
1/6

May 5, 2022

North Korea’s Lazarus: their initial access trade-craft
using social media and social engineering

research.nccgroup.com/2022/05/05/north-koreas-lazarus-and-their-initial-access-trade-craft-using-social-media-and-
social-engineering/

Authored by: Michael Matthews and Nikolaos Pantazopoulos

tl;dr

This blog post documents some of the actions taken during the initial access phase for an
attack attributed to Lazarus, along with analysis of the malware that was utilised during this
phase.

The methods used in order to gain access to a victim network are widely reported however,
nuances in post-exploitation provide a wealth of information on attack paths and threat
hunting material that relate closely to TTP’s of the Lazarus group.

https://research.nccgroup.com/2022/05/05/north-koreas-lazarus-and-their-initial-access-trade-craft-using-social-media-and-social-engineering/

2/6

In summary, we identified the following findings:

Lazarus used LinkedIn profiles to impersonate employees of other legitimate
companies
Lazarus communicated with target employees through communication channels such
as WhatsApp.
Lazarus entices victims to download job adverts (zip files) containing malicious
documents that lead to the execution of malware
The identified malicious downloader appears to be a variant of LCPDOT
Scheduled tasks are utilised as a form of persistence (rundll32 execution from a
scheduled task)

Initial Access

In line with what is publicly documented[1], the initial entry revolves heavily around social
engineering, with recent efforts involving the impersonation of Lockheed Martin employees
with LinkedIn profiles to persuade victims into following up with job opportunities that result in
a malicious document being delivered.

In this instance, the domain hosting the document was global-job[.]org , likely
attempting to impersonate globaljobs[.]org , a US based government/defence
recruitment website. In order to subvert security controls in the recent changes made by
Microsoft for Office macros, the website hosted a ZIP file which contained the malicious
document.

The document had several characteristics comparable to other Lazarus samples however,
due to unknown circumstances, the “shapes” containing the payloads were unavailable and
could not be analysed.

Following the execution of the macro document, rundll32.exe is called to execute the
DLL C:\programdata\packages.mdb , which then led to the initial command-and-control
server call out. Unfortunately, the binary itself was no longer available for analysis however, it
is believed that this component led to the LCPDot malware being placed on the victim’s host.

LCPDot

We were able to recover a malicious downloader that was executed as a scheduled task.
The identified sample appears to be a variant of LCPDot, and it is attributed to the threat
actor ‘Larazus’.

The file in question attempted to blend into the environment, leveraging the ProgramData
directory once again C:\ProgramData\Oracle\Java\JavaPackage.dll . However, the file
had characteristics that stand out whilst threat hunting:

3/6

Large file size (60mb+) – likely to bypass anti-virus scanning
Time stomping – timestamps copied from CMD.exe
DLL owned by a user in the ProgramData directory (Not SYSTEM or Administrator)

To execute LCPDot, a scheduled task was created named “Windows Java Vpn Interface”,
attempting to blend into the system with the Java theme. The scheduled task executed the
binary but also allowed the threat actor to persist.

The scheduled task was set to run daily with the following parameter passed for execution,
running:

 <Exec>
 <Command>c:\windows\system32\rundll32.exe</Command>

<Arguments>C:\ProgramData\Oracle\Java\JavaPackage.dll,VpnUserInterface</Arguments>
 </Exec>

LCPDot Binary Analysis

The downloader’s malicious core starts in a separate thread and the execution flow is
determined based on Windows messages IDs (sent by the Windows API function
SendMessage).

In the following sections we describe the most important features that we identified during
our analysis.

Initialisation Phase

The initialisation phase takes place in a new thread and the following tasks are performed:

Initialisation of class MoscowTownList . This class has the functionality to read/write
the configuration.
Creation of configuration file on disk. The configuration file is stored under the filename
VirtualStore.cab in %APPDATA%\Local folder. The configuration includes various

metadata along with the command-and-control servers URLs. The structure that it uses
is:

4/6

struct Configuration
{
DWORD Unknown; //Unknown, set to 0 by default. If higher than 20 then it
 // can cause a 2-hour delay during the network
 // communication process.
SYSTEMTIME Variant_SystemTime; // Configuration timestamp created by
 // SystemTimeToVariantTime.
SYSTEMTIME Host_SystemTime; // Configuration timestamp. Updated during
 // network communication process.
DWORD Logical_drives_find_flag; // Set to 0 by default
DWORD Active_sessions_flag; // Set to 0 by default
DWORD Boot_Time; // Milliseconds since boot time
char *C2_Data;// Command-and-Control servers’ domains
};

The configuration is encrypted by hashing (SHA-1) a random byte array (16 bytes) and then
uses the hash output to derive (CryptDeriveKey) a RC4 key (16 bytes). Lastly it writes to the
configuration file the random byte array followed by the encrypted configuration data.

