Operation CuckooBees: A Winnti Malware Arsenal Deep-
Dive

&J cybereason.com/blog/operation-cuckoobees-a-winnti-malware-arsenal-deep-dive

BLOG

Operatlon
CuckooBeeS A
Malware Arsenal

Deep-Dive MALWARE

& cybereason

BLOG

Oper'atlon
CuckooBees A
Malware Arsena
Deep-Dive \

W cybereason

Written By
Cybereason Nocturnus

May 4, 2022 | 19 minute read

1/45

https://www.cybereason.com/blog/operation-cuckoobees-a-winnti-malware-arsenal-deep-dive

In part one of this research, the Cybereason Nocturnus Incident Response Team provided a
unique glimpse into the Winnti intrusion playbook, covering the techniques that were used by

the group from initial compromise to stealing the data, as observed and analyzed by the
Cybereason Incident Response team.

This part of the research zeroes in on the Winnti malware arsenal that was discovered during

the investigation conducted by the Cybereason IR and Nocturnus teams. In addition, our

analysis of the observed malware provides a deeper understanding of the elaborate and multi-
layered Winnti infection chain, including evasive maneuvers and stealth techniques that are

baked-in to the malware code, as well as the functionality of the various malware.

Perhaps one of the most interesting and striking aspects of this report is the level of

sophistication introduced by the malware authors. The infection and deployment chain is long,
complicated and interdependent—should one step go wrong, the entire chain collapses - making
it somewhat vulnerable, yet at the same time provides an extra level of security and stealth for

the operation.

These steps have proven themselves effective time and time again, as the operation remained

under-the-radar for years. While there have been past reports describing some aspects of

these intrusions, at the time of writing this report there was no publicly available research that

discussed all of the tools and techniques and the manner in which they all fit together, as
mentioned in this report.

Key Findings

Attribution to the Winnti APT Group: based on the analysis of the forensic artifacts,
Cybereason estimates with medium-high confidence that the perpetrators of the attack
are linked to the notorious Winnti APT group, a group that has existed since at least 2010
and is believed to be operating on behalf of Chinese state interests and specializes in
cyberespionage and intellectual property theft.

Discovery of New Malware in the Winnti Arsenal: the report exposes previously
undocumented malware strain called DEPLOYLOG used by the Winnti APT group and
highlights new versions of known Winnti malware, including Spyder Loader,
PRIVATELOG, and WINNKIT.

Rarely Seen Abuse of the Windows CLFS Feature: the attackers leveraged the
Windows CLFS mechanism and NTFS transaction manipulations which provided them
with the ability to conceal their payloads and evade detection by traditional security
products.

2/45

https://www.cybereason.com/blog/operation-cuckoobees-deep-dive-into-stealthy-winnti-techniques
https://www.cybereason.com/services/incident-response
https://attack.mitre.org/groups/G0044/

Intricate and Interdependent Payload Delivery: the report includes an analysis of the
complex infection chain that led to the deployment of the WINNKIT rootkit composed of
multiple interdependent components. The attackers implemented a delicate “house of
cards” approach, meaning that each component depends on the others to function
properly, making it very difficult to analyze each component separately. The malware from
the Winnti arsenal that are analyzed in this report include:

Spyder: A sophisticated modular backdoor

STASHLOG: The initial deployment tool “stashing” payloads in Windows CLFS

SPARKLOG: Extracts and deploys PRIVATELOG to gain privilege escalation and
achieve persistence

PRIVATELOG: Extracts and deploys DEPLOYLOG

DEPLOYLOG: Deploys the WINNKIT Rootkit and serves as a userland agent

WINNKIT: The Winnti Kernel-level Rootkit

The following graph describes the infection chain presented in this attack:

Externally Facing
Server Exploitation

¥

Installing
Persistence

Reconnaissance

=2 ;

