
1/9

May 11, 2022

Please Confirm You Received Our APT
fortinet.com/blog/threat-research/please-confirm-you-received-our-apt

Because we are constantly monitoring the threat landscape, FortiGuard Labs has the opportunity to see many unique and
novel attacks. Recently, one of our sample collectors was able to find one such incident. It began with a spearphishing email to
a diplomat in Jordan. Like many of these attacks, the email contained a malicious attachment. However, the attached threat
was not a garden-variety malware. Instead, it had the capabilities and techniques usually associated with advanced persistent
threats (APTs). Based on the techniques used in this attack, it appears to be another campaign launched by APT34. The rest
of this blog will analyze the attack chain associated with this email and the traits that set it apart from average malware, such
as DNS tunneling and stateful programming.

Affected Platforms: Microsoft Windows

 Impacted Users: Targeted Windows users
 Impact: Collects sensitive information from the compromised machine

 Severity Level: Medium

Spearphishing Email

This spearphishing attack targeted a Jordanian diplomat, with the sender pretending to be a colleague from the IT department
of the same governmental organization.

Figure 1. Spearphishing email

https://www.fortinet.com/blog/threat-research/please-confirm-you-received-our-apt
https://www.fortinet.com/resources/cyberglossary/advanced-persistent-threat?utm_source=blog&utm_medium=+&utm_campaign=apt

2/9

Looking at the headers of the email, we can determine that the email originated from outside the organization. But while it
came from an external email address, it used the first and last name of an employee in the IT department. The alert diplomat
decided to forward this to the real employee. This may have been done to verify the authenticity of the original email or, more
likely, for further analysis within the IT department. As suggested in the email body, the attached Excel file contained a
confirmation form for the targeted diplomat to fill out.

For those technically inclined, the next few sections break down the “how” and “what happened” of this malware. Other
readers should feel free to skip to the “C2 Servers” section for details on how to protect your organization.

Malicious Excel File

The attached Excel file contains a malicious VBA (Visual Basic Application) macro as opposed to the Excel MacroSheets that
other malware such as Emotet and QBot typically use. In many cases, a malicious macro may install some sort of stager, such
as those deployed by Cobalt Strike or Metasploit. In other cases, the macro may use living-off-the-land techniques to
download and execute a second-stage binary. Another option a macro may use is to simply drop and run a malicious binary. In
this attack, the macro uses the latter option. This, however, was where similarities to other phishing attacks end.

Figure 2. Macro opening

One of the unique techniques seen in this macro is the toggling of sheet visibility. In most attacks involving Excel, no hidden
sheets are used. And in those cases where hidden sheets are used, the hidden sheet typically holds the malicious code. In
this attack, however, the visibility of two sheets is quickly switched as soon as the workbook is opened. One possible reason
for this may be as an anti-emulation technique. Emulators (such as the freely available ViperMonkey) may or may not support
all Excel functionality, such as the hiding of sheets.

Incidentally, lines 16 and 17 are commented out. Perhaps these lines were used for testing purposes or were part of a different
lure, one in which TeamViewer (remote access and control software used for device maintenance) was used.

The astute observer may have also noticed line 25 in the previous image. Line 25 calls a function that contacts the C2 server.

Figure 3. C2 contact

Unlike most malicious macros, this one uses WMI (Windows Management Instrumentation) to ping the C2 server instead of a
more commonly used tool, such as PowerShell or CMD. Furthermore, this function is called multiple times during macro
execution. It basically works as a state monitor to keep track of what’s happening during the attack. The tMsg variable
changed during different stages of the attack, allowing the attackers to view their network logs to see the state of their macro.
The rds variable is a random four-digit number, with the same four digits used consistently throughout the macro state check-in
process.

C2 Macro State

qwzbabz[four-digits].joexpediagroup[.]com Macro start

qwzbbbz[four-digits].joexpediagroup[.]com Connected successfully to task scheduler

qwzbaez[four-digits].joexpediagroup[.]com Successfully created malicious PE file

qwzbbez[four-digits].joexpediagroup[.]com Successfully created XML config file

qwzbcez[four-digits].joexpediagroup[.]com Successfully created signed Microsoft PE file

qwzbdez[four-digits].joexpediagroup[.]com Double-check malicious PE file was created

qwzbeez[four-digits].joexpediagroup[.]com Successful manual execution of malicious PE file

https://www.fortinet.com/resources/cyberglossary/malware?utm_source=blog&utm_campaign=malware

3/9

qwzafzz[four-digits].joexpediagroup[.]com Begin task scheduler configuration for persistence

qwzbbfz[four-digits].joexpediagroup[.]com Successfully created scheduled task

Figure 4. Table of states

As alluded to in the table above, the macro has the capability to create three files. A malicious PE file was created
as %LocalAppData%\MicrosoftUpdate\update.exe. A configuration file was created
as %LocalAppData%\MicrosoftUpdate\update.exe.config. And the third
file, %LocalAppData%\MicrosoftUpdate\Microsoft.Exchange.WebServices.dll, was signed and clean.

