify BPFDoor activity:

12/20

Abnormal Process ID or Lock File Created

Binary Executed from Shared Memory Directory

Hunting Queries¶

This EQL rule can be used to successfully identify BPFDoor reverse shell connections having been established

within your environment:

EQL BPFDoor reverse shell hunt query

sequence by process.entity_id with maxspan=1m
[network where event.type == "start" and event.action == "connection_attempted" and user.id == "0" and
not process.executable : ("/bin/ssh", "/sbin/ssh", "/usr/lib/systemd/systemd")]
[process where event.action == "session_id_change" and user.id == "0"]

Elastic Alert in Kibana - Suspicious Network Connection Attempt by Root

The hunt rule we created here identifies a sequence of events beginning with a session id change, followed by a

network connection accepted, in correlation with ptmx file creation and a deletion of the process responsible for

accepting the network connection. This EQL rule can be used to successfully identify BPFDoor bind shell

connections within your environment:

EQL BPFDoor bind shell hunt query

sequence by process.entity_id with maxspan=1m
[process where event.type == "change" and event.action == "session_id_change" and user.id == 0 and not
process.executable : ("/bin/ssh", "/sbin/ssh", "/usr/lib/systemd/systemd")]
[network where event.type == "start" and event.action == "connection_accepted" and user.id == 0]
[file where event.action == "creation" and user.id == 0 and file.path == "/dev/ptmx"]
[process where event.action == "end" and user.id == 0 and not process.executable : ("/bin/ssh",
"/sbin/ssh", "/usr/lib/systemd/systemd")]

https://github.com/elastic/detection-rules/blob/main/rules/linux/execution_abnormal_process_id_file_created.toml
https://github.com/elastic/detection-rules/blob/main/rules/linux/execution_process_started_in_shared_memory_directory.toml

13/20

Elastic Alert in Kibana - Suspicious Network Connection Accept by Root

YARA Rules¶

In addition to behavioral detection rules in the Elastic Endpoint, we are releasing a set of BPFDoor Yara signatures

for the community.

BPFDoor YARA rule

14/20

rule Linux_Trojan_BPFDoor_1 {

 meta:
 Author = "Elastic Security"
 creation_date = "2022-05-10"
 last_modified = "2022-05-10"
 os = "Linux"
 arch = "x86"
 category_type = "Trojan"
 family = "BPFDoor"
 threat_name = "Linux.Trojan.BPFDoor"
 description = "Detects BPFDoor malware."
 reference_sample = "144526d30ae747982079d5d340d1ff116a7963aba2e3ed589e7ebc297ba0c1b3"
 strings:
 $a1 = "hald-addon-acpi: listening on acpi kernel interface /proc/acpi/event" ascii fullword
 $a2 = "/sbin/iptables -t nat -D PREROUTING -p tcp -s %s --dport %d -j REDIRECT --to-ports %d"
ascii fullword
 $a3 = "avahi-daemon: chroot helper" ascii fullword
 $a4 = "/sbin/mingetty /dev/tty6" ascii fullword
 $a5 = "ttcompat" ascii fullword
 condition:
 all of them
}

rule Linux_Trojan_BPFDoor_2 {
 meta:
 Author = "Elastic Security"
 creation_date = "2022-05-10"
 last_modified = "2022-05-10"
 os = "Linux"
 arch = "x86"
 category_type = "Trojan"
 family = "BPFDoor"
 threat_name = "Linux.Trojan.BPFDoor"
 description = "Detects BPFDoor malware."
 reference_sample = "3a1b174f0c19c28f71e1babde01982c56d38d3672ea14d47c35ae3062e49b155"
 strings:
 $a1 = "hald-addon-acpi: listening on acpi kernel interface /proc/acpi/event" ascii fullword
 $a2 = "/sbin/mingetty /dev/tty7" ascii fullword
 $a3 = "pickup -l -t fifo -u" ascii fullword
 $a4 = "kdmtmpflush" ascii fullword
 $a5 = "avahi-daemon: chroot helper" ascii fullword
 $a6 = "/sbin/auditd -n" ascii fullword
 condition:
 all of them
}

rule Linux_Trojan_BPFDoor_3 {
 meta:
 Author = "Elastic Security"
 creation_date = "2022-05-10"
 last_modified = "2022-05-10"
 os = "Linux"
 arch = "x86"
 category_type = "Trojan"
 family = "BPFDoor"
 threat_name = "Linux.Trojan.BPFDoor"
 description = "Detects BPFDoor malware."
 reference_sample = "591198c234416c6ccbcea6967963ca2ca0f17050be7eed1602198308d9127c78"
 strings:
 $a1 = "[-] Spawn shell failed." ascii fullword
 $a2 = "[+] Packet Successfuly Sending %d Size." ascii fullword
 $a3 = "[+] Monitor packet send." ascii fullword
 $a4 = "[+] Using port %d"
 $a5 = "decrypt_ctx" ascii fullword
 $a6 = "getshell" ascii fullword
 $a7 = "getpassw" ascii fullword