Ny
&
&
<&

&2 i
& ™ Batch Execution {ES;] Execution

1

4,
GC(,

%
“n

Reconnaissance

[—]

=

SPARKLOG
Launcher

Execution

G
refbb
7

e [

Installation

STASHLOG
Installer

Spyder Loader

CLFS Log

Extracted

Comman d & Control

c2
Communication

Communication

Execution Execution

PRIVATELOG

DEPLOYLOG

Extraction

Extraction

Extracted

Winnti infection chain as observed in Operation CuckooBees

Initial Payload: Weaving in the Spyder Loader

2
Communication

WINNKIT

3/45

The Spyder loader is the first malicious binary the attackers execute on a targeted machine.
This malware is executed from the batch files we discussed in our blog’s part 1 - cc.bat or
bc.bat:

mj cc.bat - Motepad
File Edit Format View Help Batch
rundl132.exe C:\Windows\System32%iumatl.d1l1,#138 C:‘\Windows\5System32\x6d.tlb

file execution command
The loader’s purpose is to decrypt and load additional payloads and is being delivered in 2
variations. The first variation, is a modified SQLite3 DLL, that uses the export’s ordinal number

138 to serve malicious code, that loads and executes a file argument provided at runtime, in
our case C:\Windows\System32\x64.tIb:

sqlite3_profile 00000001 800ASCO0 137

sqlite3_profile_v2 00000001 20002080
Malicious export ordinal number 138 “sqlite3_profile v2”

As seen above, the loader is executed via the famous LOLBIN rundll32.exe, in the following
manner:

rundll32.exe <modified sqlite3.dll file>,#138 C:\Windows\System32\x64.tlb

Interestingly, Cybereason found this loader in different names and in different locations across
infected machines:

¢ C:\Windows\System32\iumatl.dll

¢ C:\Windows\System32\msdupld.dll
e C:\Windows\System32\mscuplt.dll
e C:\Windows\System32\msdupld.dll
o C:\Windows\System32\netapi.dll

o C:\Windows\System32\rpcutl.dll

o C:\Windows\System32\dot3utl.dll
e C:\Windows\System32\nisutl.dll

4/45

https://st.drweb.com/static/new-www/news/2021/march/BackDoor.Spyder.1_en.pdf

¢ C:\Windows\Branding\Basebrd\language.dll
o C:\Program Files\Internet Explore\SIGNUP\install.dll

The attackers utilized the System32 directory, which holds a multitude of TLB and DLL files, to
hide their external “TLB” payload and DLL loader to make it harder to detect.

This DLL wasn’t the only Spyder Loader we found, as Cybereason discovered a second
variation of this malware in the form of a standalone executable called sqlite3.exe,
masquerading as a SQLite3-related executable as well.

This version featured some improvements, such as logging messages, which shed some light
on some of its functionality and capabilities:

5/45

https://docs.microsoft.com/en-us/windows/win32/midl/com-dcom-and-type-libraries

sub
MmO
Xor
MoV
lea
Xor
MmOV
MmOV
mov
call
lea
MmOV
call
lea
lea
MmOV
call
cmp

jz

wmain proc near

nSize= dword ptr -158h
Block= gqword ptr -15@h
var_148= gqword ptr -148h
var_138= gqword ptr -138h
Buffer= byte ptr -128h
var_127= byte ptr -127h
var_18= gqword ptr -18h

rsp, 178h

rax, cs:qword JFF7594261408

rax, rsp

[rsp+178h+var_ 18], rax

rcx, [rsp+l78h+var 127] ; woid *
edx, edx ; Val

réd, 183h ; Size
[Prsp+178h+nSize], @
[rsp+178h+Buffer], @

memset

rcx, aProfileParsing ; "Profile parsing, part ¥u.\n’
edx, 1

printf

rdx, [rsp+l178h+nSize] ; nSize
rcx, [rsp+l78h+Buffer] ; lpBuffer
[rsp+178h+nSize], l@dh
cs:GetComputerilamed
[Frsp+178h+Buffer], @

short loc 7FF759332188

—

il e =

lea
Mo
call
lea
lea
call
cmp
jnz

rcx, aProfileParsing ; "Profile parsing, part ¥u.\n"
edwx, 2

printf

rdx, [rsp+178h+Buffer]

rcx, [rsp+l78h+Block]

sub_7FF759331DB@

[rsp+178h+var_14@8], @DBBARBh

short loc 7FF7593328EE

Malicious export ordinal number 138 “sqlite3_profile_v2”

