
1/11

Chris Navarrete, Durgesh Sangvikar, Yu Fu, Yanhui Jia, Siddhart Shibiraj May 6, 2022

Cobalt Strike Analysis and Tutorial: CS Metadata Encoding and Decoding
unit42.paloaltonetworks.com/cobalt-strike-metadata-encoding-decoding/

By Chris Navarrete, Durgesh Sangvikar, Yu Fu, Yanhui Jia and Siddhart Shibiraj

May 6, 2022 at 12:00 PM

Category: Tutorial

Tags: C2, Cobalt Strike, Evasion, malleable C2 profile, post-exploitation

This post is also available in: 日本語 (Japanese)

Executive Summary

Cobalt Strike is commercial threat emulation software that emulates a quiet, long-term embedded actor in a network. This actor, known as
Beacon, communicates with an external team server to emulate command and control (C2) traffic. Due to its versatility, Cobalt Strike is
commonly used as a legitimate tool by red teams – but is also widely used by threat actors for real-world attacks. Different elements of Cobalt
Strike contribute to that versatility, including the encoding algorithm that obfuscates metadata sent to the C2 server.

In a previous blog, “Cobalt Strike Analysis and Tutorial: How Malleable C2 Profiles Make Cobalt Strike Difficult to Detect,” we learned that an
attacker or red team can define metadata encoding indicators in Malleable C2 profiles for an HTTP transaction. When Cobalt Strike’s Beacon
“phones home,” it sends metadata – information about the compromised system – to the Cobalt Strike TeamServer. The red team or attackers
have to define how this metadata is encoded and sent with the HTTP request to finish the C2 traffic communication.

In this blog post, we will go through the encoding algorithm, describe definitions and differences of encoding types used in the Cobalt Strike
framework, and cover some malicious attacks seen in the wild. In doing so, we demonstrate how the encoding and decoding algorithm works
during the C2 traffic communication, and why this versatility makes Cobalt Strike an effective emulator for which it is difficult to design
traditional firewall defenses.

Related Unit 42 Topics Cobalt Strike, C2, Tutorials

Table of Contents

Metadata Encoding Algorithm
 Base64 Encoding and Decoding

 Base64URL Encoding and Decoding
 NetBIOS Encoding and Decoding

 NetBIOSU Encoding and Decoding
 Mask Encoding and Decoding

 Cases in the Wild

https://unit42.paloaltonetworks.com/cobalt-strike-metadata-encoding-decoding/
https://unit42.paloaltonetworks.com/author/chris-navarrete/
https://unit42.paloaltonetworks.com/author/durgesh-sangvikar/
https://unit42.paloaltonetworks.com/author/yu-fu/
https://unit42.paloaltonetworks.com/author/yanhui-jia/
https://unit42.paloaltonetworks.com/author/siddhart-shibiraj/
https://unit42.paloaltonetworks.com/category/tutorial/
https://unit42.paloaltonetworks.com/tag/c2/
https://unit42.paloaltonetworks.com/tag/cobalt-strike/
https://unit42.paloaltonetworks.com/tag/evasion/
https://unit42.paloaltonetworks.com/tag/malleable-c2-profile/
https://unit42.paloaltonetworks.com/tag/post-exploitation/
https://unit42.paloaltonetworks.jp/cobalt-strike-metadata-encoding-decoding/
https://unit42.paloaltonetworks.com/cobalt-strike-malleable-c2-profile/
https://unit42.paloaltonetworks.com/tag/cobalt-strike/
https://unit42.paloaltonetworks.com/tag/C2/
https://unit42.paloaltonetworks.com/category/tutorial/

2/11

Conclusion
Indicators of Compromise
Additional Resources

Metadata Encoding Algorithm

There are five encoding schemes supported by Cobalt Strike. The RSA-encrypted metadata is being encoded to easily transfer the ciphered
binary data in network protocol.

Figure 1.

Encoding schemes in the Cobalt Strike profile.

Base64 Encoding and Decoding

Base64 Encoding and Decoding is a standard Request for Comments (RFC) algorithm implementation. The author has not made any changes
to the Base64 Character set. Here is the list of characters used for encoding and decoding the data.

['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k',
'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '/']

Let's understand the use of the Base64 algorithm in Malleable profiles by studying an example.

1. Profile Metadata

Havex.profile uses Base64 encoding to transform metadata information about compromised systems before sending it. Figure 2 shows the
metadata is encoded using the Base64 encoding algorithm and the result is placed in the Cookie header.

