
1/9

Amit Gadhave May 8, 2022

Ursnif Malware Banks on News Events for Phishing Attacks
blog.qualys.com/vulnerabilities-threat-research/2022/05/08/ursnif-malware-banks-on-news-events-for-phishing-attacks

Ursnif (aka Gozi, Dreambot, ISFB) is one of the most widespread banking trojans. It has been observed evolving over the past few years.
Ursnif has shown incredible theft capabilities. In 2020 Ursnif rose to prominence becoming one of the top ten most prolific pieces of malware.
Among its core functionalities are stealing credentials, downloading other malware, working as a keylogger, among others.

Ursnif is mostly spread through spear phishing emails. Its attacks are often targeted at banking, financial services, and government agencies.
In phishing emails, it tries to impersonate government authorities and leverage current events in the news to gain user trust, which leads to
initial access to the victim’s system. Once the user opens the malicious attachment, the trojan uses User Agents that imitated Zoom and
Webex in a further effort to blend in and allow for exploitation. This behavior was observed during the peak of the pandemic.

Technical Analysis of Ursnif Malware

Infection Chain

In our analysis, phishing emails with a macro embedded XLS attachment or a zip attachment containing an HTA file initiated the infection
chain, as pictured below.

 Fig. 1 Infection

chain

Infection Scenario 1: XLS Document Analysis

https://blog.qualys.com/vulnerabilities-threat-research/2022/05/08/ursnif-malware-banks-on-news-events-for-phishing-attacks
https://www.darktrace.com/en/blog/the-resurgence-of-the-ursnif-banking-trojan/

2/9

A malicious XLS document (fig. 2) pretends to be a document related to DHL, the shipping company. It contains VBA macro code to download
a binary file from the URL embedded in the document. Once the User enables macro content, the macro gets executed which further
downloads the executable binary.

 Fig. 2 Malicious XLS document

After downloading the binary file, it retrieves the handle of explorer.exe process and calls UpdateProcThreadAttribute to perform parent
PID spoofing (fig. 3).

Fig. 3 VBA macro code performing PPID spoofing

3/9

In the parent process of the dropped executable, (1440.exe) is spoofed to explorer.exe . to evade detection (fig. 4).

 Fig. 4 PPID spoofing

Infection Scenario 2: HTA Document Analysis

In another infection scenario, we observed that the phishing email is sent with a zip attachment having an HTA file. After de-obfuscating
several layers, PowerShell script downloads a DLL file from an embedded URL and executes it using rundll32.exe. The extension used for the
remote DLL is .txt, a feasible way to evade the watchful eyes of most security products.

Below, figure 5 shows several obfuscation layers in the HTA sample:

 Fig. 5 HTA document analysis

Technical Analysis of Ursnif Loader

Ursnif loader contains several layers of in-memory unpacking routines which are observed in malware families like zloader, emotet, and others.
It rewrites an in-memory image with a new unpacked binary that uses the Thread APC injection technique to execute malicious code in
another thread of a current process. Once the control is passed to the final loader, it decrypts the BSS section.

The BSS section contains important configuration details in encrypted form, such as libraries and API names, string formats for sending data to
Command & Control (CnC), registry entries, bat commands format, PowerShell commands format, HTA application format, etc. These
configuration details are required for performing further activities. Below, figures 7 and 8 reveal that the malware uses campaign date as a key
to decrypt the BSS section.

4/9

 Fig. 6 BSS section

decryption routine

 Fig. 7 Decrypted BSS section content

Ursnif parses the configuration details through the JJ structure present in the PE (Portable Executable) header (fig. 9). The JJ structure
contains the config blob address, config size, CRC Hash of decoded config and XOR key used to decode the config blob.

 Fig. 8 JJ header of loader

Below, figure 10 reveals the configuration details present in the blob.

 Fig. 9 Configuration blob of loader

The malware process iterates through CnC and uses these configuration details to generate a http GET request to CnC as shown in figure 10.
It collects some information from the host machine like computer name, username, uptime, and CRC.

