
1/29

The BlackBerry Research & Intelligence Team

Dirty Deeds Done Dirt Cheap: Russian RAT Offers Backdoor Bargains
blogs.blackberry.com/en/2022/05/dirty-deeds-done-dirt-cheap-russian-rat-offers-backdoor-bargains

1. BlackBerry ThreatVector Blog
2. Dirty Deeds Done Dirt Cheap: Russian RAT Offers Backdoor Bargains

In the murky underworld of Russian crimeware, DCRat seems to be a bit of a dark horse. Unlike the well-funded, massive Russian threat
groups crafting custom malware to attack universities, hospitals, small businesses and more, this remote access Trojan (RAT) appears to be
the work of a lone actor, offering a surprisingly effective homemade tool for opening backdoors on a budget. In fact, this threat actor’s
commercial RAT sells at a fraction of the standard price such tools command on Russian underground forums.

DCRat (also known as DarkCrystal RAT) is a commercial Russian backdoor that was first released in 2018, before being redesigned and
relaunched a year later. Notably, this threat appears to have been developed and maintained by a single person going by the pseudonyms of
“boldenis44,” “crystalcoder,” and Кодер (“Coder”).

Sold predominantly on Russian underground forums, DCRat is one of the cheapest commercial RATs we’ve ever come across. The price for
this backdoor starts at 500 RUB (less than 5 GBP/US$6) for a two-month subscription, and occasionally dips even lower during special
promotions. No wonder it’s so popular with professional threat actors as well as script kiddies.

This price range is a curious feature, as it makes it seem like the author is not particularly profit-driven. It could be that they’re simply casting
a wide net, trying to get a little money from a lot of maliciously minded people. It could also be that they have an alternative source of funding,
or perhaps this is a passion project rather than their main source of income.

Peering Deeper into the Dark Crystal

DCRat’s modular architecture and bespoke plugin framework make it a very flexible option, helpful for a range of nefarious uses. This
includes surveillance, reconnaissance, information theft, DDoS attacks, as well as dynamic code execution in a variety of different languages.

The DCRat product itself consists of three components:

A stealer/client executable
A single PHP page, serving as the command-and-control (C2) endpoint/interface

 An administrator tool

The administrator tool is a standalone executable written in the JPHP programming language, an obscure implementation of PHP that runs
on a Java virtual machine. As with the examples discussed in our previous whitepaper discussing exotic programming languages used by
malware writers, JPHP offers some potential benefits for making mischief.

https://blogs.blackberry.com/en/2022/05/dirty-deeds-done-dirt-cheap-russian-rat-offers-backdoor-bargains
https://blogs.blackberry.com/en.html
https://en.wikipedia.org/wiki/PHP
https://blogs.blackberry.com/en/2021/07/old-dogs-new-tricks-attackers-adopt-exotic-programming-languages

2/29

As a programming language, JPHP’s target audience is primarily entry-level developers who make cross-platform desktop games. The ease
of use, as well as the portability of its code, suits this purpose well. The malware author may have chosen this format because it’s not
particularly well-known, or they might have lacked programming skills in other, more mainstream languages.

According to the JPHP documentation, this implementation “compiles PHP sources to Java Virtual Machine (JVM) bytecode, which can then
execute on the JVM.” The JPHP project also provides a dedicated, Russian-language integrated development environment (IDE) called
DevelNext. This IDE was used to develop the DCRat administrator tool, as well as some of the early versions of the DCRat client.

Location data available in public GitHub profiles indicates the core contribution team behind JPHP are overwhelmingly based in the
Commonwealth of Independent States (CIS), an intergovernmental organization made up of twelve post-Soviet countries. The DCRat
author’s decision to use JPHP may have stemmed from either an assumed level of trustworthiness, or simply from a belief that obtaining
support for issues or enhancements related to the JPHP framework would have been easier to establish due to their shared familiarity with
the Russian language.

Examining the DCRat Build

The DCRat client binary – meant for delivering to victim’s machines – is written in .NET. Earlier versions were written in JPHP, like the
administrator tool. This was likely done to streamline and optimize the client component. JPHP is rather slow, as it runs on the JVM. And the
distributed malware is much smaller, since it doesn’t have to include all the JPHP libraries.

DCRat is built around a modular architecture that incorporates a plugin framework. Affiliates can generate their own client plugins, which can
be downloaded and used by subscribers. (We’ve included a list of the current plugins in the “Plugins” section, later on in this blog.)

The RAT currently seems to be under active development. The administrator tool and the backdoor/client are regularly updated with bug fixes
and new features; the same applies to officially released plugins.

During recent months, we’ve often seen DCRat clients being deployed with the use of Cobalt Strike beacons through the Prometheus TDS
(traffic direction system). Prometheus is a subscription-based malware service that has been used in many high-profile attacks, including
campaigns against U.S. government institutions in 2021.

A detailed analysis of the DCRat client was published by Mandiant in May 2020. Just days after this report was released, the malware author
shifted distribution of the RAT to a new domain. It’s clear that cybercriminals are becoming more aware of publicity from media and the
security community, and they’re getting used to making swift changes in response to this unwanted exposure.