The Spyder Loader Bag of Tricks

Throughout its execution, the Spider Loader implements a few interesting methods to evade

detection and to maintain stealth:

6/45

Anti Analysis/Sandboxing

At the beginning of execution, the loader checks if the file argument exists:

loc_7FF94C6B2115:
3 _ unwind { // GSHandlerChec

48 89 9C 24 (@ @l+mov [rsp+lB@h+arg_@], rbx
ea ea
33 DB xor ebx, ebx
45 33 C9 xor rod, rad ;3 lpSecurityAttributes
48 89 5C 24 3@ mov [rsptlBéh+hTemplateFile], rbx ; hTemplateFile
44 8D 43 el lea réd, [rbx+l] ; dwShareMode
BA 26 28 20 86 MoV edx, GENERIC_READ ; dwDesiredAccess
48 8B CF mov rcx, rdi ; lpFileName - C:\Windows\System32\x64.tlb
C7 44 24 28 80 B8+mov [rsp+lB@h+dwFlagsAndAttributes], 88h ; '€’ ; dwFlagsAndAttribute:
ee 8o ; + // starts at 7FF94C6B2115

lall

loc_7FF94C6B2136:
3 _unwind { // GSHandlerCheck

43 89 B4 24 C3 @l+mov [rsp+lB@h+arg_8], rsi

ee ea

89 5C 24 48 mov [rsp+lB@h+nSize], ebx

48 89 5C 24 48 mov qword ptr [rsp+l1BBh+FileSize], rbx

C7 44 24 20 @3 88+mov [rsp+lB@h+dwlreationDisposition], 3 ; dwCreationDisposition

20 oo

FF 15 36 E@ eC 88 call cs: imp Createfilel

File argument validation

If it does, the loader checks for its size: if it is larger than 1.04 MB, it deletes it; if it is smaller
than 1.04 MB or equal to it, it decrypts it in memory using the open-source CryptoPP C++
library and then deletes it from disk.

Cybereason assesses this condition is intended to validate that the loader won't try to decrypt
the wrong file, and as a precaution against analysis environments or Sandboxes.

EDR Bypass Tricks

After decrypting the payload, the attackers copy the system ntdll.dll file to
C:\Windows\System32\TN{random_characters}.dll, and load it to memory:

cmovnb rcx, [rsptlBBh+to_be system32_path] ; lpExistingFileName - C:\Windows\System32\ntdll.dll
mow réd, 1 ; bFailIfExists

lea rdx, [rbp+@Beh+system_dir_path] ; lpNewFileMame - C:\Windows\System32\TN{random_chars}.dll
call cs:CopyFileA

Copying ntdll.dll to C:\Windows\System32\TN{randoms_chars}.dll

Then, they acquire the NtProtectVirtualMemory address from the copied and loaded file and
call a specific routine (which we named as “BypassEdrHook”) multiple times using 2
arguments:

* The acquired address of NtProtectVirtualMemory in the loaded, copied DLL.

