
1/3

OALABS Research May 12, 2022

Bumblebee Loader
research.openanalysis.net/bumblebee/malware/loader/unpacking/2022/05/12/bumblebee_loader.html

Overview

According to Google's Threat Analysis Group...

The loader can be recognized by its use of a unique user-agent “bumblebee” which both variants share. The malware, hence
dubbed BUMBLEBEE.

This loader has been observed downloading payloads such as cobalt strike and is often delivered itself via an ISO file. The sample
we are strating with today is an ISO.

References

Sample

0d740a348362171814cb314a48d763e336407904a36fa278eaf390c5743ec33b

Triage

The ISO contains two files desk.dll and New Folder.Lnk . We can right click properties on the lnk file to take a look at its
command. The lnk file is used to launch the dll with the following command.

C:\Windows\System32\rundll32.exe desk.dll,aCmHmjrptS

Unpacking

load rundll32.exe in x64dbg and change the command line to pass desk.dll,#1
enable break on dll load
once desk.dll is loaded locate export we want to debug (aCmHmjrptS ord 1) and add a hardware breakpoint
remove the break on dll load and run until the export is bp is hit
we initially tried watching for allocated memory via VirutalAllocEx but didn't see anything interesting
instead we eneabled break on exit and just ran the dll
when the break on exit was hit we searched memory for the PE header DOS string and located a mapped PE
we unmapped the PE to reveal the payload

Payload

Unpacked and unmapped payload abaa83ab368cbd3bbdaf7dd844251da61a571974de9fd27f5dbaed945b7c38f6 available on
malshare.

Build Artifacts

There is a build artifact that may be useful for hunting other samples.

Z:\hooker2\Common\md5.cpp

We searched for this on VirusTotal using the search term
https://www.virustotal.com/gui/search/content%253A%257B5a003a005c0068006f006f006b006500720032005c00%257D/files

and found other sample but nothing too interesting.

Anti-Analysis

There are many anti-analysis checks some of which have been directly copied from the open source project al-khaser. To get some
free work we compiled al-khaser and created and IDB using a build version with symbols. We when used bindiff to match the al-
khaser IDB with the payload. This allowed us to import all of the symbols from al-khaser.

IDA Filtering

https://research.openanalysis.net/bumblebee/malware/loader/unpacking/2022/05/12/bumblebee_loader.html
https://bazaar.abuse.ch/download/0d740a348362171814cb314a48d763e336407904a36fa278eaf390c5743ec33b/
https://malshare.com/sample.php?action=detail&hash=abaa83ab368cbd3bbdaf7dd844251da61a571974de9fd27f5dbaed945b7c38f6
https://www.virustotal.com/gui/search/content%253A%257B5a003a005c0068006f006f006b006500720032005c00%257D/files
https://github.com/LordNoteworthy/al-khaser
https://www.zynamics.com/bindiff.html

2/3

While using BinDiff we ran into some issues with the IDA filter not working correcte (we were trying to filter out std and internal
functions). To get the filter to work correctly we needed use a specific order shown below.

Config

Instead of a config the payload contains a series of encrypted strings in the .data section. These strings include the campaign
name and a C2 list. The encryption is RC4 and the key is a hard-coded plaintext string (also in the .data section). In our sample
the key was BLACK .

Decrypted Config String

def unhex(hex_string):
 import binascii
 if type(hex_string) == str:
 return binascii.unhexlify(hex_string.encode('utf-8'))
 else:
 return binascii.unhexlify(hex_string)

def tohex(data):
 import binascii
 if type(data) == str:
 return binascii.hexlify(data.encode('utf-8'))
 else:
 return binascii.hexlify(data)

def rc4crypt(data, key):
 #If the input is a string convert to byte arrays
 if type(data) == str:
 data = data.encode('utf-8')
 if type(key) == str:
 key = key.encode('utf-8')
 x = 0
 box = list(range(256))
 for i in range(256):
 x = (x + box[i] + key[i % len(key)]) % 256
 box[i], box[x] = box[x], box[i]
 x = 0
 y = 0
 out = []
 for c in data:
 x = (x + 1) % 256
 y = (y + box[x]) % 256
 box[x], box[y] = box[y], box[x]
 out.append(c ^ box[(box[x] + box[y]) % 256])
 return bytes(out)

3/3

data =
b'\x47\xCB\xD6\x45\x96\xAD\x39\x36\x82\x64\xA3\x68\xBB\x80\x5C\x8F\x4F\x86\x35\x73\xFD\xE9\x2E\x6D\x8C\x70\xB2\xE5\xEE\xD3\

key = 'BLACK'

out = rc4crypt(data, key)
print(out)

b'142.11.222.79:443,23.254.224.200:443,103.175.16.52:443,199.195.252.30:443\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

data1 =
'47CED45EC69C1704B0568D5F82BA68BB7CAA0740D3DB1B59A24280D1C0E1F6215A962659A8F26249124408134E69C4616B46849D9BDDA8F6BC6D3D52F8

out = rc4crypt(unhex(data1), key)
print(out)

b'1105a\x00

data1 =
'42CBD06BA79C1704B0568D5F82BA68BB7CAA0740D3DB1B59A24280D1C0E1F6215A962659A8F26249124408134E69C4616B46849D9BDDA8F6BC6D3D52F8

out = rc4crypt(unhex(data1), key)
print(out)

b'444\x00\x