It’s worth noting that there is a second open-source RAT that also goes by the name DcRAT, which can be found in GitHub repository of user
“qwqdanchun.” This is most likely a completely unrelated project. While it doesn’t bear many code similarities to DCRat, it may have been an
inspiration for – or inspired by – the threat.

DCRat Offering

The DCRat bundle, its plugins, plugin development framework, and additional tools are currently hosted on crystalfiles[.]ru. These
components have been moved there from their previous location at dcrat[.]ru. The crystalfiles website features a simple interface, as seen in
Figure 1 below, and it serves only as the download point for the RAT. It has no additional information or resources for potential or existing
clients.

Figure 1 – Download links for DCRat components at crystalfiles[.]ru

https://github.com/jphp-group/docs/blob/master/index.rst
https://blogs.blackberry.com/en/2021/11/all-your-beacon-are-belong-to-us-new-blackberry-book-cracks-code-of-cobalt-strike-threat-actors
https://blogs.blackberry.com/en/2022/01/kraken-the-code-on-prometheus
https://www.mandiant.com/resources/analyzing-dark-crystal-rat-backdoor

3/29

All DCRat marketing and sales operations are done through the popular Russian hacking forum lolz[.]guru, shown in Figure 2, which also
handles some of the DCRat pre-sales queries. DCRat support topics are made available here to the wider public, while the main DCRat
offering thread is restricted to registered users only.

Figure 2 – lolz[.]guru forum – discussions about DCRat

It’s possible that the RAT is also sold on other restricted-access forums or on the dark web. The DCRat archives have been spotted on other
URLs, and they’ve been shared through Discord instant messaging. The most common file name for distribution, across different versions of
the RAT, seems to be “1ac770ea1c2b508fb3f74de6e65bc9c4.zip.”

All news and updates for DCRat are announced through a dedicated Telegram channel, as seen in Figures 3 and 4 below. At the time of
writing, the channel had almost 3k subscribers.

4/29

Figure 3 – DCRat Telegram page providing news and updates

Besides the DarkCrystalRAT Telegram account, there are also two Telegram bots: one for processing sales requests (“DCRatSeller_bot”),
and one for technical support (“CrystalSupport_bot”).

The latest prices for DCRat licenses (excluding any temporary discounts) are:

500 RUB / US$5 for two-month license
2200 RUB / US$21 for a year
4200 RUB / US$40 for a lifetime license

5/29

Figure 4 – DCRat Telegram announcing discounts and price specials

The Author

While the DCRat developer posts as Кодер ("Coder") on the lolz[.]guru forum (as shown in Figure 5), their Telegram handle is “@boldenis”
and their GitHub username is “boldenis44” (based on a resource link buried in the DCRat source code shown in Figure 6). They must have
used the latter name on lolz[.]guru at some point, as some users still refer to them as such. They list their email address as
crystalcoder[at]exploit[.]im. The date of birth and address listed on their profile shown in Figure 5 below are most likely fake.

The lolz[.]guru forum profile indicates the developer is Russian and works alone.

6/29

Figure 5 – DCRat author's bio on underground forums

Figure 6 – GitHub page under the same account name as DCRat author

“Boldenis44” also has accounts on game-hacking forum blast[.]hk, the Russian Minecraft server gamai[.]ru, as well as on the Russian dark
marketplace DarkNet[.]ug, shown in Figure 7.

7/29

Figure 7 – Search results for "boldenis44," author of DCRat

There is also a “Darkcrystal Rat” profile on VKontakte, a Russian social network at vk[.]com (dcrat_1994), but it’s unclear if it belongs to the
same person as boldenis44 / Coder. This profile page is shown below in Figure 8.

8/29

Figure 8 – VKontakte profile page for Darkcrystal Rat

The description in Russian translates roughly to “I steal data, I work on ru, uk and what?” It’s not entirely clear what this means, though it’s
likely they’re bragging about stealing data from Russia, the UK, and possibly other countries.

The photo in this profile comes from a 2014 German hacker movie called “Who Am I: No System is Safe.” This photo has recently been
changed – the cached version of this website shows an image (see Figure 9) that is a relatively popular depiction of a hacker, and the
Russian sentence that somewhat cryptically translates to: “I drive SS into Dark.”

https://www.imdb.com/title/tt3042408/

9/29

Figure 9 – Google Cache view of an earlier version of the Darkcrystal Rat profile

Another malware writer, claiming to be the author of a notorious RAT called njRAT, recently changed their profile photo to the same frame
from "Who Am I,” as shown in Figure 10.

https://blogs.blackberry.com/en/2021/08/threat-thursday-dont-let-njrat-take-your-cheddar

10/29

Figure 10 – Facebook page of njRAT author, featuring the same avatar as Darkcrystal Rat profile

This is most likely a coincidence, as the njRAT profile is written by someone who speaks Arabic, not Russian.

