# Cozy Smuggled Into the Box: APT29 Abusing Legitimate Software for Targeted Operations in Europe

cluster25.io/2022/05/13/cozy-smuggled-into-the-box/

May 13, 2022



**Cozy Bear** (aka **Nobelium**, **APT29**, **The Dukes**) is a well-resourced, highly dedicated and organized cyberespionage group that is believed to work in support of the decision-making process of **Russian** government since at least 2008. Nobelium primarily targets western governments and related **organizations**, with a particular focus on **government**, **diplomat**, **political and think tank** sectors. Recently we analyzed several **spear-phishing** campaigns linked with this adversary that involve the usage of a **side-loaded DLL** through **signed software** (like **Adobe suite**) and **legitimate** 

**webservices** (like **Dropbox**) as communication vector for **Command and Control** (C&C). The misuse of legitimate webservices is in attempt to **evade** the detection from automatic analysis software. Recently, <u>third-party researchers</u> have also reported it used **Trello** and its **REST API** to simulate a first-level Command & Control server. In addition to this evasion attempt, as we are going to discuss later, the side-loaded DLL tries to **unhook** the **windows libraries** loaded in the process memory to evade possible EDRs.

To maximize the chances of success, **Nobelium**,in at least two cases, sent **spear-phishing** emails from spoofed or compromised government addresses. As **initial access** we identified the following **attack vectors**:

- The first approach involves the distribution of an IMG file which, when mounted, contains an LNK shortcut and the signed software with the other DLLsand a decoy PDF as hidden files. This attack vector lures the user through a masquerading technique by changing the LNK file icon to a *folder* icon in order to convince the user to click on it. In fact, once triggered, the cmd.exe utility is invoked to run the signed executable and to start the side-loading of the malicious DLL (i.e. AcroSup.dll).
- 2. The second approach involves the usage of the EnvyScout dropper that is basically an HTML file with an embedded JavaScript designed to decode and drop the next-stage payload (HTML Smuggling). In fact, once the HTML file is executed, the JavaScript code decodes a bytes array and saves the result under an archive in the Download directory. In this case, the user is responsible to unzip the archive (that contains the signed software, the relative DLL's and the lure PDF) and to run manually the executable to start the chain (even if the JavaScript code contains unused snippet for automating the process).

The **EnvyScout** dropper was used by this threat actor in different campaigns. From mid-January 2022 **Cluster25** internally reported differet **Nobelium**-linkedcampaigns against **European** entities that leveraged fairly complex kill-chain started with **EnvyScout** as well.

## INSIGHTS

In the reported case, the signed executable is represented by **WCChromeNativeMessagingHost.exe** from the **Adobe Create PDF** module of the Adobe suite. It's a plugin for **Google Chrome**. Since the malware bundle contains a local copy of **vcruntime140.dll**, once the abused software is executed, the local copy of this Windows library is loaded into the program memory from the **PE** import table. Analyzing the local copy of **vcruntime140.dll**, we noticed that the **PE imports of this library** have been modified: it contains an entry to the **AcroSup.dll** delivered through the malware bundle.

So, this import chain, leads to the **side-loading** of the malicious **AcroSup.dll** and the execution of its **DIIMain** export before the execution of the signed **Adobe** executable. To evade possible debuggers the execution of the malicious **AcroSup.dll** starts with a **thread hijacking** by overwriting the thread context of the main thread (updating the **RIP** register) in the signed executable space. To avoid the DLL execution in suspected processes, before the thread context overwriting the malware checks for the process image name is currently matching with the name of the signed executable, through the **K32GetProcessImageFileNameA** API.

After that the malware iterates on the loaded **Windows DLLs** through the **K32EnumProcessModules** APIs to unhook each DLL and evade active **EDR**s on the system. Basically, for each loaded DLL, the **.text** section of each of them is freshly mapped to the virtual address of the possible hooked DLL. From this point the malware enters a **pseudo-infinite** loop where, each second, goes to contact the **Dropbox** service to communicate the victim identifier and receive next-stage payloads.

First of all, the **api.dropbox.com** endpoint is contacted at the **/oauth2/token/** URI through an **HTTP POST** request to receive a **r**efresh token, necessary to contact the **Dropbox** APIs.

