
1/3

JouniMi May 8, 2022

Bzz.. Bzz.. Bumblebee loader
threathunt.blog/bzz-bzz-bumblebee-loader

Showing off my amazing graphical skills
Quite recently, a new loader has been popping up. This loader is likely been developed to
counter the Microsoft’s change to the macro behavior, as the macros will be disabled on the
documents that have been downloaded from the internet. This is a very welcome change as
macros have been often used by the threat actors to launch the malicious code from the
maldocs. Now that this will be harder to the threat actors they are creating new creative ways
to get the initial foothold after a phishing attack.

One of the new ways that has been observed in the wild is the bumblebee loader. This new
loader will be delivered in format of an attachment, or a link within a phishing email. The user
is then directed to a legitimate web service (for example, one drive) from which the user
downloads a password-protected ZIP file, with the password in the email body. The zip
contains an ISO file, which then contains two files – .lnk and .dat files. If the lnk file is started
the bumblebee loader will be ran from the .dat file. There are several ways how this initial
approach could be potentially found with Defender for Endpoint. To me it sounds like that the
initial creation of the ISO file joined to the creation of the ZIP file by a browser could be a
good approach. This could be maybe joined to network connections too, however it gets a
little heavy and I leave it out for now.

https://threathunt.blog/bzz-bzz-bumblebee-loader
https://www.proofpoint.com/us/blog/threat-insight/bumblebee-is-still-transforming

2/3

So the logic of this query is explained above. I do use the time based join that I’ve used
before on an earlier blog post. This is because the process that creates the ISO file is
different from the process that created the archive file. Depending on the environment this
could potentially need more joins to reduce noise. ISO files are relatively rare in some
environments but much more common in the others. Also, this query is only looking for
creations of the ISO + archive files – this does not yet mean that anything was executed.

let lookupWindow = 10min;

let lookupBin = lookupWindow / 2.0;

DeviceFileEvents

| where FileName endswith ".iso"

| where ActionType == 'FileCreated'

| extend TimeKey = bin(Timestamp, lookupBin)

| project DeviceName, IsoCreationTime = Timestamp, IsoCreationFileName = FileName,
IsoCreationFolderPath = FolderPath, IsoCreationSHA1 = SHA1, TimeKey,
IsoCreationProcessName = InitiatingProcessFileName, IsoCreationProcessCmdline =
InitiatingProcessCommandLine, IsoCreationProcessFolderPath =
InitiatingProcessFolderPath, IsoCreationParentName = InitiatingProcessParentFileName

| join (

DeviceFileEvents

| extend ArchiveCreationTime = Timestamp

| where FileName endswith ".zip" or FileName endswith ".rar" or FileName endswith
".7z"

| where InitiatingProcessFileName =~ "chrome.exe" or InitiatingProcessFileName =~
"firefox.exe" or InitiatingProcessFileName =~ "msedge.exe" or
InitiatingProcessFileName =~ "iexplore.exe"

| extend TimeKey = range(bin(Timestamp-lookupWindow, lookupBin), bin(Timestamp,
lookupBin), lookupBin)

| mv-expand TimeKey to typeof(datetime)

| project DeviceName, IsoCreationActionType= ActionType, ArchiveCreationTime =
Timestamp, ArchiveCreationFileName = FileName, ArchiveCreationFolderPath =
FolderPath, ArchiveCreationSHA1 = SHA1, TimeKey, ArchiveCreationProcessName =
InitiatingProcessFileName, ArchiveCreationProcessCmdline =
InitiatingProcessCommandLine, ArchiveCreationProcessFolderPath =
InitiatingProcessFolderPath, ArchiveCreationParentName =
InitiatingProcessParentFileName

) on DeviceName, TimeKey

| project DeviceName, IsoCreationTime, IsoCreationFileName, ArchiveCreationFileName,
IsoCreationProcessName, IsoCreationActionType, IsoCreationProcessCmdline,
IsoCreationProcessFolderPath, ArchiveCreationProcessName,
ArchiveCreationProcessCmdline, IsoCreationParentName, ArchiveCreationTime,
ArchiveCreationFolderPath, TimeKey, ArchiveCreationProcessFolderPath,
ArchiveCreationParentName, IsoCreationFolderPath, IsoCreationSHA1,
ArchiveCreationSHA1

As you can see from the query, I like to rename some of the fields. This does make it easier
at least for me to understand the output especially when joining the data from multiple tables
with different process names. I do this almost every time on my queries and I do also
suggest it to others as well. The archive creation query is not limited to “FileCreated” events.
This is because of how the modern browsers work, as they stage the files with different

3/3

names and then in the end renames the file to the final format. To test this out I created an
empty file with the abbreviation of .ISO. Then I archived the file to a zip file and uploaded to
Onedrive – from which I downloaded it and extracted the contents.

The query matches the iso and archive creations.
The query works. There are multiple matches as there are multiple actions taken on the
archive creation query. The default inner unique join takes one random entry from the left
and joins it to all matches on right. This could be refined further but I am quite happy with
this. One way to limit the results would be to limit the ActionType to “FileRenamed” on the
archive creation query. The great article by Proofpoint (already linked before, but again here)
states the process path after the malicious code is launched. It is basically cmd.exe ->
cmd.exe -> rundll32.exe with certain switches. This should be easy enough.

DeviceProcessEvents

| where InitiatingProcessParentFileName =~ "cmd.exe"

| where InitiatingProcessFileName =~ "cmd.exe"

| where InitiatingProcessCommandLine contains "IternalJob"

| where InitiatingProcessCommandLine contains "rundll32"

| where FileName =~ "rundll32.exe"

| where ProcessCommandLine contains "IternalJob"

| project Timestamp, DeviceName, InitiatingProcessParentFileName,
InitiatingProcessFileName, InitiatingProcessCommandLine, FileName, ProcessCommandLine

To keep the query efficient I didn’t do any joins. Unfortunately, the cmdline of the parent
process is not recorded here so no filtering can be done based on that, unless joining the
data. The query does not produce any results in my testing environment but your mileage
may vary. I haven’t tested the queries in this post in any production environments yet.

These queries are relatively simple and likely will catch only partial and early versions of the
loader, however I think they are a great start. Using these to start and then developing them
a little further can produce nice results in catching the new type of loader. This data could of
course also be joined further to get less results and to get more information out of the
activity.

Also – someone might have noticed that I have changed the theme of the blog. I liked the old
one but I migrated to another host as the first one was quite unresponsive at least from
Europe. While doing that I changed the theme to handle couple of things better. I think there
might be little bug here and there still with this but I will fix them when I get a chance.

EDIT: Fixed a typo in the latter query.

https://www.proofpoint.com/us/blog/threat-insight/bumblebee-is-still-transforming