There was another profile on the VKontakte site that has been spotted mentioning the crystalfiles[.]ru URL, as shown in Figure 11, which was
for Rodion Balkanov (Родион Балканов): https[:]//vk[.]com/bagyuvix. However, this account has since been removed and is no longer
available.

11/29

Figure 11 – Google view of VKontakte page mentioning DCRat distribution URL

The Timeline

Although the DCRat project appears to have started several months in advance, a larger scale marketing campaign took place in September
2019, when the Telegram channel was created and the dcrat[.]ru domain registered. Shortly after this, the RAT got significantly redesigned to
support plugins in a bespoke format.

The next major release came in May 2020 (version 3.0), followed by version 4.0 in March 2021. In between major releases, the RAT got
smaller updates and bug fixes on a very regular basis, hinting that the author was highly engaged with his creation during this timeframe, as
shown below.

July 31, 2018 – Кодер ("Coder") profile created on lolz[.]guru forum
Sept. 1, 2019 – Telegram channel called DarkCrystalRat created
Sept. 2, 2019 – dcrat[.]ru registered (see Figure 12)

12/29

Figure 12 – dcrat[.]ru domain whois information

Sept. 4, 2019 – Introduction of a bespoke plugin format: DCLIB
Nov. 19, 2019 – Redesign of the administrator tool
May 12, 2020 – Mandiant publishes analysis of DCRat client
May 27, 2020 – crystalfiles[.]ru registered; distribution shifts to the new domain

13/29

Figure 13 – crystalfiles domain whois information

May 30, 2020 – Version 3.0 released
Oct. 2020 – Release of DCRat Studio, a bespoke platform that allows third-party developers to design plugins
March 18, 2021 – Version 4.0 released
Dec. 31, 2021 – Limited-time 50% discount on all types of licenses, as a New Year’s Eve deal
March 6, 2022 – Due to devaluation of ruble, pricing changed from rubles to dollars at an exchange rate of US$1 = 100 RUB
March 28, 2022 – Limited-time price discount for two-month, one-year, and lifetime licenses to $5, $19, and $39, respectively.

New plugins and minor updates are announced almost every day.

The RAT Administrator Tool

14/29

The malware author chose to develop the RAT’s administration tool in JPHP using a niche Russian IDE called DevelNext. DevelNext
compiles the PHP program into a Java bytecode, which can then be executed on the JVM.

According to its GitHub page, the IDE is still in the beta stage, and it’s only available in the Russian language at this point. In the past, we’ve
seen very few malware samples written in JPHP, because the executables it produces are both exceptionally large and slow to run.

One example of malware using this IDE is a rudimentary backdoor called IceRAT, discovered in early 2020. This malware targeted Russian-
speaking victims by installing crypto-mining software on their endpoints. An older example is one that was written for OSX as part of a
campaign targeting Jaxx cryptocurrency wallets, which was discovered in 2018.

Contents of the Archive

The administrator tool comes as a ZIP archive with the following structure:

File name Description

DCRat.exe Admin launcher (created using Launch4j wrapper)

dcrat_updservice.exe Admin updater tool

updatelauncher.bat Script that executes dcrat_updservice.exe

Notify.wav Audio file with notification sound (2.5 sec)

data/ Location of helper utilities

design/ Contains DeleteAll_legacy.json file

lib/ Location of all the Java modules of the builder

plugins/ Used to store downloaded plugins; by default, contains only a test plugin

profiles/ Empty directory used to store user’s saved profiles

The lib directory is home to the main builder module, together with several legit JPHP modules that the builder depends on.

SHA256 hash Description

9967ea3c3d1aee8db5a723f714fba38d2fc26d8553435ab0e1d4e123cd211830 JSON module

6014d44d8f7da00f03db051b3dcea9a03ec3837977118c69a4512ef558a6df2a Main builder module

cf4068ebb5ecd47adec92afba943aea4eb2fee40871330d064b69770cccb9e23 GUI module

5b37e8ff2850a4cbb02f9f02391e9f07285b4e0667f7e4b2d4515b78e699735a JPHP core module

4aef566bbf3f0b56769a0c45275ebbf7894e9ddb54430c9db2874124b7cea288 zend module

d637e3326f87a173abd5f51ac98906a3237b9e511d07d31d6aafcf43f33dac17 jfoenix module

c25d7a7b8f0715729bccb817e345f0fdd668dd4799c8dab1a4db3d6a37e7e3e4 javafx module

2d43eb5ea9e133d2ee2405cc14f5ee08951b8361302fdd93494a3a997b508d32 Google gson module

15f36830124fc7389e312cf228b952024a8ce8601bf5c4df806bc395d47db669 PHP module

https://www.gdatasoftware.com/blog/icerat-evades-antivirus-by-using-jphp
https://www.darkreading.com/risk/malware-campaign-targeting-jaxx-wallet-holders-shut-down

15/29

9c287472408857301594f8f7bda108457f6fdae6e25c87ec88dbf3012e5a98b6 JPHP PHP runtime module

434e57fffc7df0b725c1d95cabafdcdb83858ccb3e5e728a74d3cf33a0ca9c79 XML module

0f26584763ef1c5ec07d1f310f0b6504bc17732f04e37f4eb101338803be0dc4 JPHP SDK module

4bec0794a0d69debe2f955bf495ea7c0858ad84cb0d2d549cacb82e70c060cba javafx module

03ead999502aefbf1380bd2e9c4a407acb7a92a7b2fe61f6995aba3fca85efd4 objectweb asm module

Builder’s entry point is specified in <main_module>.jar/.system/application.conf and points to dct/forms/MainForm.phb.