For this request the following combination of **API key** and **API secret** are used to represent the Dropbox account used by the threat actor:

- API key: fm09ogco339u0a9
- API secret: scqekoaqqj98sze

In addition, for all the network-related requests the malware uses a **fixed user-agent**:

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.75 Safari/537.36 AtContent/91.5.2444.45

If the refresh token is received from the **Dropbox API**s and successfully parsed, the implant proceeds with the integration of some masquerading and persistence techniques. More in details, a new subprocessis created to open the lure PDF document (an empty PDF) contained in the bundle and used to make the user think that he has opened the legit **Adobe Acrobat** application.

In the meanwhile, all the files involved in the bundle (signed software and relative DLL's) are **copied** under the **%APPDATA%\AcroSup\** directory and a new registry key under **HKEY\_CURRENT\_USER\Software\Microsoft\Windows\CurrentVersion\Run\** is created to achieve persistence.

The lure PDF document is not copied under the above mentioned directory so this document will not be opened again after a restart of the victim system. To register the victim entry on **Dropbox**, a victim identifier is created through the **hex-encoded** combination of the current usernameand current computer name (e.g., *john::windows10*). The communication of the new victim is then completed through a push of a new **.mp3** file(named *Rock\_[VICTIM\_ID].mp3*) via the **Dropbox APIs** on **/2/files/upload/** URI.

Interestingly, the pushed **.MP3** files identifying the victims, contains always the following string that likely represents the malware family:

## ME3.99.5UUUUUUUUUUU

Finally, another request is performed to the /2/files/download/ path of Dropbox APIs that tries to download a file named *Rock\_VICTIM\_ID.mp3.backup*. The response is parsed to determine if a **next-stage** payload exists for the current registered victim. If one does, the malware will allocate a new heap space to store the downloaded payload and will execute it in the executable space by overwriting again the thread context of the main executable.

## VICTIMOLOGY

In recent months Cluster25 had evidence of **Cozy Bear**'s campaigns that potentially impacted *at least* **Greece**, **Italy**, **Turkey** and **Portugal** especially in government and foreign affairs sectors.



CONCLUSIONS

**NOBELIUM** confirms its interest in government and foreign affairs by targeting organizations in **Europe** and possibly other parts of the world. The campaigns and the payloads analyzed over time show a strong focus on operating under the radar and lowering the detection rates. In this regard, even the use of legitimate services such as **Trello** and **DropBox** suggest the adversary's will to operate for a long time within the victim environments remaining undetected. It is possible to foresee that this actor will also try to change TTPs (Technical and Tactical Procedures) in the near future in order to make any mitigation action aimed at its contrast more difficult. In this regard, we provide a wide set of detection rules useful for verifying potential malicious activities attributable to this threat actor (see DETECTION AND THREAT HUNTING SECTION).

| ATT&CK | MATRIX |
|--------|--------|
|--------|--------|

| TACTIC          | TECHNIQUE | DESCRIPTION                                   |
|-----------------|-----------|-----------------------------------------------|
| Initial Access  | T1566.001 | Phishing: Spearphishing Attachment            |
| Execution       | T1204.001 | User Execution: Malicious Link                |
| Execution       | T1204.002 | User Execution: Malicious File                |
| Execution       | T1059.007 | Command and Scripting Interpreter: JavaScript |
| Defense Evasion | T1036     | Masquerading                                  |
| Defense Evasion | T1622     | Debugger Evasion                              |
| Defense Evasion | T1140     | Deobfuscate/Decode Files or Information       |
| Defense Evasion | T1027     | Obfuscated Files or Information               |
| Defense Evasion | T1055.003 | Process Injection: Thread Execution Hijacking |
| Defense Evasion | T1553.002 | Subvert Trust Controls: Code Signing          |
| Defense Evasion | T1562.001 | Impair Defenses: Disable or Modify Tools      |

| Defense Evasion        | T1112     | Modify Registry                                                          |
|------------------------|-----------|--------------------------------------------------------------------------|
| Defense Evasion        | T1202     | Indirect Command Execution                                               |
| Defense Evasion        | T1497     | Virtualization/Sandbox Evasion                                           |
| Defense Evasion        | T1620     | Reflective Code Loading                                                  |
| Discovery              | T1082     | System Information Discovery                                             |
| Discovery              | T1057     | Process Discovery                                                        |
| Persistence            | T1098     | Account Manipulation                                                     |
| Persistence            | T1547.001 | Boot or Logon Autostart Execution: Registry Run Keys /<br>Startup Folder |
| Command and<br>Control | T1105     | Ingress Tool Transfer                                                    |
| Command and<br>Control | T1071.001 | Application Layer Protocol: Web Protocols                                |
| Command and<br>Control | T1102     | Web Service                                                              |

