
1/27

BLISTER Loader
elastic.github.io/security-research/malware/2022/05/02.blister/article/

BLISTER Malware

https://elastic.github.io/security-research/malware/2022/05/02.blister/article/
https://elastic.github.io/security-research/tags/#blister
https://elastic.github.io/security-research/tags/#malware


2/27



3/27

Cyril François · @cyril-t-f | Daniel Stepanic · @dstepanic | Salim Bitam · @soolidsnake 2022-05-
05

Key Takeaways¶

BLISTER is a loader that continues to stay under the radar, actively being used to load a
variety of malware including clipbankers, information stealers, trojans, ransomware, and
shellcode
In-depth analysis shows heavy reliance of Windows Native API’s, several injection capabilities,
multiple techniques to evade detection, and counter static/dynamic analysis
Elastic Security is providing a configuration extractor that can be used to identify key elements
of the malware and dump the embedded payload for further analysis
40 days after the initial reporting on the BLISTER loader by Elastic Security, we observed a
change in the binary to include additional architectures. This shows that this is an actively
developed tool and the authors are watching defensive countermeasures

The BLISTER Malware Loader

For information on the BLISTER malware loader and campaign observations, check out our blog
post and configuration extractor detailing this:

Overview¶

The Elastic Security team has continually been monitoring the BLISTER loader since our initial
release at the end of last year. This family continues to remain largely unnoticed, with low detection
rates on new samples.

https://github.com/cyril-t-f
https://github.com/dstepanic
https://github.com/soolidsnake
https://www.elastic.co/blog/elastic-security-uncovers-blister-malware-campaign


4/27

Example of BLISTER loader detection rates
A distinguishing characteristic of BLISTER’s author is their method of tampering with legitimate DLLs
to bypass static analysis. During the past year, Elastic Security has observed the following legitimate
DLL’s patched by BLISTER malware:

Filename Description

dxgi.dll DirectX Graphics Infrastructure

WIAAut.DLL WIA Automation Layer

PowerCPL.DLL Power Options Control Panel

WIMGAPI.DLL Windows Imaging Library

rdpencom.dll RDPSRAPI COM Objects

colorui.dll Microsoft Color Control Panel.

termmgr.dll Microsoft TAPI3 Terminal Manager

libcef.dll Chromium Embedded Framework (CEF) Dynamic Link Library

CEWMDM.DLL Windows CE WMDM Service Provider

intl.dll LGPLed libintl for Windows NT/2000/XP/Vista/7 and Windows 95/98/ME

vidreszr.dll Windows Media Resizer

sppcommdlg.dll Software Licensing UI API

Due to the way malicious code is embedded in an otherwise benign application, BLISTER may be
challenging for technologies that rely on some forms of machine learning. Combined with code-
signing defense evasion, BLISTER appears designed with security technologies in mind.

Our research shows that BLISTER is actively developed and has been linked in public reporting to
LockBit ransomware and the SocGholish framework; in addition, Elastic has also observed BLISTER
in relation to the following families: Amadey, BitRAT, Clipbanker, Cobalt Strike, Remcos, and
Raccoon along with others.

In this post, we will explain how BLISTER continues to operate clandestinely, highlight the loader’s
core capabilities (injection options, obfuscation, and anti-analysis tricks) as well as provide a
configuration extractor that can be used to dump BLISTER embedded payloads.

Consider the following sample representative of BLISTER for purposes of this analysis. This sample
was also used to develop the initial BLISTER family YARA signature, the configuration extraction
script, and evaluate tools against against unknown x32 and x64 BLISTER samples.