 # MAIN CONFIGURATION
 app.name = DCRat2.0

 app.uuid = fabb4b64-bb3a-4418-a495-a0e669188d81
 app.version = 1

 # APP
 app.namespace = dct

 app.mainForm = MainForm
 app.showMainForm = 1

 app.fx.splash.autoHide = 0

The data directory contains a bespoke compiler for producing the client executable, a bespoke EXE obfuscation tool, a commercial .NET
protection tool called .NET Reactor, and compression utilities WinRAR and UPX.

SHA256 File name Description

d0680ac62e94f953df031533acd0acb718ad8494f938d84198c655507709e5df 7zxa.dll Legit 7zip DLL

914cca033fc8ca52830a21b5dca55263cee1e74ab5571702906ee9c25aedafd7 DCRAC.exe DCRat EXE
obfuscator

812cd4b5e80bc4e83a2e01a6f3fb24346ecf57dcaf8ff6fc3e55a2a6b953da23 DCRCC.exe,
DarkCrystalRATCSharpCompiler.exe

DCRat compiler

b11ad1adfa96eacf5f18cf87785884947a6d35a1baebf4f20f16402b04d5109f Default.SFX Part of WinRAR

a0b6bb521e52a99abf5ac1017302da014d37296619078d42d9edf5d86d137f63 NCC2.dll Part of .NET
Reactor

38274608d5a4b53ec22f8099f798ba46ce0ed41db65a33dfb3853f0dbf849f6f NCC3.dll Part of .NET
Reactor

c41cd461470ff3c936e225cea37e5190cb06e3cd70a3d76ca8e5d3aceead5493 NCCheck.dll Part of .NET
Reactor

770d7b5e40ed9b0aff5d0e3fc2ccf9ba10d4925d3441f38b71a35bd26e6e8d98 Rar.exe Part of WinRAR,
signed

35a21f1aebf8ea0ab9be1814131fec1fa079d91b701e505054b69eccbdfd0732 RarExt.dll Part of WinRAR,
signed

db28575f61b1adc88a28ae51ce3b00226e4974ca60894896e414ea408c6ff9fe RarExt64.dll Part of WinRAR,
signed

16/29

ca08ed8423afda4b41757a1f3adf4f855732dc0628fe2ea5d8a96b13f56b9f84 WinCon.SFX Part of WinRAR,
signed

2293fe261d5c6f5f2a33004b11f068037677b7aa5a6f792031e31555f31f0d69 Zip.SFX Part of WinRAR

83445595d38a8e33513b33dfc201983af4746e5327c9bed470a6282d91d539b6 dnlib.dll DNLib - .NET
assembly
reader/writer
library

e817802f166662a7df0b144571354d74b10e34d120f91ae9d84ca3ba925241c6 dotNET_Reactor.Console.exe Part of .NET
Reactor

78684aea83b1a5c402a87ba0ce2e7ad5b0338462cc804e97369203ce53d29834 dotNET_Reactor.exe Part of .NET
Reactor

5981e508e89c65c445fca892e91b8ec39b1d8563804d0999d963d640aa592444 enc.vbe Script used to
encode VBS
scripts

d634cde09d1aa1320a1d4c589d35d306f8350129faf225b2bca394128c2c4442 upx.exe UPX 3.96
Windows 32-bit

1317d70682bd11e5d320af850d6ecbb5a70c200d626ec7bf69c47566894db515 wRar.exe Part of WinRAR,
signed

PHB file format

Instead of Java class files, the JPHP JAR archives are composed mainly of PHB files.

PHB is a custom file format used exclusively by JPHP. PHB files are simply archives that contain uncompressed, unencrypted Java class files
and a PHB header. Each Java class file is preceded by a class file header, containing information such as module name, method names,
PHP file path, and the class file length.

Class files can be extracted with the following Python script, then decompiled using tools such as JAD or jd-gui.

import os
 import sys
 import struct

in_file = sys.argv[1]
 out_dir = os.path.splitext(in_file)[0] + "_extracted"

 in_size = os.path.getsize(in_file)

os.mkdir(out_dir)

with open(in_file, 'rb') as f:
 buf = f.read()

 magic = b'\xCA\xFE\xBA\xBE'
 offsets = [i for i in range(len(buf)) if buf.startswith(magic, i)]

 count = 0
 for of in offsets:

 file_name = os.path.splitext(in_file)[0] + "_" + str(count) + ".class"
 f.seek(of - 4)

 class_len = struct.unpack('>i', f.read(4))[0]
 file_data = f.read(class_len)

 with open(os.path.join(out_dir, file_name), "wb") as f2:
 f2.write(file_data)

 count += 1

PHB file structure (example):

17/29

1C 9A 4A 92 PHB signature
 01 33 53 D3

 00 00 00 00
 00 00 00 33

 00 33 len of the following string
 44 3A 5C 49 string "D:\IdeaProjects\DCRat2.0\src\dct\forms\MainForm.php"

 [...]
 00 00 00 2D

 00 2D len
 24 70 68 70 "$php_module_mba8a6a7b4b0144048b64e6456cd9fb81"

 [...]
 00 01

 FF FF FF FF
 FF FF FF FF
 00 07 len

 55 6E 6B 6E "Unknown"
 [...]