Enumeration of logical drives and active logon sessions. The enumeration happens
only if specified in the configuration. By default, this option is off. Furthermore, even if
enabled, it does not appear to have any effect (e.g. sending them to the command-and-
control server).

Once this phase is completed, the downloader starts the network communication with its
command-and-control servers.

Network Communication

At this stage, the downloader registers the compromised host to the command-and-control
server and then requests the payload to execute. In summary, the following steps are taken:

Initialises the classes Taxiroad and WashingtonRoad .
Creates a byte array (16 bytes), which is then encoded (base64), and a session ID.
Both are sent to the server. The encoded byte array is used later to decrypt the
received payload and is added to the body content of the request:

 redirect=Yes&idx=%d&num=%s , where idx holds the compromised host’s boot
time value and num has the (BASE64) encoded byte array.

 In addition, the session ID is encoded (BASE64) and added to the following string:
 SESSIONID-%d-202110 , where 202110 is the network command ID.

 The above string is encoded again (BASE64) and then added to the SESSIONID
header of the POST request.

After registering the compromised host, the server replies with one of the following
messages:

Validation Success – Bot registered without any issues.

5/6

Validation Error – An error occurred.

Once the registration process has been completed, the downloader sends a GET request to
download the second-stage payload. The received payload is decrypted by hashing (SHA-1)
the previously created byte array and then use the resulting hash to derive
(CryptDeriveKey) a RC4 key.

Lastly, the decrypted payload is loaded directly into memory and executed in a new thread.

In summary, we identified the following commands (Table 1).

Command ID Description

202110 Register compromised host to the command-and-control server

202111 Request payload from the command-and-control server

Table 1 – Identified network commands

Unused Commands and Functions

One interesting observation is the presence of functions and network commands, which the
downloader does not seem to use. Therefore, we concluded that the following network
commands are not used by the downloader (at least in this variant) but we do believe that
 the operators may use them on the server-side (e.g. in the PHP scripts that the downloader
sends data) or the loaded payload does use them (Note: Commands 789020, 789021 and
789022 are by default disabled):

202112 – Sends encrypted data in a POST request. Data context is unknown.
202114 – Sends a POST request with body content ‘Cookie=Enable’.
789020 – Same functionality as command ID 202111.
789021 – Same functionality as command ID 202112.
789022 – Sends a POST request with body content ‘Cookie=Enable’.

Indicators of Compromise

Domains

ats[.]apvit[.]com – Legitimate Compromised website
bugs-hpsm[.]mobitechnologies[.]com – Legitimate Compromised website
global-job[.]org
thefrostery[.]co[.]uk – Legitimate Compromised website
shoppingbagsdirect[.]com – – Legitimate Compromised website

6/6

IP Address

13[.]88[.]245[.]250

Hashes

Javapackage.dll

MD5: AFBCB626B770B1F87FF9B5721D2F3235

SHA1: D25A4F20C0B9D982D63FC0135798384C17226B55

SHA256:
FD02E0F5FCF97022AC266A3E54888080F66760D731903FC32DF2E17E6E1E4C64

Virtualstore.cab

MD5: 49C2821A940846BDACB8A3457BE4663C

SHA1: 0A6F762A47557E369DB8655A0D14AB088926E05B

SHA256:
F4E314E8007104974681D92267673AC22721F756D8E1925142D9C26DC8A0FFB4

MITRE ATT&CK

Technique ID

Phishing: Spearphishing via Service T1566.003

Scheduled Task/Job: Scheduled Task T1053.005

User Execution: Malicious File T1204.002

Application Layer Protocol T1071.001

MITRE ATT&CK

References

[1] https://www.microsoft.com/security/blog/2021/01/28/zinc-attacks-against-security-
researchers/

https://www.microsoft.com/security/blog/2021/01/28/zinc-attacks-against-security-researchers/