7/45

https://cryptopp.com/
https://attack.mitre.org/techniques/T1523/
https://attack.mitre.org/techniques/T1497/

» A string representing a native api function:

if (_TL_LTP':tectﬁi'tualTETc’y j_
1

BypassEdrHook(
(__inte4 (_ fastcall *}(__inte4, FARPROC *, _ inte4 *, _ int64, unsigned int *})TN_NtProtectVirtualMemory,
"LdrLoadDll™};

BypassEdrHook(
(__inte4 (_ fastcall *}(__inte4, FARPROC *, _ inte4 *, _ inte4, unsigned int *})::TN_NtProtectVirtualMemory,
"KiUserApcDispatcher™);

BypassEdrHook(
(__inte4 (_ fastcall *}(__inte4, FARPROC *, _ inte4 *, _ inte4, unsigned int *})::TN_NtProtectVirtualMemory,
"NtAlpcConnectPort™);

Calling for the BypassEdrHook routine

The BypassEdrHook function will compare the first bytes in memory of the native API functions
in the loaded ntdll.dll image to the first bytes in memory of the same function in the
loaded/copied DLL memory image.

If the ntdll function’s first bytes are different from the first bytes of the copied DLL in memory,
the attackers will conclude that this native function is hooked by an EDR tool.

To override it, the attackers count the number of different bytes at the beginning of these two
functions, then they change the permissions of the relevant patched bytes in the original ntdll.dll
image to READWRITE_EXECUTE, copy the original bytes from the loaded/copied DLL
memory, and restore the previous page protection settings:

ntdll_func_addr = GetProcAddress(ntdll_dll, called_function);
if (!'ntdll func_addr)

TN_d111 func_addr = GetProcAddress({TN_dl1l, called_functicn);
TN_d111 func_addr_copy = TN_d111_func_addr;
if (!TN_d111 func_addr)

counter = 8;
ntdll_func_addr_copy = ntdll_func_addr;
do

if (*ntdll_func_addr_copy == ntdll_func_addr_copy[(char *}TN_d111_func_addr - {(char *)ntdll_func_addr])
break;

+Hcounter;

+ntdll func_addr_copy;

while (counter < 180 };
if (!counter)

return &;
size = counter;
oldProtection = 8;
ntdll_func y_2 = ntdll_func_addr;
num_bytes = counter;
result = TN_NtProtectVirtualMemory(-1i64, &ntdll_func_addr_copy_2, &num_bytes, PAGE_EXECUTE_READWRITE, &cldProtection);
if (result »>= @)
{
memmove(ntdll_ func_addr, TH_dlll_func_addr_copy, (unsigned int)size);

num_bytes = size;

ntdll func_addr_copy_2 = ntdll func_addr;

TN_NtProtectVirtualMemory(-1i64, &ntdll_func_addr_copy_2, &num_bytes, oldProtection, &cldProtection);
return @;

¥
Check for EDR hook and bypass if true

This procedure will occur for the following native API functions:

e LdrLoadDIl

8/45

o KiUserApcDispatcher

¢ NtAlpcConnectPort

+ NtAllocateVirtualMemory
¢ NtFreeVirtualMemory

* NtMapViewOfSection

o NtQueueApcThread

+ NtReadVirtualMemory

o NtSetContextThread

o NtUnmapViewOfSection
o NtWriteVirtualMemory

¢ RitlinstallFunctionTableCallback

Right afterward, the Spyder Loader will execute the payload reflectively, and lastly, will delete
TN{random_characters}.dll to leave no traces.

Attribution of the Spyder Payloads

The above-mentioned PE files share similar code with other known Spyder loaders, such as the
oci.dll payload mentioned in a SonicWall blog from March 2021:

iumatl.dll oci.dll
- {char *juirtuslaioc((N(char “)sec + v + 48), *(Michar “)sce ¢ v + = (Jvirtualalloc(va[6], *((v TG+ 20), 8x3000u, 4u);
if (16) if (tvie)
{
f; , irtu (eiss, *((W5+ 20), Bx300Ru, 4u): = yvirtualalloc(@ied, =((i i)] + 28), 8x3008u, 4u);
if (!)
t (ERROR_OUTOFMEMORY) ; {
et oléa; >etLas (ERROR_OUTOFMEMORY) ;
return 9i64;
3()3 }
Jreapalloc(vi, 8, Gxdulee); }
i {te) - Ge eap();
{ = HeapAlloc(vi2, @, @x4duied);
—— (OxEu); .
(v6, 0164, BxBOOOU); if ()
eis64;
) {
[a] = ¢ y [1]
[2] = eles; (4] ;
[3] - edss; T .
3] - dless (2] = oi64;
[a] = ¢)LosdL ibrarya; [3] = ois4;
o JoetProcAddress; [5]
(6] = (VreeLibrary; (6] =
= Jirtus (w8, *((Je5 4+ 21), xleddu, 4u); ??] -
z‘(H ' irtualAlloc(vie, *((u t *)V9 4+ 21), Ox1000u, 4u);
memmove (10, £)0(()sre + 15) + *((s+ 1)) memmove(v1s, » int) Vo + 1) + *(() * 150);

Allocate-fnemory and save WINAPI functions in array

9/45

https://securitynews.sonicwall.com/xmlpost/chinas-winnti-spyder-module/

lumatl.dii

mov rcx, rbx
call sub _7FF242874550

loc_7FF942874979:

oci.dll

¥

mov rcx, rdi
call sub_188001200
Yy

loc_1B800016A4:

mov rex, rdi

call sub_l188ee1288

test eax, eax

jz short loc_188@016E1

rcx, rdi
sub_lBeeelere

ril, [rdi]

eax, [r11+28h]

eax, eax

short loc_180001711

[L

mowv rcx, rbx
call sub_7FF942874600
test eax, eax
jz short loc_7FF9428749BA
—
=
mov rcx, rbx
call sub_7FF9428743B0
test eax, eax
jz short loc_7FF9428749BA
=
mov rax, [rbx]
mov ecx, [rax+28h]
test ecx, ecx
z short loc_7FF942B749EA
—
x0r r8d, réd
lea rax, [rdit+rcx]
mow rcx, rdi
lea edx, [r8+1]
call rax
test eax, eax
jnz short loc 7FF942B749E3
Jump to the payload

Moreover, our PE files also share a similar evasion technique in masquerading as a legitimate
executable. In the aforementioned blog post, it disguised as D3D DLL - a Direct3D 11 runtime

DLL, now it disguise as SQLite3:

P

xor réd, rad

add rax, rbp

moy rcx, rbp

lea edx, [ré+l]

call rax

test eax, eax

jnz short loc_l8@66170A
] 1

10/45

Name Address Ordinal ‘Name Address Ordinal

{£] sqlite3_get_autocommit 00000001800ATAGD 97 '_R-] D3D110n12CreateDevice 000000018000FCHE 10
ﬁ sqlite3_get_auxdata 0000000180033470 98 A] DIDKMTCloseAdapter 000000018000FCAB 1
1£] sqlite3_get_table 0000D001800822C0 9 A D3DKMTCreateAllocation 000000018000FCEF 12
{#] sqlite3_global_recover 00000001800TEGAD 100 {A] DIDKMTCreateContext 000000018000FD34 13
_ﬂ sqlite3_initialize jumatl.dil 0D00000TB00A3520 1ot {A] D3DKMTCreateDevice oci.dll 000000018000FDT5 14
_ﬂ sqlite3 interrupt 0000000TE00A1B0 102 {A] D3DKMTCreateSynchronizationObject 000000018000FDC4 15
7] sqlte3_keyword_check 0000C00TEODATFE0 108 A] D3DKMTDestroyAllocation 000000012000FE13 16
(7] sqlite3_keyword_count 00000OOTE0DATFED 104 {A] DIDKMTDestroyContext 00000001 2000FESF 17
ﬁ “‘:"‘:frfy‘""’df""“: Wl:ﬁ;:‘;ﬁ 12; (] DIDKMTDestroyDevice 000000012000FEA2 18
7 “‘I::—fh"-'"?e"-"‘“' C”mwwgmsm 1or (] D3DKMTDestraySynchronizationObject 000000018000FEF3 19
sqlite3_libversion 0000000 7 ¢
0000001

|£] sqlite3_libversion_number 00000001800A3510 108 ﬁ g;gimg:zﬁe tSchedulingPri 1mE:TD ;10
(7] sqlite3.limit 0000D00180DABEED 109 b entextSchedulingPriority 0000000 ‘