 00 00 00 00
 00 00 03 4F number of class files

 00 00 00 36 start of class file header #1
 00 36 len

 24 70 68 70 "$php_module_mba8a6a7b4b0144048b64e6456cd9fb81_closure0"
 [...]

 00 00 00 00
 00 00 00 00
 FF FF FF FF
 00 00

 FF FF FF FF
 FF FF FF FF
 00 01

 00 00 00 00
 00 00 00 08
 00 08 len

 5F 5F 69 6E "__invoke"
 76 6F 6B 65

 00 00 00 08
 00 08 len

 5F 5F 69 6E "__invoke"
 76 6F 6B 65

 01 00 00 00
 39 00 00 00
 18

 00 33 len
 44 3A 5C 49 "D:\IdeaProjects\DCRat2.0\src\dct\forms\MainForm.php"

 [...]
 00 00 0A 98 len of class file #1

 CA FE BA BE start of class file #1
 [...]

 00 00 00 36 start of class file header #2
 00 36 len

 24 70 68 70 "$php_module_mba8a6a7b4b0144048b64e6456cd9fb81_closure1"
 [...]

 00 00 00 00
 00 00 00 00
 FF FF FF FF
 00 00 FF FF
 FF FF FF FF
 FF FF 00 01
 00 00 00 00
 00 00 00 08
 00 08 len

 5F 5F 69 6E "__invoke"
 76 6F 6B 65

 00 00 00 08
 00 08 len

 5F 5F 69 6E "__invoke"
 76 6F 6B 65

 01 00 00 00
 40 00 00 00
 18

 00 33 len
 44 3A 5C 49 "D:\IdeaProjects\DCRat2.0\src\dct\forms\MainForm.php"

 [...]
 00 00 0A 9B len of class file #2

 CA FE BA BE start of class file #2
 [...]

18/29

Licensing

The DCRat administrator tool, shown below in Figure 14, prevents unauthorized use through a series of online license checks. Once these
checks succeed, the administrator interface becomes available.

Figure 14 - Administrator tool license checks preventing unauthorized use

The checks consist of HTTPS queries to the hardcoded domain dcrat[.]ru.

Peer Validation

The first validation check transmits a random 64-character value, hashed and Base64-encoded prior to transmission. The response from the
C2 server must contain the same value, and it must be similarly hashed and encoded to be considered valid. This exchange provides
rudimentary peer validation, ensuring the administrator tool is communicating with a genuine DCRat license server.

Subscriber Validation

A second HTTPS request authenticates the computer on which the administrator tool is running, as shown in Figure 15. A handful of host
properties are collected to generate a unique fingerprint. This is transmitted to dcrat[.]ru and will (presumably) match against a valid
subscriber entry.

Figure 15 – License validation HTTPS queries to dcrat[.]ru domain

Kill Switch

The administrator tool also performs an unusual final HTTPS check to a public resource hosted on GitHub, under the personal space of
“boldenis44.” The query and response functions have a global “kill switch,” as shown in Figure 16. At the DCRat author’s discretion, flipping
this switch would render all instances of the DCRat administrator tool unusable, irrespective of subscriber license validity (so much for that
“lifetime license”!).

19/29

Figure 16 – GitHub-hosted master kill switch; still active

This kill switch feature was found in separate administrator tool builds dated mid-2021 and early 2022.

Administrator Functions

The administrator tool allows a subscriber to take the following actions:

 Login to an active C2 server
 Issue Tasks to registered client installations
 Generate builds of the Loader and/or Client
 View and query installation statistics
 Submit bug reports to the DCRat author

Login needs to be performed to an active C2 server hosting the backend PHP, as shown in Figure 17.

20/29

Figure 17 – License checks complete; now authentication to hosted C2

Login parameters follow an obscure syntax:

http://<server>/@<reversed_base64_PHP_pagename_minus_php_suffix>
password

Fake News?

For reasons that are not entirely clear, the DCRat author implemented a function that displays a randomly generated number of “Servers
working” and “Users online” that are meant to appear as statistics in the background of the administrator tool. It could be that they are trying
to make their tool appear more popular, or that they just didn’t know how to implement an accurate counter and have employed a pseudo-
counter in the meantime as a placeholder.

Admin Functions

Following authentication, the administrator tool begins polling the C2 for details of connected and infected hosts.