While the malware authors decided to store these three files inside the Excel file, they again chose to do so in a way that is not
commonly seen.

Figure 5. Form caption

Three user forms are stored inside the Excel file. Each user form has a label, and each label has a caption. As seen in the
image above, the caption contains base64 encoded data. Form1 contains the malicious update.exe file. Form2 contains the
configuration file. And Form3 contains the clean Microsoft file. We will explore these files further later in this blog.

The malware authors also used the Excel macro to create a persistence method for their update.exe file. They accomplished
this by setting a scheduled task.

Figure 6. Scheduled task

The task is named MicrosoftUpdate and repeats every 4 hours. The macro also uses deprecated IdleSettings properties, such
as Duration (which starts the task only if the computer has been idle for ten minutes) and WaitTimeout (which determines how
long to wait for an idle condition). This task was set to allow 20 days to complete. Taking into account the date of the email and
assuming the task ran immediately, the task would run until at least May 16, 2022.

In addition to the visibility switch technique described earlier, a second technique was also seen in this macro to possibly avoid
automated analysis. This macro does this by checking for the existence of a mouse. If a mouse is not connected, the macro
does not create any of the three files. There are a couple of instances where a mouse would not be attached to a computer.
First, a mouse is not necessarily needed if the computer is controlled remotely. The only mouse needed would be installed on
the controlling computer. And second, a mouse is not needed if an analysis machine is simply processing and emulating Office
files. A script can be created to automatically perform all the actions necessary without a mouse.

As far as malicious macros go, this one contains several techniques not normally seen in most attacks. This suggests that
more time and care have been given to developing this portion of the attack. In the next section, we will look at the files that
were created by this macro.

Dropped Files

As explained earlier, this malicious Excel macro includes the ability to create three files. In this section, we will look at them
individually, starting with the two benign files.

A signed file was embedded inside the Excel file and dropped to the following
location: %LocalAppData%\MicrosoftUpdate\Microsoft.Exchange.WebServices.dll. Another innocuous file was dropped
as %LocalAppData%\MicrosoftUpdate\update.exe.config. Its contents are to be used as configuration data. Here are the
contents after decoding:

Figure 7. Config data

The third file is the actual malware. It was created in the same location as the two previously dropped files,
as %LocalAppData%\MicrosoftUpdate\update.exe. It was a .NET binary and contained the main payload.

This malware binary was certainly developed by the same group that created the Excel macro, as there are similarities
between the two. One similarity deals with the idea of states and the tracking of what was happening at any given point in time
within the execution flow. Since .NET is a more robust programming language than the scripting nature of VBA, the malware

4/9

binary has a much easier way of keeping state.

Figure 8. Dictionary of states

The figure above shows a partial state dictionary defined by the malware. Depending on the execution flow and what state the
malware lands in, certain delays are introduced.

Figure 9. Delay times in milliseconds

These delays are executed by calling the Sleep() function. In .NET, Sleep() accepts values in milliseconds. In certain cases, for
example, from DelayMinAlive to DelayMaxAlive, the malware can sleep anywhere from 6 to 8 hours!

While this malware sleeps in certain program states, other program states require it to contact the C2 server. Like the Excel
macro, it contacts seemingly random subdomains. However, in actuality, it uses a domain generation algorithm (DGA) to
calculate a subdomain.

Figure 10. DGA

The malware constructs the DGA by first randomly assigning a value to _AgentID. This value is then fed as a seed into
the RandomMersenneTwister function, highlighted above. It then performs further calculations using the haruto string as well
as the strings found in the CharsDomain and CharsCounter variables. Once a subdomain string is generated, the malware
randomly chooses one of three domains to concatenate with (joexpediagroup[.]com, asiaworldremit[.]com, or uber-asia[.]com).

Once the URL is generated, the next step the malware takes is to check for the C2 server’s DNS data.