7] sqlite3 load_extension 000000013006D7D0) |A] DIDKMTGetDeviceState 0000000 1E000FFD2 2

Same method with different targeted DLLs

These similarities, in addition to others, have led us to conclude that this file is an evolution of
the Winnti Spyder Loader.

A Long and Winnti(ng) Road: The Winnti Multi-Phased Arsenal
Deployment

After deploying the initial payload, Winnti employs a sophisticated and unique multi-staged
infection chain with numerous payloads. Each payload fulfills a unique role in the infection
chain, which is successful only upon the complete deployment of all of the payloads.

In the upcoming sections, we will discuss the following payloads:

o« STASHLOG: Stashes encrypted data in a CLFS log

« SPARKLOG: Extracts data from the CLFS log and deploys PRIVATELOG while
escalating privileges

+ PRIVATELOG: Extracts data from the CLFS log and deploys DEPLOYLOG. This payload
also enables persistence in some cases

« DEPLOYLOG: Extracts data from the CLFS log, deploys the WINNKIT Rootkit driver, and
acts as the user-mode agent

o WINNKIT: The Winnti Kernel-level Rootkit

Several unique techniques are used by the Winnti group to store data, evade detection, and
thwart investigations during this infection flow. One of those techniques, which Winnti heavily
uses, is the CLFS mechanism.

Abusing the Rarely Used CLFS Mechanism for Evasion

So what is CLFS?

CLES (Common Log File System) is a logging framework that was first introduced by Microsoft
in Windows Server 2003 R2, and is included in later Windows operating systems.

This mechanism provides a high-performance logging system for a variety of purposes ranging
from simple error logs to transactional systems and data stream collection.

11/45

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/introduction-to-the-common-log-file-system

One of the main uses of CLFS in the Windows operating system is in the Windows Kernel
Transaction Manager (KTM) for both Transactional NTFS (TxF) and Transactional Registry
(TxR) operations. Transactional operations bring the concept of atomic transactions to
Windows, allowing Windows to log different operations on those components and support the
ability to roll back if needed.

The high-performance aspect of this framework is based on the concept of storing the log data
in memory buffers for fast writing, reading and flushing them to disk—but not continuously,
according to a stated policy.

CLFS employs a proprietary file format that isn't documented, and can only be accessed
through the CLFS API functions. As of writing this report, there is no tool which can parse the
flushed logs. This is a huge benefit for attackers, as it makes it more difficult to examine and
detect them while using the CLFS mechanism.

On disk, the CLFS log store consists of:

e Base Log File (BLF file): Contains the log metadata.
¢ One or more Container files: Contains the log data, where the container file sizes are
registered in the BLF file.

As will be discussed, Winnti group used this mechanism to store and hide the payload that will
be extracted from the CLFS file and used by other PEs in the execution chain to build the
attacker’s next steps.

STASHLOG: Stashing the Winnti Arsenal via CLFS

CLFS Log
Installation

STASHLOG
Installer

CLFS Log

Spyder Loader

STASHLOG (shiver.exe / forsrv.exe) is a 32 bit executable that is being used to prepare the
victim machine for further compromise, and to “stash” a malicious, encrypted payload to a
CLFS log file. This payload will be decrypted at each phase to deliver the next phase in the
infection.