Functions are grouped using tabs, as shown in Figure 18:

Figure 18 – Administrator tool major functions tab

Users

This tab lists the active/registered installations of DCRat client running on infected hosts. The list is updated using a periodic poll to the C2.

Builder

This tab is where the threat actor can configure (and generate) builds of the DCRat client executable. In the analyzed version of the
administrator tool, the “core” of the client is downloaded from the dcrat[.]ru domain as a Base64 string, becoming input for “DCRCC.exe.”

21/29

Figure 19 – Administrator tool configuration page for client runtime settings

These are the available parameters for configuration:

Network:
Specifies a list of primary and secondary C2 hosts (transport protocols are limited to HTTP/S).

 Protect: (shown in Figure 19)
 Optional obfuscation of generated client binaries using .NET Reactor

 Mutex name to use during execution – by default it’s a random 20-character alphanumeric string preceded by DCR_MUTEX prefix
 DCR_MUTEX-<20_ALPHANUM_RAND>

 Disable Windows Task Manager via Registry entry (see IoC)
 Specify (spoof) PE creation time stamp

 Launch delay in seconds
 Plugins:

 Configure and enable DCRat plugins
 Installation:

 Path for unpacking modules when DCRat client runs
 Persistence mechanism to use

 First start command script to use
 Tag value to appear on hosts running DCRat build (i.e., campaign ID)

 Auto functions – functions to start automatically after launch:
 Stealer

 Keylogger
 Uninstall (auto-delete)

 Force Admin – try to force admin rights on launch
 Build Cache Storage

 Build:
 Optional UPX compression of the build

 File extension to use
 PE file icon

22/29

Loader

Configure and build a DCRat loader binary. Support is provided for a range of stackable “Actions” combining to determine runtime behavior:

Download file
Execute file

 HTTP request
 CMD Script

 Wait
 Message Box

Tools

Provides file upload and Netscape to JSON cookie converter.

Settings

Configure Builder settings:

Change GUI background image
Automatically poll C2 for connected (infected) hosts/installs

 Show notifications

Statistics

Canned reports to query DCRat client installations (country, Windows version, etc.)

USER-ID

We cannot confirm at present what this function is for. It’s possible that this is a direct remote control/terminal client to an infected host.

Bug Report

Submit bug report to DCRat maintainer(s).

Tasks

Configure Tasks to be executed on one or more DCRat clients. Tasks can be Saved (exported) or Loaded (imported) from text file. Tasks are
stored as a reversed Base64 string.

Global Functions

Configure Tasks to be performed on all registered DCRat clients.

DCRat Client

In this section we review the features of the DCRat client (stealer) and the DCRat Loader. Runtime behavior for both is configured using the
DCRat administrator tool.

Client Loader

The administrator tool provides a function to generate a DCRat “Loader” executable. In the version we analyzed, generation of a loader in
DLL format was not supported. It’s conceivable the author could add this support in newer builds.

The behavior of the Loader when executed is configured via one or more canned “Actions,” as shown in Figure 20. A typical build might be a
combination of “Download File,” “Wait” and “Execute File,” which would silently pull down a file and then run it after waiting long enough to
avoid arousing suspicion.

23/29

Figure 20 – Runtime tasks for DCRat loader, configured using the Aadministrator tool

The source code for the Loader is embedded within the administrator tool as a series of Base64 strings that decode to reveal C# source
code. Code for the executable is selected based on the Actions chosen by the user. The bundled “DCRCC.exe” generates the executable.

If selected, the generated executable will be protected using DotNET Reactor:

“-control_flow_obfuscation 1 -flow_level 9 -resourceencryption 1 -stringencryption 1 -suppressildasm 0 -all_params 1 -obfuscate_public_types
1 -exception_handling 0”

Persistence

Persistence for DCRat is limited to common Windows "autorun” locations:

1. Registry, using HKLM\Software\Microsoft\Windows\CurrentVersion\Run
2. Registry, using HKCU\Software\Microsoft\Windows\CurrentVersion\Run

 3. Registry, using HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon (REG_SZ: “Shell”)
4. Scheduled Task /ONLOGON
5. Scheduled Task /sc minute RandomMinMax(5,15)

The client executable copies itself to the System drive root (e.g., C:\) using the name of a randomly chosen running process, excluding
“svchost.exe.”

Config

DCRat’s config is embedded in the client binary as a Base64-encoded string resource. It has a JSON format and contains C2 URLs, a tag, a
mutex name and a few execution options, as well as plugin-specific configuration options for included plugins.

Name Type Description

H1 string Primary C2 URL

H2 string Secondary C2 URL

TAG string A tag specified at build time (e.g., victim ID, campaign ID, etc.)