Execution Flow¶

The execution flow consists of the following phases:

https://www.trendmicro.com/en_us/research/22/d/Thwarting-Loaders-From-SocGholish-to-BLISTERs-LockBit-Payload.html?utm_source=trendmicroresearch&utm_medium=smk&utm_campaign=0422_Socgholish
https://malpedia.caad.fkie.fraunhofer.de/details/win.lockbit
https://redcanary.com/threat-detection-report/threats/socgholish/
https://malpedia.caad.fkie.fraunhofer.de/details/win.amadey
https://malpedia.caad.fkie.fraunhofer.de/details/win.bit_rat
https://malpedia.caad.fkie.fraunhofer.de/details/win.clipbanker
https://malpedia.caad.fkie.fraunhofer.de/details/win.cobalt_strike
https://malpedia.caad.fkie.fraunhofer.de/details/win.remcos
https://malpedia.caad.fkie.fraunhofer.de/details/win.raccoon
https://www.virustotal.com/gui/file/afb77617a4ca637614c429440c78da438e190dd1ca24dc78483aa731d80832c2


5/27

Deciphering the second stage
Retrieving configuration and packed payload
Payload unpacking
Persistence mechanisms
Payload injection

Launch / Entry Point¶

During the first stage of the execution flow, BLISTER is embedded in a legitimate version of the
colorui.dll library. The threat actor, with a previously achieved foothold, uses the Windows built-in
rundll32.exe  utility to load BLISTER by calling the export function LaunchColorCpl:

Rundll32 execution arguments

rundll32.exe "BLISTER.dll,LaunchColorCpl" 

The image below demonstrates how BLISTER’s DLL is modified, noting that the export start is
patched with a function call (line 17) to the malware entrypoint.

Export of Patched BLISTER DLL
If we compare one of these malicious loaders to the original DLL they masquerade as, we can see
where the patch was made, the function no longer exists:

https://www.virustotal.com/gui/file/1068e40851b243a420cb203993a020d0ba198e1ec6c4d95f0953f81e13046973/details


6/27

Export of Original DLL Used by BLISTER

Deciphering Second Stage¶

BLISTER’s second stage is ciphered in its resource section ( .rsrc ).

The deciphering routine begins with a loop based sleep to evade detection:

Initial Sleep Mechanism

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#the-rsrc-section


7/27

BLISTER then enumerates and hashes each export of ntdll , comparing export names against
loaded module names; searching specifically for the NtProtectVirtualMemory API:

API Hash
Finally, it looks for a memory region of 100,832  bytes by searching for a specific memory pattern,
beginning its search at the return address and leading us in the .rsrc  section. When found,
BLISTER performs an eXclusive OR (XOR) operation on the memory region with a four-byte key,
sets it’s page protection to PAGE_EXECUTE_READ  with a call to NtProtectVirtualMemory, and
call its second stage entry point with the deciphering key as parameter:

Memory Tag & Memory Region Setup

Obfuscation¶

BLISTER’s second-stage involves obfuscating functions, scrambling their control flow by splitting
their basic blocks with unconditional jumps and randomizing basic blocks’ locations. An example of
which appears below.



8/27

Function’s Control Flow Scrambling
BLISTER inserts junk code into basic blocks as yet another form of defense evasion, as seen below.

Junk Code Insertion

Retrieving Configuration and Packed Payload¶



9/27

BLISTER uses the previous stage’s four-byte key to locate and decipher its configuration.

The routine begins by searching its memory, beginning at return address, for its four-byte key
XORed with a hardcoded value as memory pattern:

Memory pattern search loop
When located, the 0x644  byte configuration is copied and XOR-decrypted with the same four-byte
key:



10/27

Config decryption
Finally, it returns a pointer to the beginning of the packed PE, which is after the 0x644  byte blob:

Pointer return to packed PE
See the configuration structure in the appendix.

Time Based Anti Debug¶

After loading the configuration, and depending if the kEnableSleepBasedAntiDebug flag ( 0x800 )
is set, BLISTER calls its time-based anti-debug function:

Check configuration for Sleep function
This function starts by creating a thread with the Sleep Windows function as a starting address and
10 minutes as the argument:



11/27

Sleep function (600000 ms / 10 minutes)
The main thread will sleep using NtDelayExecution until the sleep thread has exited:

NtDelayExecution used with Sleep function
Finally the function returns 0  when the sleep thread has run at least for 9 1/2 minutes:

Condition to end sleep thread
If not, the function will return 1  and the process will be terminated:



12/27

Process termination on sleep function if error

Windows API¶

Blister’s GetModuleHandle¶

BLISTER implements its own GetModuleHandle to evade detection, the function takes the library
name hash as a parameter, iterates over the process PEB LDR’s modules and checks the hashed
module’s name against the one passed in the parameter:

Function used to verify module names

Blister’s GetProcAddress¶

BLISTER’s GetProcAddress takes the target DLL and the export hash as a parameter, it also takes
a flag that tells the function that the library is 64 bits.

https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb_ldr_data


13/27

The DLL can be loaded or mapped then the function iterates over the DLL’s export function names
and compares their hashes with the ones passed in the parameter:

BLISTER’s GetProcAddress hash checking dll’s exports
If the export is found, and its virtual address isn’t null, it is returned:

Return export virtual address
Else the DLL is LdrLoaded and BLISTER’s GetProcAddress is called again with the newly loaded
dll:

LdrLoad the DLL and call GetProcAddress again

Library Manual Mapping¶

BLISTER manually maps a library using NtCreateFile in order to open a handle on the DLL file:

NtCreateFile used within mapping function
Next it creates a section with the handle by calling NtCreateSection with the SEC_IMAGE attribute
which tells Windows to loads the binary as a PE:

NtCreateSection used within mapping function
NtCreateSection used within mapping function

Finally it maps the section with NtMapViewOfSection:



14/27

NtMapViewofSection used within mapping function

x32/x64 Ntdll Mapping¶

Following the call to its anti-debug function, BLISTER manually maps 32 bit and 64 bit versions of
NTDLL.

It starts by mapping the x32 version:

32 bit NTDLL mapping
Then it disables SysWOW64 redirection:

SysWOW64 disabled
And then maps the 64 bit version:

64 bit NTDLL mapping
Then if available, the mapped libraries will be used with the GetProcAddress function, i.e:

Mapped libraries using GetProcAddress

LdrLoading Windows Libraries and Removing Hooks¶

After mapping 32 and 64 bit NTDLL versions BLISTER will LdrLoad several Windows libraries and
remove potential hooks:

https://docs.microsoft.com/en-us/windows/win32/winprog64/file-system-redirector


15/27

Function used to load Windows libraries and remove hooks
First, it tries to convert the hash to the library name by comparing the hash against a fixed list of
known hashes:

Hash comparison
If the hash is found BLISTER uses the LdrLoad to load the library:



16/27

Leveraging LdrLoad to load DLL
Then BLISTER searches for the corresponding module in its own process:

Searching for module in own process
And maps a fresh copy of the library with the module’s FullDllName:

Retrieving Module’s FullDllName

Manual Mapping function
BLISTER then applies the relocation to the mapped library with the loaded one as the base address
for the relocation calculation:

Performing relocation
Next BLISTER iterates over each section of the loaded library to see if the section is executable:

Checking executable sections
If the section is executable, it is replaced with the mapped one, thus removing any hooks:



17/27

Section replacement

x64 API Call¶

BLISTER can call 64-bit library functions through the use of special 64-bit function wrapper:

BLISTER utilizing 64-bit function library caller

64-bit function library caller
To make this call BLISTER switches between 32-bit to 64-bit code using the old Heaven’s Gate
technique:

Observed Heaven’s Gate byte sequences

https://blog.talosintelligence.com/2019/07/rats-and-stealers-rush-through-heavens.html


18/27

Heaven’s Gate - Transition to 64 bit mode

Heaven’s Gate - Transition to 32 bit mode

Unpacking Payload¶

During the unpacking process of the payload, the malware starts by allocating memory using
NtAllocateVirtualMemory and passing in configuration information. A memcpy  function is used to
store a copy of encrypted/compressed payload in a buffer for next stage (decryption).



19/27

Unpacking BLISTER payload

Deciphering¶

BLISTER leverages the Rabbit stream cipher, passing in the previously allocated buffer containing
the encrypted payload, the compressed data size along with the 16-byte deciphering key and 8-byte
IV.