Figure 11. DNS

When DNS is queried for a domain, a DNS server returns an IP address that points to the requested domain. The malware
then checks the first octet of the IP address to ensure the value is at least 128 to be considered valid. Perhaps this is a way for
the malware to avoid internal IP addresses, such as the 127[.]0[.]0[.]1 local loopback address or the 10[.]0[.]0[.]0 internal
subnet. Lines 260-261 are used to define the byte array DnsClass._ReceiveData with a size defined by the remaining octets.
For example, a DNS test server is set up to return the IP address 192[.]5[.]4[.]3 for any DNS requests. That means the byte
array has a size of 0x050403. Later in the malware’s execution flow, this data from the DNS request is used to
define TaskClass properties.

Figure 12. DNS tunneling

Specifically on line 245, TaskClass.ListData is set to the received data from the DNS request. In the end, this basically means
that this malware is receiving tasks inside a DNS response. Apparently, this malware uses DNS tunneling to communicate with
its C2. APT34 has historically used DNS for communications as well.

Several types of tasks are defined for this malware.

Figure 13. Task types

This malware has the ability to take a DNS response and create an arbitrary file on the infected machine if that was the task
the malware authors wanted to perform. File and CompressedFile are task types used to create a file. The remaining task
types are used to send backdoor commands to the malware. These backdoor commands are meant to be executed through
PowerShell or through the Windows CMD interpreter. The following table lists supported commands.

Command Interpreter Payload

1 PS Get-NetIPAddress -AddressFamily IPv4 | Select-Object IPAddress

2 PS Get-NetNeighbor -AddressFamily IPv4 | Select-Object "IPADDress"

3 CMD whoami

4 PS [System.Environment]::OSVersion.VersionString

https://en.wikipedia.org/wiki/Domain_generation_algorithm

5/9

5 CMD net user

7 PS Get-ChildItem -Path "C:\Program Files" | Select-Object Name

8 PS Get-ChildItem -Path 'C:\Program Files (x86)' | Select-Object Name

9 PS Get-ChildItem -Path 'C:' | Select-Object Name

10 CMD hostname

11 PS Get-NetTCPConnection | Where-Object {$_.State -eq "Established"} | Select-Object
"LocalAddress", "LocalPort", "RemoteAddress", "RemotePort"

12 PS $(ping -n 1 10.65.4.50 | findstr /i ttl) -eq $null;$(ping -n 1 10.65.4.51 | findstr /i ttl) -eq $null;$(ping
-n 1 10.65.65.65 | findstr /i ttl) -eq $null;$(ping -n 1 10.65.53.53 | findstr /i ttl) -eq $null;$(ping -n 1
10.65.21.200 | findstr /i ttl) -eq $null

13 PS nslookup ise-posture.mofagov.gover.local | findstr /i Address;nslookup webmail.gov.jo | findstr /i
Address

14 PS $(ping -n 1 10.10.21.201 | findstr /i ttl) -eq $null;$(ping -n 1 10.10.19.201 | findstr /i ttl) -eq
$null;$(ping -n 1 10.10.19.202 | findstr /i ttl) -eq $null;$(ping -n 1 10.10.24.200 | findstr /i ttl) -eq
$null

15 PS $(ping -n 1 10.10.10.4 | findstr /i ttl) -eq $null;$(ping -n 1 10.10.50.10 | findstr /i ttl) -eq
$null;$(ping -n 1 10.10.22.50 | findstr /i ttl) -eq $null;$(ping -n 1 10.10.45.19 | findstr /i ttl) -eq
$null

16 PS $(ping -n 1 10.65.51.11 | findstr /i ttl) -eq $null;$(ping -n 1 10.65.6.1 | findstr /i ttl) -eq $null;$(ping
-n 1 10.65.52.200 | findstr /i ttl) -eq $null;$(ping -n 1 10.65.6.3 | findstr /i ttl) -eq $null

17 PS $(ping -n 1 10.65.45.18 | findstr /i ttl) -eq $null;$(ping -n 1 10.65.28.41 | findstr /i ttl) -eq
$null;$(ping -n 1 10.65.36.13 | findstr /i ttl) -eq $null;$(ping -n 1 10.65.51.10 | findstr /i ttl) -eq
$null

18 PS $(ping -n 1 10.10.22.42 | findstr /i ttl) -eq $null;$(ping -n 1 10.10.23.200 | findstr /i ttl) -eq
$null;$(ping -n 1 10.10.45.19 | findstr /i ttl) -eq $null;$(ping -n 1 10.10.19.50 | findstr /i ttl) -eq
$null

19 PS $(ping -n 1 10.65.45.3 | findstr /i ttl) -eq $null;$(ping -n 1 10.65.4.52 | findstr /i ttl) -eq $null;$(ping
-n 1 10.65.31.155 | findstr /i ttl) -eq $null;$(ping -n 1 ise-posture.mofagov.gover.local | findstr /i ttl)
-eq $null

20 PS Get-NetIPConfiguration | Foreach IPv4DefaultGateway | Select-Object NextHop

21 PS Get-DnsClientServerAddress -AddressFamily IPv4 | Select-Object SERVERAddresses

22 CMD systeminfo | findstr /i \"Domain\"

Figure 14. Table of backdoor commands

The 6 command is actually missing from this malware. Whether a file is uploaded or a backdoor command is executed, there
is some sort of output. This output is then formatted and compressed using .NET’s compression mode. After the result is
encoded with base32, this new result is then incorporated into the DGA. Base32 is also the same encoding scheme that

6/9

APT34 has used.