MUTEX string Mutex name; by default it's a random alpha-numeric value preceded by "DCR_MUTEX-" prefix, but
it can be set to any string

DBG bool Debugging on/off

24/29

BCS int Build cache storage size

AUR int Exact use unknown; controls file rename/persistence behaviour

AS bool Auto-stealer on/off

AK bool Auto-keylogger on/off

bool Auto-uninstall
on/off

PLUGINCONFIGS object Plugin-specific configuration options

Below is an example config found in a sample distributed through the Prometheus TDS:

{
 "H1": "http[:]//co44089.tmweb[.]ru
/9rsk8lug9peq4f23cjhyo3fz2q7j81vhnvil6c6tjdc7adzbia1ki04d9p65b5wfe4ronb0rtm/4vsyc5bajheyp1gt5i63igklh15828uwuwsek0x0p9frsqy1l2boc3
 "H2": "http[:]//co44089.tmweb[.]ru
/9rsk8lug9peq4f23cjhyo3fz2q7j81vhnvil6c6tjdc7adzbia1ki04d9p65b5wfe4ronb0rtm/4vsyc5bajheyp1gt5i63igklh15828uwuwsek0x0p9frsqy1l2boc3
 "TAG": "GFN",

 "MUTEX": "DCR_MUTEX-bQ2or3bMKAwvUmZaLKHY",
 "DBG": false,

 "BCS": 0,
 "AUR": 1,
 "AS": true,
 "AK": true,
 "AD": false,
 "PLUGINCONFIGS": {

 "MessageOnStartConfig": {
 "caption": "GFN hacker",
 "text": "Wait 10 minutes",
 "icon": "Information",

 "buttons": "OK",
 "uniq": "chpf05oqbupjilp1ccxqb65xf"

 },
 "XMRigMinerCFG": {

 "SavePuth": "C:/WindowsDefender/RunShell.exe",
 "Gate": "xmr.pool.minergate.com:45700",

 "UserName": "Fuzzii2739@gmail.com",
 "Password": "x",

 "DopArguments": "--donate-level=1 --pause-on-battery",
 "CPUPriority": "0",

 "cpumaxthreadshintn": "25",
 "mode": "light"

 }
 }

 }

Host Fingerprint

As part of initial registration, the DCRat client reports a range of host attributes to its C2. This information is determined using a combination
of WMI, .NET-provided instrumentation classes, and Windows registry queries:

Host computer name
Host username
Windows product/version
Tag value (embedded; campaign id)

 Is Administrator
 Video card name(s)

CPU Product/Vendor
Local, network, removable drive labels

 Has microphone
 Installed webcam(s)

Active Window text

25/29

Country, City, Lat/Long (geoip)
Antivirus product(s) installed
Firewall product(s) installed
BIOS manufacturer
Motherboard manufacturer
CPU Vendor
Physical memory
Network interfaces (IP, WiFi/Ethernet)
.Net version installed

Figure 21 – DCRat stealer WMI query to identify webcam devices as part of host fingerprinting

All HTTPS transactions use a random User Agent, picked from an embedded array of 12:

"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36",

"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:94.0) Gecko/20100101 Firefox/94.0",

"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:95.0) Gecko/20100101 Firefox/95.0",

"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36",

"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.93 Safari/537.36",

"Mozilla/5.0 (Windows NT 10.0; rv:91.0) Gecko/20100101 Firefox/91.0",

"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.55
Safari/537.36 Edg/96.0.1054.34",

"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69
Safari/537.36 Edg/95.0.1020.53",

"Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36",

"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36
OPR/81.0.4196.60",

"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45
Safari/537.36 Edg/96.0.1054.29",

"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:91.0) Gecko/20100101 Firefox/91.0"

Stealer Functionality

The Stealer functions of DCRat are pre-configured using the administrator tool “Builder.” Stealer “Tasks” define the sequence of operations
carried out during theft of stored information:

DCRat can steal from the following sources (including those pictured in Figure 22):

Browser cookies
Browser stored passwords
Browser stored form content

 Browser history
 Stored credit cards (via Windows DPAPI & Chrome SQLite Database)

Telegram
 Steam account

 Discord tokens
 FileZilla credentials

 Screenshots
 Keylogger

 Clipboard contents
 Sysinfo

26/29

Figure 22 – Categories of information stolen by DCRat client

The Stealer component is also capable of running bespoke plugins, making it extensible to accommodate information malware authors find
on specific targets.

Denial of Service

The DCRat Stealer contains primitive, multi-threaded code to perform different forms of DOS attacks – including HTTP(S) POST, UDP and
TCP – to a specific host and endpoint combination.

Delay Tactics

Common to many malware families, DCRat employs the use of Windows command line tools to perform execution delays. Associated with
the execution of DCRat client are invocations of the Windows command line tool for time service configuration, w32tm. When configured with
suitable command line arguments, as shown in Figure 23, it can act as a delay mechanism. In the case of DCRat, arguments are passed that
act as 10 second delays. Coincident instances of w32tm in endpoint XDR could be a possible, albeit somewhat weak, signal of DCRat client
execution:

Figure 23 – Delay commands used when self-terminating

Plugins

Plugins can be designed by third-party developers with the use of a dedicated IDE called DCRat Studio. Official plugins are available to
download from crystalfiles[.]ru (as shown in Figure 24) and their functionality includes data exfiltration/credential stealing, system
manipulation, and cryptocurrency mining.