5/9

Fig. 10 HTTP GET request
Below are parameters which are encrypted in the GET request:

soft, version, user, server, id, crc, uptime, size, hash, dns, whoami

Parameters like soft and version are hardcoded in the binary. Here, the version might specify the malware binary version.

The user parameter is generated using username, computer name, and the result of _CPUID instruction. It may be used by the threat actor
to uniquely refer to execution instance.

The server and id values are taken from the extracted config.

The uptime parameter is a result of the QueryPerformanceCounter API.

Further, it encrypts a http request with (AES-CBC mode) using a 128-bit key present in the extracted config and performs BASE64 encoding. It
performs transformations like replacing + , / with _2B , _2F respectively and inserts / at random locations.

Figure 11 shows a typical encrypted http GET request.

 Fig. 11 Encrypted request

If CnC is active, it responds with encrypted data in BASE64 encoded form. In recent versions (2.60.xxx), we observed that sometimes data is
not base64 encoded. Below, figure 12 shows a typical response from the server:

 Fig. 12

Encrypted response
Ursnif malware first decodes the base64 string and then decrypts the last 0x80 bytes using an RSA key embedded in the config. Below, figure
13 reveals the RSA key present in the config.

 Fig. 13 RSA key present in the sample

6/9

 Fig. 14

Implementation for RSA decryption logic
The last 0x80 bytes holds required information to decrypt the full response like a MD5 hash of the decrypted data, the key to decrypt data, and
the size of the data to decrypt (fig. 15).

 Fig. 15 Last 0x80 bytes of response

Once the full response is decrypted (AES-CBC mode) using the key received, it will validate the decrypted data by checking the MD5 hash.
Ursnif can take a different action based on the response received. In our analysis, we observed that the decrypted data is the final payload of
Ursnif.

Technical Analysis of Ursnif Payload

In our analysis, we saw that the final payload is a keylogger. Once control is transferred to the payload, it will connect to the CnC address
extracted from its config and download an RSA encrypted browser account grabber module.

After decryption, it collects Chrome, Firefox, and Microsoft Edge browsers’ sensitive info like credentials, cookies, etc. via this grabber module,
compresses it, and AES (Advanced Encryption Standard) encrypts it using the key from config. Further, it sends this information to the
attacker’s CnC via http post request (figs. 16, 17). While sending information, it uses the following different values for the post parameter
type to differentiate the kind of information it is sending. Some values include:

Type=6 – System info
 Type=15 – Key logged data, clipboard etc.

 Type=20 – Saved browser credentials
 Type=22 – Cookies

7/9

Fig. 16 Sending credentials

Fig. 17 Sending cookies
Ursnif malware also collects and sends the following sensitive system information:

1. Output of System Info command
2. List of processes – task list /svc
3. List of installed drivers – driver query
4. Registry query information (details of installed applications) –

reg query HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall
5. Output of Net config workstation

Ursnif then starts capturing keylogging and clipboard events in the system and sends it to the attacker’s CnC at regular intervals. All the data it
sends is first compressed and then AES encrypted using the key present in the config.

Based on Ursnif’s code, the malware also has the capability to download and execute binary and upload files and screenshots from the
victim’s system.

Based on our analysis, one thing is clear: Ursnif is bad news.

IOCs:
Domains:

8/9

Cloudlines[.]top
linkspremium[.]ru
premiumlists[.]ru
Vilogerta[.]top
interblog[.]top
interforum[.]top
premiumlines[.]top
linespremium[.]ru
linespremium[.]pw
blogerslives[.]com
blogerslines[.]com
blogspoints[.]com
blogspoints[.]ru
filmspoints[.]com

Hashes:

XLS document:
D39AAA321588E8B1E8FE694732B533BE31C57B60A3C1B7CF73047974606C0C64
EF2CD6B4FD4FBEEDC663F59C5196F63338B9F66242230D15F70CDAEBA3BFDE54