Decipher function using the Rabbit cipher

Observed Rabbit Cipher Key and IV inside memory

Decompression¶

After the decryption stage, the payload is then decompressed using RtlDecompressBuffer with the
LZNT1  compression format.

Decompression function using LZNT1

Persistence Mechanism¶

To achieve persistence, BLISTER leverages Windows shortcuts by creating an LNK  file inside the
Windows startup folder. It creates a new directory using the CreateDirectoryW function with a
unique hardcoded string found in the configuration file such as: C:\ProgramData`UNIQUE STRING>`

https://en.wikipedia.org/wiki/Rabbit_(cipher)


20/27

BLISTER then copies C:\System32\rundll32.exe  and itself to the newly created directory and
renames the files to UNIQUE STRING>.exe  and UNIQUE STRING>.dll , respectively.

BLISTER uses the CopyModuleIntoFolder function and the IFileOperation Windows COM
interface for bypassing UAC when copying and renaming the files:

BLISTER function used to copy files
The malware creates an LNK  file using IShellLinkW COM interface and stores it in
C:\Users<username>\AppData\Roaming\Microsft\Windows\Start Menu\Startup  as UNIQUE
STRING>.lnk

Mapping shortcut to BLISTER with arguments
The LNK  file is set to run the export function LaunchColorCpl of the newly copied malware with
the renamed instance of rundll32. C:\ProgramData\UNIQUE STRING>\UNIQUE STRING>.exe
C:\ProgramData\UNIQUE STRING>\UNIQUE STRING>.dll,LaunchColorCpl

https://elastic.github.io/security-research/whitepapers/2022/02/03.exploring-windows-uac-bypass-techniques-detection-strategies/article/


21/27

Injecting Payload¶

BLISTER implements 3 different injection techniques to execute the payload according to the
configuration flag:

BLISTER injection techniques by config flag

Shellcode Execution¶

After decrypting the shellcode, BLISTER is able to inject it to a newly allocated read write memory
region with NtAllocateVirtualMemory API, it then copies the shellcode to it and it sets the memory
region to read write execute with NtProtectVirtualMemory and then executes it.

Execute shellcode function

Own Process Injection¶



22/27

BLISTER can execute DLL or Executable payloads reflectively in its memory space. It first creates a
section with NtCreateSection API.

RunPE function
BLISTER then tries to map a view on the created section at the payload’s preferred base address. In
case the preferred address is not available and the payload is an executable it will simply map a
view on the created section at a random address and then do relocation.

Check for conflicting addresses
Conversly, if the payload is a DLL, it will first unmap the memory region of the current process image
and then it will map a view on the created section with the payload’s preferred address.

DLL unmapping
BLISTER then calls a function to copy the PE headers and the sections.

Copying over PE/sections



23/27

Finally, BLISTER executes the loaded payload in memory starting from its entry point if the payload
is an executable. In case the payload is a DLL, it will find its export function according to the hash in
the config file and execute it.

Process Hollowing¶

BLISTER is able to perform process hollowing in a remote process:

First, there is an initial check for a specific module hash value ( 0x12453653 ), if met, BLISTER
performs process hollowing against the Internet Explorer executable.

Internet Explorer option for process hollowing
If not, the malware performs remote process hollowing with Werfault.exe. BLISTER follows
standard techniques used for process hollowing.

Process hollowing function
There is one path within this function: if certain criteria are met matching Windows OS versions and
build numbers the hollowing technique is performed by dropping a temporary file on disk within the
AppData folder titled Bg.Agent.ETW with an explicit extension.

Compatibility Condition check

https://attack.mitre.org/techniques/T1055/012/


24/27

Compatibility Condition function

Temporary file used to store payload
The malware uses this file to read and write malicious DLL to this file. Werfault.exe  is started by
BLISTER and then the contents of this temporary DLL are loaded into memory into the Werfault
process and the file is shortly deleted after.

Procmon output of compatibility function

Configuration Extractor¶

Automating the configuration and payload extraction from BLISTER is a key aspect when it comes to
threat hunting as it gives visibility of the campaign and the malware deployed by the threat actors
which enable us to discover new unknown samples and Cobalt Strike instances in a timely manner.