27/29

Figure 24 – Plugins available to subscribers for download

To harness the power of crowd-sourced development and to encourage an ecosystem of plugins that target different information stores,
DCRat subscribers have access to a list of supported third-party plugins. The precise inner workings of each plugin are unknown, but the
name of each does provide an indicator of function:

AutoKeylogger (deprecated)

28/29

AntiVM (merged with AntiAnalysis)
MiscInfoGrabber
WebBrowserPassView
RunOnce
DesktopGrabber
StartupPlus
AntiKiller
AntiSNG
BlockInput
MessageOnStart
ClipboardLogger
RegEditor
FileSearcher
FileGrabber
TitleKiller (deprecated)
ProcessKiller
CryptoStealer
TelegramNotifier
AntiAnalysis
Clipper
CountryBlackList
VPNGrabber
ForceAdmin
SystemRestorePointsCleaner
UserPingCounter
ActiveWindowNotifier
FakeSteamWindows
Discord notifications (third party)
IgnorTags (third party)
Kryptex Miner (third party)
XMRig (third party)

Conclusions

The biggest, flashiest threat groups might get their name in lights, but they aren’t necessarily the cybercriminals that keep security
practitioners up at night. The scary, cutting-edge threats that come out of those advanced and well-funded threat groups do occasionally
cause headaches for those of us who aren't guarding state secrets or ridiculous amounts of money. But miscreants with too much time on
their hands can often cause just as much hassle.

Generally speaking, you get what you pay for, even in malware. If you pay a pittance for something, you would be wise to expect it to be less
functional or poorly supported. But DCRat seems to break that rule in a way that’s deeply perplexing.

This RAT’s code is being improved and maintained daily. If the threat is being developed and sustained by just one person, it appears that it’s
a project they are working on full-time.

There are certainly programming choices in this threat that point to this being a novice malware author who hasn’t yet figured out an
appropriate pricing structure. Choosing to program the threat in JPHP and adding a bizarrely non-functional infection counter certainly point in
this direction. It could be that this threat is from an author trying to gain notoriety, doing the best with the knowledge they have to make
something popular as quickly as possible.

While the author’s apparent inexperience might make this malicious tool seem less appealing, some could view it as an opportunity. More
experienced threat actors might see this inexperience as a selling point, as the author seems to be putting in a lot of time and effort to please
their customers.

29/29

Indicators of Compromise (IOCs)
 DCRat Stealer; Delay Command; Process/.BAT invocation:

 “w32tm /stripchart /computer:localhost /period:5 /dataonly /samples:2”

DCRat Stealer; Self Preservation; Windows Registry changes:
 HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\System

 REG_DWORD: “DisableTaskMgr”:1

DCRat Stealer; Persistence; Windows Registry:
 HKCU\Software\Microsoft\Windows NT\CurrentVersion\Winlogon

 REG_SZ: “Shell”: “explorer.exe, %STEALER_EXE_PATH%”
 HKCU|HKLM\Software\Microsoft\Windows\CurrentVersion\Run: <STEALER_EXE_PATH>

DCRat Stealer; Persistence; Windows Scheduled Tasks:
 schtasks.exe /create /tn <STEALER_EXE_NO_EXTENSION> /sc ONLOGON /tr <STEALER_EXE_PATH> /rl HIGHEST /f

 schtasks.exe /create /tn <STEALER_EXE_NO_EXTENSION> /sc minute /mo <RND_MIN5_MAX15> /tr <STEALER_EXE_PATH> /f

DCRat Stealer; Host Fingerprint; WMI Queries:
 SELECT * FROM AntivirusProduct: displayName

 SELECT * FROM FirewallProduct: displayName
 SELECT * FROM Win32_BIOS: Manufacturer

 SELECT * FROM Win32_BaseBoard: Manufacturer, SerialNumber
 SELECT * FROM Win32_Processor: Name

 SELECT * FROM Win32_ComputerSystem: TotalPhysicalMemory
 SELECT * FROM Win32_VideoController: Name, AdapterRAM

 SELECT * FROM Win32_PnPEntity WHERE (PNPClass = ‘Image’ OR PNPClass = ‘Camera’)

DCRat Stealer; Host Fingerprint; Windows Registry:
 READ: HLKM\SOFTWARE\Microsoft\NET Framework Setup\NDP\v4\Full\Release

 READ: HKLM\SYSTEM\ControlSet001\Control\Class\ {4d36e968-e325-11ce-bfc1-08002be10318}\<SUBKEY_1..SUBKEY_N>\
{AdapterString,DriverDesc,qwMemorySize}

DCRat Stealer; Runtime; Mutex (Default format, if not overridden):
 DCR_MUTEX-<20_ALPHANUM_ULCASE_RAND>

DCRat Builder/Admin Tool; C2 Network Traffic:
 DNS + HTTPS: dcrat[.]ru, crystalfiles[.]ru

About The BlackBerry Research & Intelligence Team

The BlackBerry Research & Intelligence team examines emerging and persistent threats, providing intelligence analysis for the benefit of
defenders and the organizations they serve.

Back