Hta document:
DC21DB5D469BD554E41C8AEA35324E875475418AE23EB2378265636F0F781F85

loader:
42A1D2A7885898C85524A6B18550A9E01B86E5AD1C33AF845B6AE1450EF69BFE
D61EE5E7B17684983EA9049F719BEB05978A813638F53F7625E970BAE1C2ABD7
32C049803E5E151D305C79A1067920A7EAA2DABB92FA7F33EF950097BBA016F2

Payload:
CCB10C384D7A9C1D5C1C0383F97DF96B299D641FAECC7F3B4A5F31F2C0707C8A
739E193792AA810BCB005DDF4606366D472FE41EC50C304384EBA212510CC239
A204181541DC2772443BB00328D084EDC872CF61289862220F93994FE4E9ED21
0F3AA6870B171BEA342D0CF7166332F047BA58CCDED701E0AAA2BE84194203B9

Browser account grabber
91C4EDD3F6C51AFFD87434A3DB15B25408C26F7B77D94E568F91B9A5C4D63372
44E35DB1C2BFEEEE33F0A74874BE2E0CC041A38E63E78DA425052B0DFEB5F93D

Ursnif Mitre Att&ck TTP Map:

Initial
Access Execution Persistence

privilege
Escalation

Defense
Evasion

Credential
Access Discovery Collection

Command
and
Control Exfilt

Phishing:
Spear
phishing
Attachment
(T1566.001)

User Execution
(T1204 .002)

Boot or
Logon
Autostart
Execution:
Registry
Run Keys /
Startup
Folder
(T1547.001)

Process
Injection:
Asynchronous
Procedure
Call
(T1055.004)

Parent PID
Spoofing
(T1134.004)

Credentials
from
Password
Stores:
Credentials
from Web
Browsers
(T1555.003)

Application
Window
Discovery
(T1010)

Clipboard
Data (T1115)

Application
Layer
Protocol:
Web
Protocols
(T1071.001)

Exfilt
Over
Chan
(T104

Command and
Scripting
Interpreter:
Visual Basic
(T1059.005)

Create or
Modify
System
Process:
Windows
Service
(T1543.003)

Obfuscated
Files or
Information
(T1027)

Input
Capture:
Keylogging
(T1056.001)

Process
Discovery
(T1057)

Input
Capture:
Keylogging
(T1056.001)

Ingress Tool
Transfer
(T1105)

Command and
Scripting
Interpreter:
PowerShell
(T1059.001)

Process
Injection:
Asynchronous
Procedure
Call
(T1055.004)

Input
Capture:
GUI
(Graphical
User
Interface)
Input
Capture
(T1056.002)

Query
Registry
(T1012)

Input
Capture: GUI
Input
Capture
(T1056.002)

9/9

Initial
Access Execution Persistence

privilege
Escalation

Defense
Evasion

Credential
Access Discovery Collection

Command
and
Control Exfilt

Windows
Management
Instrumentation
(T1047)

System
Binary Proxy
Execution –
Regsvr32
(T1218.010)

Steal Web
Session
Cookie
(T1539)

System
Information
Discovery
(T1082)

Data from
Configuration
Repository:
Network
Device
Configuration
Dump
(T1602.002)

System
Binary Proxy
Execution –
Rundll32
(T1218.011)

System
Service
Discovery
(T1007)

Detection, Mitigation or Additional Important Safety Measures

Beware of emails

Don’t open attachments and links from unsolicited emails. Delete suspicious looking emails you receive from unknown sources,
especially if they contain links or attachments. Cybercriminals use ‘social engineering’ techniques to lure users into opening attachments
or clicking on links that lead to infected websites.

Disable macros for Microsoft Office

Don’t enable macros in document attachments received via email. A lot of malware infections rely on your action to turn ON macros.
Consider installing Microsoft Office Viewers. These viewer applications let you see what documents look like without even opening them
in Word or Excel. More importantly, the viewer software doesn’t support macros at all, so this reduces the risk of enabling macros
unintentionally.