## INDICATORS OF COMPROMISE

| CATEGORY | TYPE   | VALUE                                                            |
|----------|--------|------------------------------------------------------------------|
| PAYLOAD  | SHA256 | 5292c0f5a7ea80124cf7584eacea1881cf2f0814fa13dcc0de56624e215aaba2 |
| PAYLOAD  | SHA1   | 32792827c14075cc3091244425e302b1ebe3259c                         |
| PAYLOAD  | MD5    | 2fbccfc5a1b91b2609e3ae92a93ff7cb                                 |
| PAYLOAD  | SHA256 | 9d063a05280fbce6ff0fd62a877f3fd1e80f227522e16918e6bede2e6ee398de |
| PAYLOAD  | SHA1   | 05241afa180d70e17647b2d8cbc1660adbe3af88                         |
| PAYLOAD  | MD5    | d86283af2d5888b0ce3ea63eb26f60f7                                 |
| PAYLOAD  | SHA256 | 4c68c840ae1a034d47900ebdc291116726fd37b3ab0b7e026fad90eaab84d820 |
| PAYLOAD  | SHA1   | c9a5314eb247c7441a5262a7cd22abbe1fcba7b6                         |
| PAYLOAD  | MD5    | 110c4ae194e7b49ed3e3b254d599f7f4                                 |
| PAYLOAD  | SHA256 | 7f96d59cb02229529b14761f979f710bca500c68cc2b37d80e60e751f809475e |
| PAYLOAD  | SHA1   | 489c36c9ea3fb90f61209d43efffd8d997a362c6                         |
| PAYLOAD  | MD5    | 9ec1fcb11b597941bec03078cccab724                                 |
| PAYLOAD  | SHA256 | 23a09b74498aea166470ea2b569d42fd661c440f3f3014636879bd012600ed68 |
| PAYLOAD  | SHA1   | ad33bab4bc6232a6666c2190b3bf9fc2ab2a720a                         |
|          |        |                                                                  |

| PAYLOAD | MD5    | 454f59dc7d3d7f228bbd4ddd4c250ed8                                 |
|---------|--------|------------------------------------------------------------------|
| PAYLOAD | SHA256 | 729fb24b6c18232fc05ccf351edaeaa8a76476ba08cba37b8a93d34f98fa05ed |
| PAYLOAD | SHA1   | 900cba1d73ddca31a7bb7b7af5b3b7f1a0bc6fbf                         |
| PAYLOAD | MD5    | 6bc8be27898e1e280e402a7981be55ae                                 |

#### **DETECTION AND THREAT HUNTING**

#### SNORT #SSL\_DECRYPT\_ONLY

alert http \$HOME\_NET any -> \$EXTERNAL\_NET any (msg:"CLUSTER25 NOBELIUM Registration via Dropbox API"; flow:established,to\_server; http.uri; content:"/2/files/upload"; http.header; content:"|22|path|22|"; content:"|22|/Rock\_"; fast\_pattern; distance:0; content:".mp3|22|"; distance:0; http.host; content:"content.dropboxapi.com"; bsize:22; reference:url,cluster25.io/2022/05/13/cozy-smuggled-into-the-box/; reference:md5,3f400f30415941348af21d515a2fc6a3; classtype:trojan-activity; sid:7704250; rev:1;)

#### SNORT

alert http \$HOME\_NET any -> \$EXTERNAL\_NET any (msg:"CLUSTER25 NOBELIUM Backdoor Download via Dropbox API"; flow:established,to\_server; http.uri; content:"/2/files/download"; http.header; content:"|22|path|22|"; content:"|22|/Rock\_"; fast\_pattern; distance:0; content:".mp3.backup|22|"; distance:0; http.host; content:"content.dropboxapi.com"; bsize:22; reference:url,cluster25.io/2022/05/13/cozy-smuggled-into-the-box/; reference:md5,3f400f30415941348af21d515a2fc6a3; classtype:trojan-activity; sid:7704251; rev:1;)