Figure 2.

Metadata encoding options in the Havex profile.
2. HTTP C2 traffic

Figure 3 shows the HTTP C2 traffic generated from the profiles. The highlighted part is the Base64-encoded metadata about the compromised
machine.

Figure 3. HTTP

C2 traffic using the Havex profile.
3. Base64 Decoding

https://github.com/rsmudge/Malleable-C2-Profiles/blob/26323784672913923d20c5a638c6ca79459e8529/APT/havex.profile

3/11

Any tool can decode the encrypted metadata. We have used the Python Base64 library to complete the task. Figure 4 shows a sample
script to decode the data and print it in hex format.
Here is the decoded data from the script. This is RSA-encrypted metadata about the compromised system:
“751990bee317e74e4f2aa6f13078ef22dd884e065b738f8373f49dee401a069d5dfd1d3e39e94cc637e21364e1fd71ab3322fb9c7a987fc6aa27

Figure 4.

Sample Python script to decode Base64 data.

Base64URL Encoding and Decoding

Base64URL is a modified version of the Base64 encoding algorithm. The modified version uses URL and filename-safe characters for
encoding and decoding. Here is the character set:

['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k',
'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '-', '_']

Compared to the Standard Base64 character set, the modified version has replaced ‘+’ with ‘-’ and ‘/’ with ‘_’. The Pad character ‘=’ is skipped
from the encoded data as it is normally percent-encoded in URI.

Let's understand the use of the Base64URL algorithm in Malleable profiles by studying an example.

1. Profile Metadata

Cnnvideo_getonly.profile uses Base64URL encoding to transform the metadata information. (Note that this profile is an example of mimicking
legitimate CNN HTTP traffic and has no connection to the organization.) Figure 5 shows the metadata is encoded using the Base64URL
encoding algorithm and appends the data to parameter g.

Figure 5.

Metadata encoding in CNN video profile.
2. HTTP C2 traffic

Figure 6 shows the HTTP C2 traffic generated by the Beacon. The parameter value is the Base64URL-encoded metadata about the victim.

https://github.com/rsmudge/Malleable-C2-Profiles/blob/26323784672913923d20c5a638c6ca79459e8529/normal/cnnvideo_getonly.profile

4/11

Figure 6. HTTP

C2 traffic generated using CNN video profile.
3. Base64URL decoding

A user has a couple of options to decode the data.

A user can replace the ‘-’ with ‘+’ and ‘_’ with ‘/’ along with adding a pad character ‘=’. The replaced string becomes standard Base64-
encoded data. Then any Base64 decoding tool can be used to get the encrypted metadata.
Use the scripting language to do the job. Figure 7 shows a sample Python script to decode the data. The urlsafe_b64decode instruction
only replaces the characters and does not add padding. In the sample, we have added ‘=’ to make the output compatible with Base64
encoding. You can add more padding characters; Python only complains if it sees less padding.
The output of the script is RSA-encrypted metadata.
“60495dff002eddaa0c409aaaae0fda592810993ae0ae319c87d62b65c54d92447daf2c1bc84930c5d90ed3a023227e254d3a2c28763be372bb

Figure 7.

Python script to decode the Base64URL.

NetBIOS Encoding and Decoding

NetBIOS encoding is used to encode NetBIOS service names. The Cobalt Strike tool uses the same algorithm to encode victim metadata
when it is being transferred in C2 communication.

In the NetBIOS encoding algorithm, each byte is represented by two bytes of ASCII characters. Each 4-bit (nibble) of the input byte is treated
as a separate byte by right adjusting/zero filling the binary number. This number is then added to the value of ASCII character ‘a’. The resulting
byte is stored as a separate byte. Here is the character set used for encoding: [‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’, ‘k’, ‘l’, ‘m’, ‘n’, ‘o’, ‘p’].

Figure 8 demonstrates the encoding process:

5/11

Figure 8.

NetBIOS encoding process.
Let's understand the use of the NetBIOS algorithm in Malleable profiles by studying an example.

1. Profile Metadata

Ocsp.profile uses NetBIOS encoding to convert the victim’s metadata. Figure 9 shows the metadata is encoded using the NetBIOS encoding
algorithm. The resulting data is appended to the URI.

https://github.com/rsmudge/Malleable-C2-Profiles/blob/26323784672913923d20c5a638c6ca79459e8529/normal/ocsp.profile

6/11

Figure 9.