Our extractor uses a Rabbit stream cipher implementation and takes either a directory of samples
with -d option or -f for a single sample,

https://github.com/Robin-Pwner/Rabbit-Cipher


25/27

Config extractor output
To enable the community to further defend themselves against existing and new variants of the
BLISTER loader, we are making the configuration extractor open source under the Apache 2
License. The configuration extractor documentation and binary download can be accessed here.

Conclusion¶

BLISTER continues to be a formidable threat, punching above its own weight class, distributing
popular malware families and implants leading to major compromises. Elastic Security has been
tracking BLISTER for months and we see no signs of this family slowing down.

From reversing BLISTER, our team was able to identify key functionality such as different injection
methods, multiple techniques for defense evasion using anti-debug/anti-analysis features and heavy
reliance on Windows Native API’s. We also are releasing a configuration extractor that can statically
retrieve actionable information from BLISTER samples as well as dump out the embedded payloads.

Appendix¶

Configuration Structure¶

Configuration’s Flags¶

Hashing Algorithm¶

BLISTER hashing algorithm

https://elastic.github.io/security-research/tools/blister-config-extractor/


26/27

uint32_t HashLibraryName(wchar_t *name) { 
 uint32_t name {0}; 
 while (*name) { 
hash = ((hash >> 23) | (hash  << 9)) + *name++; 
 } 
 return hash ; 
} 

Indicators¶

Indicator Type Note

afb77617a4ca637614c429440c78da438e190dd1ca24dc78483aa731d80832c2 SHA256 BLISTER
DLL

YARA Rule¶

This updated YARA rule has shown a 13% improvement in detection rates.

BLISTER YARA rule

rule Windows_Trojan_BLISTER { 
   meta: 
       Author = "Elastic Security" 
       creation_date = "2022-04-29" 
       last_modified = "2022-04-29" 
       os = "Windows" 
       arch = "x86" 
       category_type = "Trojan" 
       family = "BLISTER" 
       threat_name = "Windows.Trojan.BLISTER" 
       description = "Detects BLISTER loader." 
       reference_sample = 
"afb77617a4ca637614c429440c78da438e190dd1ca24dc78483aa731d80832c2" 

   strings: 
       $a1 = { 8D 45 DC 89 5D EC 50 6A 04 8D 45 F0 50 8D 45 EC 50 6A FF FF D7 }
       $a2 = { 75 F7 39 4D FC 0F 85 F3 00 00 00 64 A1 30 00 00 00 53 57 89 75 }
       $a3 = { 78 03 C3 8B 48 20 8B 50 1C 03 CB 8B 78 24 03 D3 8B 40 18 03 FB 89 4D F8 89 
55 E0 89 45 E4 85 C0 74 3E 8B 09 8B D6 03 CB 8A 01 84 C0 74 17 C1 C2 09 0F BE C0 03 D0 41 8A 
01 84 C0 75 F1 81 FA B2 17 EB 41 74 27 8B 4D F8 83 C7 02 8B 45 F4 83 C1 04 40 89 4D F8 89 45 
F4 0F B7 C0 3B 45 E4 72 C2 8B FE 8B 45 04 B9 } 
       $b1 = { 65 48 8B 04 25 60 00 00 00 44 0F B7 DB 48 8B 48 ?? 48 8B 41 ?? C7 45 48 ?? 
?? ?? ?? 4C 8B 40 ?? 49 63 40 ?? } 
       $b2 = { B9 FF FF FF 7F 89 5D 40 8B C1 44 8D 63 ?? F0 44 01 65 40 49 2B C4 75 ?? 39 
4D 40 0F 85 ?? ?? ?? ?? 65 48 8B 04 25 60 00 00 00 44 0F B7 DB } 
   condition: 
       any of them 
} 

References¶

Artifacts¶

Artifacts are also available for download in both ECS and STIX format in a combined zip bundle.



27/27

Download indicators.zip

Last update: May 18, 2022 
Created: May 6, 2022

https://elastic.github.io/security-research/malware/2022/05/02.blister/indicators.zip