#### YARA

import "pe"

rule APT29\_Loader\_87221\_00001 {

meta:

author = "Cluster25"

tlp = "white"

description = "Detects DLL loader variants used in Nobelium kill-chain"

hash1 = "6fc54151607a82d5f4fae661ef0b7b0767d325f5935ed6139f8932bc27309202"

hash2 = "23a09b74498aea166470ea2b569d42fd661c440f3f3014636879bd012600ed68" strings:

\$s1 = "%s\\blank.pdf" fullword ascii

\$s2 = "%s\\AcroSup" fullword ascii

\$s3 = "vcruntime140.dll" fullword ascii

\$s4 = "ME3.99.5UUUUUUUUUUU" fullword ascii

\$c1 = "Rock" fullword ascii

\$c2 = ".mp3" fullword ascii

\$c3 = "%s.backup" fullword ascii

\$sequence1 = { C7 45 ?? 0B 00 10 00 48 8B CF FF 15 ?? ?? 00 85 C0 74 ?? 48 8D 55 ?? 48 89 75 ?? 48 8B CF FF 15 ?? ?? 00 85 C0 74 ?? 48 8B CF FF 15 ?? ?? 00 } // Thread contect change

\$sequence2 = { 0F B6 0B 4C 8D 05 ?? ?? 00 89 4C 24 ?? 4D 8B CD 49 8B CD BA 04 01 00 00 E8 ?? ?? ?? 48 8D 5B 01 48 83 EF 01 75 ?? } // encoding cycle

\$sequence3 = { 4C 8D 8C 24 ?? 00 00 00 8B 53 ?? 44 8D 40 ?? 48 03 CD 44 89 A4 24 ?? 00 00 00 FF 15 ?? ?? ?? 00 8B 43 ?? 44 8B 43 ?? 4A 8D 14 38 48 8D 0C 28 E8 ?? ?? 00 00 8B 4B ?? 4C 8D 8C 24 ?? 00 00 00 8B 53 ?? 48 03 CD 44 8B 84 24 ?? 00 00 00 FF 15 ?? ?? ?? 00 } //DLL Unhook

\$sequence4 = { 42 0F B6 8C 32 ?? ?? 00 48 83 C2 03 88 0F 48 8D 7F 01 48 83 FA 2D 7C E7 } // get domain name string

condition:

uint16(0) == 0x5a4d and filesize < 200KB

and pe.imports("kernel32.dll", "SetThreadContext") and pe.imports("kernel32.dll",

"ResumeThread") and pe.imports("kernel32.dll", "K32GetModuleFileNameExA")

and 3 of (\$s\*) and all of (\$c\*) and 3 of (\$sequence\*)

}

### YARA

```
rule APT29_HTMLSmuggling_ZIP_82733_00001 {
meta:
author = "Cluster25"
description = "Rule to detect the EnvyScout HTML smuggling with ZIP payload used in the
APT29/Nobelium APT29 chain"
date = "2022-05-12"
hash = "d5c84cbd7dc70e71f3eb24434a58b2f149d0c39faa7e4157552b60c7dbb53d11"
strings:
$s1 = "new Blob("
$s2 = "new Uint8Array("
$s3 = "application/octet-stream"
$t1 = "saveAs("
$t2 = "download("
$r1 = { 66 6F 72 28 76 61 72 20 69 20 3D 20 30 78 30 3B 20 69 20 3C 20 64 5B 27 6C 65 6E 67 74
68 27 5D 3B 20 69 2B 2B 29 20 7B 0A 20 20 20 20 64 5B 69 5D 20 3D 20 64 5B 69 5D }
condition: (filesize > 500KB and all of (s^*) and (t^1 or t^2) and r^1)
}
```

## SIGMA

title: Potential NOBELIUM APT persistence by detection of registry key events (via registry\_event) status: stable description: This rule detects potential NOBELIUM APT persistence via registry event author: Cluster25 date: 2022/04/27 references: - internal research tags: - attack.persistence logsource: product: windows category: registry\_event detection: selection: TargetObject|contains: - '\Software\Microsoft\Windows\CurrentVersion\Run\' Details|endswith: - '\AppData\Roaming\AcroSup\Acro.exe' condition: selection falsepositives: – unknown level: high

Written by: Cluster25