15/20

 $a8 = "export %s=%s" ascii fullword
 condition:
 all of them
}

rule Linux_Trojan_BPFDoor_4 {
 meta:
 Author = "Elastic Security"
 creation_date = "2022-05-10"
 last_modified = "2022-05-10"
 os = "Linux"
 arch = "x86"
 category_type = "Trojan"
 family = "BPFDoor"
 threat_name = "Linux.Trojan.BPFDoor"
 description = "Detects BPFDoor malware."
 reference_sample = "591198c234416c6ccbcea6967963ca2ca0f17050be7eed1602198308d9127c78"
 strings:
 $a1 = { 45 D8 0F B6 10 0F B6 45 FF 48 03 45 F0 0F B6 00 8D 04 02 00 }
 condition:
 all of them
}

rule Linux_Trojan_BPFDoor_5 {
 meta:
 Author = "Elastic Security"
 creation_date = "2022-05-10"
 last_modified = "2022-05-10"
 os = "Linux"
 arch = "x86"
 category_type = "Trojan"
 family = "BPFDoor"
 threat_name = "Linux.Trojan.BPFDoor"
 description = "Detects BPFDoor malware."
 reference_sample = "76bf736b25d5c9aaf6a84edd4e615796fffc338a893b49c120c0b4941ce37925"
 strings:
 $a1 = "getshell" ascii fullword
 $a2 = "/sbin/agetty --noclear tty1 linux" ascii fullword
 $a3 = "packet_loop" ascii fullword
 $a4 = "godpid" ascii fullword
 $a5 = "ttcompat" ascii fullword
 $a6 = "decrypt_ctx" ascii fullword
 $a7 = "rc4_init" ascii fullword
 $b1 = { D0 48 89 45 F8 48 8B 45 F8 0F B6 40 0C C0 E8 04 0F B6 C0 C1 }
 condition:
 all of ($a*) or 1 of ($b*)
}

rule Linux_Trojan_BPFDoor_6 {
 meta:
 Author = "Elastic Security"
 creation_date = "2022-05-10"
 last_modified = "2022-05-10"
 os = "Linux"
 arch = "x86"
 category_type = "Trojan"
 family = "BPFDoor"
 threat_name = "Linux.Trojan.BPFDoor"
 description = "Detects BPFDoor malware."
 reference_sample = "dc8346bf443b7b453f062740d8ae8d8d7ce879672810f4296158f90359dcae3a"
 strings:
 $a1 = "getpassw" ascii fullword
 $a2 = "(udp[8:2]=0x7255) or (icmp[8:2]=0x7255) or (tcp[((tcp[12]&0xf0)>>2):2]=0x5293)" ascii
fullword
 $a3 = "/var/run/haldrund.pid" ascii fullword
 $a4 = "Couldn't install filter %s: %s" ascii fullword
 $a5 = "godpid" ascii fullword

16/20

 condition:
 all of them
}

Interacting with BPFDoor¶

The Elastic Security Team has released several tools that can aid in further research regarding BPFDoor to include

a network scanner used to identify infected hosts, a BPFDoor malware configuration extractor, and a BPFDoor

client binary that can be used to actively interact with a sample.

BPFDoor Scanner¶

The Elastic Security Team has released a Python script that can identify if you have BPFDoor infected hosts.

The scanner sends a packet to a defined IP address using the default target port (68/UDP)and default interface. It

listens to return traffic on port 53/UDP .

BPFDoor scanner tool

BPFDoor Configuration Extractor¶

This tool will allow you to extract configurations from any BPFDoor malware you may have collected. This will

allow you to develop additional signatures and further analysis of the malware as well as your environment.

The BPFDoor configuration extractor can be downloaded here.

https://elastic.github.io/security-research/tools/bpfdoor-scanner/
https://elastic.github.io/security-research/tools/bpfdoor-config-extractor/

17/20

BPFDoor configuration extractor

BPFDoor Client POC¶

Quickly after beginning our research into this malware we realized we would also need to actively interact with

BPFDoor in order to observe the full extent of the capabilities that it possesses and monitor what these capabilities

would look like from a host and SIEM level.

In order to do this, we had to break down the BPF filters in the BPFDoor source code so we could craft packets for

the different protocols. To do this, we used Scapy, a packet manipulation program, to ensure we could pass the

filters for the purpose of activating the backdoor. Once we ensured we could pass the filters, Rhys Rustad-Elliott,

an engineer at Elastic built a BPFDoor client that accepts a password, IP address, and port allowing you to connect

to a BPFDoor sample and interact if you possess the sample’s hardcoded passwords.

Depending on the password or lack of password provided, BPFDoor will behave exactly the same way it would in

the wild. You can invoke a reverse shell, establish a bind shell, or connect to it with no supplied password to receive

a ping-back confirming its installation.

https://scapy.net/

18/20

A preview of the BPFDoor Client developed by Elastic Security to assist in research

Researchers looking to use BPFDoor can reach out to Elastic Security for access to the BPFDoor client POC. Please

note that these tools will be shared at our discretion with those in the trusted security community looking to

improve the detection of this vulnerability.