Figure 15. DNS exfiltration

This is how the malware exfiltrated the data. It may look like a simple DNS request in a network log, but the exfiltrated data is
actually built into the DNS request.

With the amount of work put into developing this malware, it does not appear to be the type to execute once and then delete
itself, like other stealthy infostealers. Perhaps to avoid triggering any behavioral detections, this malware also does not create
any persistence methods. Instead, it relies on the Excel macro to create persistence by way of a scheduled task. Since Excel
is a signed binary, maintaining persistence in this way may be missed by some behavioral detection engines. The problem
with using a scheduled task as a persistence mechanism, however, is that it runs the risk of having multiple copies of itself
running concurrently. To avoid this problem, the malware creates a mutex. A mutex (mutual exclusion object) is a program
object that is created so multiple program threads can take turns sharing the same resource. In its most basic definition, it is
simply a locking mechanism. If a mutex with a value of 726a06ad-475b-4bc6-8466-f08960595f1e already exists on the
system, it means there is already a previous instance of the malware running on the infected computer. As a result, if a
scheduled task starts another copy of the malware, the malware detects the mutex, and it is terminated immediately.

C2 Servers

This malware has the ability to contact three domains (joexpediagroup[.]com, asiaworldremit[.]com, uber-asia[.]com). Similarly,
the Excel macro is able to contact the joexpediagroup[.]com domain.

Uber-asia[.]com

This domain, which may be imitating Uber rideshare for Asia, was registered slightly more than two months ago, on February
27, 2022. According to passive DNS records, this domain resolves to 127[.]0[.]0[.]1. Interestingly enough, VirusTotal was able
to record a DNS entry.

Figure 16. Virustotal DNS results

This certainly fits the format used by the malware. The subdomain appears to be a DGA. The first octet of the IP address is
greater than 128, and the remaining octets define the size of the command to be executed. Unfortunately, the rest of the DNS
data is not available. This suggests that the malware operators are closely monitoring this C2 server and only activate it when
necessary.

Joexpediagroup[.]com

This domain, which may be imitating Expedia travel for Jordan, was created earlier this year, on January 20, 2022. Sometime
after April 20, 2022, this domain also started resolving to 127[.]0[.]0[.]1, most likely for the same reason as above. Prior to that,
however, the domain resolved to 45[.]11[.]19[.]47. The server also had SSH port 22 open. Our own Fortinet telemetry detected
someone connecting to this IP address from the country of Jordan.

Asiaworldremit[.]com

This domain, which may be imitating WorldRemit for Asia, was created on the same day as the first C2 server, on February 27,
2022. Around April 19, 2022, this domain also resolved to 127[.]0[.]0[.]1. Prior to that, however, it resolved to
193[.]239[.]84[.]207. In the past, this IP address has been used by the NSO group with their Pegasus spyware. According to
our telemetry, this IP address has also been used by APT34/OilRig/Helix Kitten and GoziIFSB. It has also been used as a VPN
address. Passive DNS records indicate the IP address is currently hosting several suspiciously-named domains, some of
which are listed below.

Registered Domain Attempting to masquerade as

astrazeneeca[.]com AstraZeneca

astrazencea[.]com AstraZeneca

https://en.wikipedia.org/wiki/Lock_(computer_science)

7/9

hsbcbkcn[.]com HSBC Bank China

valtronics-ae[.]com Valtronics AE

ntu-sg-edu[.]com Nanyang Technological University Singapore

theworldbank[.]uk World Bank Group

coinbasedeutschland[.]com Coinbase for Germany

cisco0[.]com Cisco

Figure 17. Fake domains

The three C2 domains used by this malware seem to have a similar naming convention as the other domains found on this IP
address.

Conclusion

The amount of effort put into developing this attack is much higher than the average run-of-the-mill phishing/spam campaign,
putting it on the level of an APT attack. From the start, the attackers posed as a valid user and kept the email short without any
grammatical errors. They then proceeded to use an Excel macro with advanced techniques, including possible anti-analysis
techniques with the mouse check and the sheet visibility switch.