Metadata encoding in the OCSP profile.
2. HTTP C2 traffic

Figure 10 shows the HTTP traffic generated by the Beacon using the OCSP profile.

Figure 10.

HTTP C2 traffic generated using the OCSP profile.
3. NetBIOS decoding

Figure 11 shows a Python implementation to decode the NetBIOS-encoded metadata.

The output of the script is RSA-encrypted metadata about the victim:
 “5725245edcb589b305e33e02da1cda208ed083bed8a1ae0b3a87da0f9d6ebe31025ab67c58572acb9757288cc2e78bea414249fa8cb0783485a1b5

7/11

Figure 11.

Python script to decode the NetBIOS encoding.

NetBIOSU Encoding and Decoding

The NetBIOSU algorithm is a slightly modified version of the NetBIOS algorithm discussed above. The slight change is the character set used
for encoding the algorithm. In this algorithm, the character set is the uppercase version of the set used in the normal NetBIOS algorithm. Here
is the set : [‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’].

NetBIOSU uses the same encoding process as in the NetBIOS algorithm. Please refer to Figure 8 for more information.

Let's understand the use of the NetBIOSU algorithm in Malleable profiles by studying an example.

1. Profile Metadata

Asprox.profile uses NetBIOSU encoding to convert the victim’s metadata. Figure 12 shows the metadata is encoded using the NetBIOSU
encoding algorithm. The resulting data is appended to the URI.

Figure 12.

Metadata encoding in the asprox profile.
2. HTTP C2 traffic

Figure 13 shows the HTTP traffic generated by the Beacon using the asprox profile, and the highlighted part is the metadata about the victim.

https://github.com/rsmudge/Malleable-C2-Profiles/blob/26323784672913923d20c5a638c6ca79459e8529/crimeware/asprox.profile

8/11

Figure 13.

HTTP C2 traffic generated using the asprox profile.
3. NetBIOSU decoding

Figure 14 shows a Python implementation to decode the NetBIOSU-encoded metadata.

The output of the script is RSA-encrypted metadata about the victim.
 “722676e535f86ffc29ba1cafb9856d98d1f697a83b0afc5bb143e2cf2242152a351081fb837192da3e3b2d9021fab75ce32677b6299a24d15e28db883

Figure 14.

Python script to decode the NetBIOSU encoding.

Mask Encoding and Decoding

The Mask encoding algorithm can be indicated and combined with other encoding algorithms in the Malleable C2 profile, which can be loaded
by the TeamServer and used as C2 communication. The Beacon will generate the random four bytes as Mask xor key, then use the Mask key
to xor the 128-byte metadata encrypted and send the Mask key and encoded data to the TeamServer for C2 communication, As an example,
we walk through the randomized.profile to explain in more detail below.

1. Figure 15 is a partial profile with metadata encoded by Mask and Base64URL. The partial profile below defines the URI and metadata
encoding algorithm as Mask and Base64URL, and the encoded metadata will be appended to the URI.

Figure 15.

Metadata encoding options in randomized profile.
2. HTTP C2 Traffic

Figure 16 is the C2 traffic based on the Figure 15 profile, so we can reverse the encoding data with the following steps.

From the traffic captured, we know that the entire URI is: /zChN7QMDhftv10Li9Cu-fm_T_3qDQawT-Z1GzNg1FWfAfSILT-u_rKLvXP-
RE0ac-pxJTlGFCUIm4Aw9rGHPCIJVl0zNdCbM_G2VkYXJ5GGGtVh8S0LWMM4YLGZD9okLcFBc402j5zESK71HaR_owJb-
AVBfFvAo8q0I2J74rmfGyIROyg
Remove the prefix /zC. The remaining value is encoded by Base64URL:

 hN7QMDhftv10Li9Cu-fm_T_3qDQawT-Z1GzNg1FWfAfSILT-u_rKLvXP-RE0ac-
pxJTlGFCUIm4Aw9rGHPCIJVl0zNdCbM_G2VkYXJ5GGGtVh8S0LWMM4YLGZD9okLcFBc402j5zESK71HaR_owJb-
AVBfFvAo8q0I2J74rmfGyIROyg

https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/randomized.profile

9/11

Figure 16. C2

traffic based on randomized profile.
3. Data encoding and decoding

Base64URL encoding and decoding
 The Base64URL-encoded data:

 hN7QMDhftv10Li9Cu-fm_T_3qDQawT-Z1GzNg1FWfAfSILT-u_rKLvXP-RE0ac-
pxJTlGFCUIm4Aw9rGHPCIJVl0zNdCbM_G2VkYXJ5GGGtVh8S0LWMM4YLGZD9okLcFBc402j5zESK71HaR_owJb-
AVBfFvAo8q0I2J74rmfGyIROyg
The Base64URL-decoded data:

 84ded030385fb6fd742e2f42bbe7e6fd3ff7a8341ac13f99d46ccd8351567c07d220b4febbfaca2ef5cff9113469cfa9c494e5185094226e00c3dac6
Using the Python Base64 library, as shown by the code in Figure 17, to decode the Base64URL-encoded data, the decoded hex data
length is 132 and the first four bytes, 84ded030, are the Mask xor key. The remaining 128 bytes are the metadata encoded by the Mask
xor algorithm.Base64URL decoded Python code:

Figure 17.

Base64URL-decoded Python3 code.
Mask encoding and decodingThe Mask key is 84ded030
The Mask-encoded data is:

 385fb6fd742e2f42bbe7e6fd3ff7a8341ac13f99d46ccd8351567c07d220b4febbfaca2ef5cff9113469cfa9c494e5185094226e00c3dac61cf08825

The Mask-decoded data is:
 bc8166cdf0f0ff723f3936cdbb2978049e1fefa950b21db3d588ac3756fe64ce3f241a1e71112921b0b71f99404a3528d44af25e841d0af6982e581

Using the Python code in Figure 18 to decode the Mask-encoded data, the decoded hex data length is 128 bytes. The 128 bytes are the
encrypted metadata with an RSA algorithm that will be detailed in a forthcoming piece.

Mask-decoded Python code:

Figure 18.

Mask-decoded Python3 code.

Cases in the Wild

The following sections show two different cases of Cobalt Strike payloads found in the wild used by malware. One uses Base64 and the other
uses Base64URL encoding. Palo Alto Networks identified them using static and dynamic analysis under the Unit42.CobaltStrike tag in the
AutoFocus system.

Base64

SHA256: 6b6413a059a9f12d849c007055685d981ddb0ff308d6e3c2638d197e6d3e8802

https://www.paloaltonetworks.com/cortex/autofocus

10/11

Figure 19.

Base64 encoding.

Base64URL Encoding

SHA256: f6e75c20ddcbe3bc09e1d803a8268a00bf5f7e66b7dbd221a36ed5ead079e093

Figure 20.

Base64URL encoding.

Conclusion

Cobalt Strike is a potent post-exploitation adversary emulator. The five encoding algorithms detailed above are elaborate and are designed to
evade security detections. A single security appliance is not equipped to prevent a Cobalt Strike attack. Only a combination of security
solutions – firewalls, sandboxes, endpoints and software to integrate all these components – can help prevent this kind of attack.

Palo Alto Networks customers are protected from this kind of attack by the following:

1. Next-Generation Firewalls (NGFWs) with Threat Prevention signatures 86445 and 86446 identify HTTP C2 requests with the Base64
metadata encoding in default profiles.

2. WildFire, an NGFW security subscription, and Cortex XDR identify and block Cobalt Strike Beacon.
3. AutoFocus users can track this activity using the CobaltStrike tag

Indicators of Compromise

CS Samples

6b6413a059a9f12d849c007055685d981ddb0ff308d6e3c2638d197e6d3e8802
f6e75c20ddcbe3bc09e1d803a8268a00bf5f7e66b7dbd221a36ed5ead079e093

CS Beacon Samples

https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/products/secure-the-network/subscriptions/autofocus
https://autofocus.paloaltonetworks.com/#/tag/Unit42.Cobaltstrike

11/11

/n9Rd
SHA256 Hash:

fc95e7f4c8ec810646c16c8b6075b0b9e2cc686153cdad46e82d6cca099b19e7
/flas

SHA-256 Hash:
11b8beaa53353f5f52607e994849c3086733dfa01cc57fea2dae42eb7a6ee972

CS TeamServer IP addresses

80.255.3[.]109
143.244.178[.]247

Additional Resources

Cobalt Strike Training
 Cobalt Strike Malleable C2 Profile

 Cobalt Strike Analysis and Tutorial: How Malleable C2 Profiles Make Cobalt Strike Difficult to Detect

Get updates from
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

https://www.cobaltstrike.com/training
https://www.cobaltstrike.com/help-malleable-c2
https://unit42.paloaltonetworks.com/cobalt-strike-malleable-c2-profile/
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