Impact¶

The following MITRE ATT&CK Tactic, Techniques, and Sub-techniques have been observed with the BPFDoor

malware.

Tactics¶

Tactics represent the “why” of an ATT&CK technique or sub-technique. It is the adversary’s tactical goal: the

reason for performing an action.

Execution

Techniques (sub-techniques)¶

Techniques (and sub-techniques) represent ‘how’ an adversary achieves a tactical goal by performing an action.

Source Pseudocode¶

To clearly articulate the details of this malware, we’ve created two diagrams that outline the specific pseudocode

for BPFDoor based on the source code uploaded to VT and found on Pastebin. While this contains a lot of detail, it

is simple to understand if researchers choose to further this research.

Summary¶

While threat groups continue to increase in maturity, we expect this kind of mature, well designed and hidden

threat will continue to be found within Linux environments. These kinds of findings reiterate the importance of

comprehensive security controls across the entirety of a fleet, rather than simply focusing on user endpoints.

BPFDoor demonstrates a perfect example of how important monitoring workloads within Linux environments can

be. Payloads such as this are near-on impossible to observe and detect without sufficient controls, and should be

considered a moving trend within the general adversarial landscape.

Observables¶

mailto:threat-notification@elastic.co
https://attack.mitre.org/tactics/TA0002/
https://elastic.github.io/security-research/intelligence/2022/05/04.bpfdoor/media/bpfdoor_pseudocode.pdf

19/20

Observable Type Reference NoteObservable Type Reference Note

/dev/shm/kdmtmpflush process
name

BPFDoor
process
name

Observed
process
name of
BPFDoor

/var/run/haldrund.pid file
name

BPFDoor
file name

Observed
BPFDoor
PID file

/var/run/kdevrund.pid file
name

BPFDoor
file name

Observed
BPFDoor
PID file

/var/run/xinetd.lock file
name

BPFDoor
file name

Observed
BPFDoor
lock file

74ef6cc38f5a1a80148752b63c117e6846984debd2af806c65887195a8eccc56 SHA-
256

BPFDoor
malware

07ecb1f2d9ffbd20a46cd36cd06b022db3cc8e45b1ecab62cd11f9ca7a26ab6d SHA-
256

BPFDoor
malware

76bf736b25d5c9aaf6a84edd4e615796fffc338a893b49c120c0b4941ce37925 SHA-
256

BPFDoor
malware

93f4262fce8c6b4f8e239c35a0679fbbbb722141b95a5f2af53a2bcafe4edd1c SHA-
256

BPFDoor
malware

96e906128095dead57fdc9ce8688bb889166b67c9a1b8fdb93d7cff7f3836bb9 SHA-
256

BPFDoor
malware

599ae527f10ddb4625687748b7d3734ee51673b664f2e5d0346e64f85e185683 SHA-
256

BPFDoor
malware

2e0aa3da45a0360d051359e1a038beff8551b957698f21756cfc6ed5539e4bdb SHA-
256

BPFDoor
malware

f47de978da1dbfc5e0f195745e3368d3ceef034e964817c66ba01396a1953d72 SHA-
256

BPFDoor
malware

fd1b20ee5bd429046d3c04e9c675c41e9095bea70e0329bd32d7edd17ebaf68a SHA-
256

BPFDoor
malware

5faab159397964e630c4156f8852bcc6ee46df1cdd8be2a8d3f3d8e5980f3bb3 SHA-
256

BPFDoor
malware

f8a5e735d6e79eb587954a371515a82a15883cf2eda9d7ddb8938b86e714ea27 SHA-
256

BPFDoor
malware

5b2a079690efb5f4e0944353dd883303ffd6bab4aad1f0c88b49a76ddcb28ee9 SHA-
256

BPFDoor
malware

97a546c7d08ad34dfab74c9c8a96986c54768c592a8dae521ddcf612a84fb8cc SHA-
256

BPFDoor
malware

c80bd1c4a796b4d3944a097e96f384c85687daeedcdcf05cc885c8c9b279b09c SHA-
256

BPFDoor
malware

4c5cf8f977fc7c368a8e095700a44be36c8332462c0b1e41bff03238b2bf2a2d SHA-
256

BPFDoor
malware

20/20

References¶

https://doublepulsar.com/bpfdoor-an-active-chinese-global-surveillance-tool-54b078f1a896

https://www.pwc.com/gx/en/issues/cybersecurity/cyber-threat-intelligence/cyber-year-in-retrospect/yir-

cyber-threats-report-download.pdf

https://www.pangulab.cn/en/post/the_bvp47_a_top-tier_backdoor_of_us_nsa_equation_group

https://www.pangulab.cn/en/post/the_bvp47_a_top-tier_backdoor_of_us_nsa_equation_group

Artifacts¶

Artifacts are also available for download in both ECS and STIX format in a combined zip bundle.

Download indicators.zip

Last update: May 24, 2022

Created: May 24, 2022

https://elastic.github.io/security-research/intelligence/2022/05/04.bpfdoor/indicators.zip