Furthermore, while state programming is rarely used in malware, in this attack, both the Excel macro and the malware make
use of it. After checking in, the malware sleeps for 6-8 hours. One likely reason might be that the threat actors expected the
diplomat to open the spearphishing email in the morning and then leave at the end of the day. At that point, the attackers
would be free to operate.

While using DNS tunneling for C2 communications is nothing new, it is rarely seen in practice. Their backdoor also supports a
long list of very specific commands. From the looks of things, the threat actors did their homework since their backdoor
commands clearly demonstrate they already had prior knowledge of their target’s internal network infrastructure. This indicates
that the threat actors most likely gained limited access somewhere else before this spearphishing attempt was made.

Looking at their C2 servers, two out of the three seem to be tightly controlled. They were only brought up at specific times. The
third C2 server has been lumped in with various other domains to further complicate proper attribution. Given all the
breadcrumbs, this campaign looks to be another one launched by APT34. They have demonstrated they possess the
resources necessary to infiltrate a government network and are no strangers to using more advanced techniques.

Fortinet Protections

Fortinet customers are protected from this malware by FortiGuard’s Web Filtering, AntiVirus, FortiMail, FortiClient, FortiEDR,
and CDR (content disarm and reconstruction) services:

The FortiGuard Antivirus service detects and blocks the malicious Excel file as MSExcel/Agent.7CCA!tr and the malware
binary as MSIL/Agent.A52D!tr.

The malicious macros inside the Excel sample can be disarmed by the FortiGuard CDR (content disarm and reconstruction)
service.

FortiEDR detects the Excel file and the malware binary as malicious based on their behavior.

Fortinet customers are protected from this malicious Excel file and malware binary by FortiGuard AntiVirus, which is included
in FortiMail. It detects all malicious macro file types, including Excel 4.0 Macro samples.

All relevant URLs have been rated as "Malicious Websites" by the FortiGuard Web Filtering service.

IOCs

https://www.fortinet.com/support-and-training/support-services/fortiguard-security-subscriptions/web-filtering.html?utm_source=blog&utm_campaign=web-filtering
https://www.fortinet.com/products/email-security/fortimail.html?utm_source=blog&utm_campaign=fortimail-main-page
https://www.fortinet.com/products/endpoint-security/forticlient.html?utm_source=blog&utm_campaign=endpoint-web-page
https://www.fortinet.com/products/endpoint-security/fortiedr.html?utm_source=blog&utm_campaign=fortiedr
https://www.fortinet.com/products/endpoint-security/fortiedr.html?utm_source=blog&utm_campaign=fortiedr
https://www.fortinet.com/products/email-security/fortimail.html?utm_source=blog&utm_campaign=fortimail-main-page

8/9

Files

Indicator SHA256

Confirmation Receive Document.xls 82A0F2B93C5BCCF3EF920BAE425DD768371248CDA9948D5A8E70F3C34E9F7CCA

Microsoft.Exchange.WebServices.dll 7EBBEB2A25DA1B09A98E1A373C78486ED2C5A7F2A16EEC63E576C99EFE0C7A49

update.exe.config C744DA99FE19917E09CD1ECC48B563F9525DAD3916E1902F61B79BDA35298D87

update.exe E0872958B8D3824089E5E1CFAB03D9D98D22B9BCB294463818D721380075A52D

Other

Indicator Value

Mutex 726a06ad-475b-4bc6-8466-f08960595f1e

C2 domain joexpediagroup[.]com

C2 domain asiaworldremit[.]com

C2 domain uber-asia[.]com

Mitre TTPs

Initial Access

T1566.001 Spearphishing

Execution

T1059.001 PowerShell

T1059.003 Windows Command Shell

T1053.005 Scheduled Task

T1204.002 Malicious File

T1047 Windows Management Instrumentation

Persistence

T1053.005 Scheduled Task

Defense Evasion

9/9

T1480 Execution Guardrails

Discovery

T1087.001 Local Account

T1083 File and Directory Discovery

T1049 System Network Connections Discovery

Command and Control

T1071.004 DNS

T1132.002 Non-Standard Encoding

T1568.002 Domain Generation Algorithms

Exfiltration

T1041 Exfiltration Over C2 Channel

Learn more about Fortinet’s FortiGuard Labs threat research and intelligence organization and the FortiGuard Security
Subscriptions and Services portfolio.

https://www.fortinet.com/fortiguard/labs?utm_source=blog&utm_campaign=fortiguard-labs
https://www.fortinet.com/fortiguard/labs?tab=security-bundles&utm_source=blog&utm_campaign=security-bundles