12/45

https://www.mandiant.com/resources/unknown-actor-using-clfs-log-files-for-stealth

Both STASHLOG and SPARKLOG, which will be described further in the next section, are
executed using a second cc.bat file in the following form:

| ccbat - Notepad — | X

File Edit Format View Help

k:\Nindows\AppPatch\Custom\CustomﬁfIL\Shiver*.exe C:\Windows\AppPatch\Custom\Custome4\log.dat >>
C:\Windows\AppPatch\Custom\Custome4\1.log

C:\Windows\AppPatch\Custom\Customée4\spark.exe

STASHLOG and SPARKLOG execution

Different Modes of Execution

STASHLOG has 2 modes of execution:

o Without arguments to initialize the environment towards infection.
+ With one argument to store the CLFS file for further use.

No Arguments Mode
When no arguments are passed, STASHLOG prints the following output:

N CAWindows\apppatch\Custom\Customéd\shiver.exe

ASB2C80-2CCA-ADEF-ASF2-6114CC8915AE}
. AdﬁthJFndDHFlDJLBT'F7“F7 E
6C9165B1C10826FAADBAS1FBO
FleFF~ FhEJJhFHﬂ5ﬂﬁﬁkEFDﬂ 65BBA
4396CO5BF582CB2

5
i,
[; ¥

I

A2

example of STASHLOG without an argument

This output consists of the machine Globally Unique Identifier (GUID) along with a 56 byte
string:

e The machine’s GUID - derived from the HKLM\SOFTWARE\Microsoft\Cryptography
registry key.

e The 56 byte string is generated from a random GUID created by the CoCreateGUID
function. The string consists of the hex representation of the GUID, SHA1 hash of the hex
GUID, and a SHA1 hash of the GUID + SHA1 of the GUID.

This example demonstrates the process of building the 56 byte string:

o Let’s take a random GUID: {4684A5A2-942A-4DF6-AF1D-2A672F78F73E}

¢ The random GUID’s Hex representation will be:
A2A584462A94F64DAF1D2A672F78F73E

e Its SHA1 will be: 12C736FE6C9165B1C1026FAADO051FBOF51DFF35

13/45

« And finally the SHA1 of (GUID + SHA1(GUID)):
FAB426F085460CEFD4A65B8A4396C05BF582CB20

The final string will be:

A2A584462A94F64DAF1D2A672F78F73E
12C736FE6C9165B1C1026FAADO051FBIF51DFF35
FAB426F085460CEFD4A65B8A4396C05BF582CB20

The random GUID is then registered as a global atom entry in the form of win::{GUID}:

-

CD9E = shel32.dl.-160 -—-Globalatom
CO9F = win::{4684A5A2-942A-4DF6-AF1D-2A672F78F73E} —Globalatom|JE
C0A1 = shel:::{2559a1f3-21d7-11d4-bdaf-00c04fe0b9f0} —-GlobalAtom

TNAT — 1 imkhfoninkEDrasad ¢ Cwmoarimeosnlod Mlak=l A drons

example of added Global Atom by STASHLOG

If an atom prefixed with win:: already exists during execution, then the existing atom will be
used instead of the newly generated one.

One Argument Mode

Upon execution with command line arguments, STASHLOG checks the existence of the global
atom table entry win::{GUID}, and the process will quit immediately unless the value exists.

Then, STASHLOG loads the file found in the given argument into memory, checks its content,
and stores it in a CLFS log file. STASHLOG prints log information about this process to the
terminal:

¢ Preparing for log format transformation
¢ Log transform step 1 completed

¢ Log transform step 2 completed

¢ Log transform step 3 completed

e Log data transform completed

e Successful STASHLOG execution log

This output in this operation was redirected to a log file, as can be seen on cc.bat. Breaking
down the transformation steps from the log:

o Step 1: Decrypt the given encrypted file and check the file validity
by looking for the destination BLF file location:
C:\Users\Default NTUSER.DAT{<GUID>}.TM.BLF. If the search yields no results,
STASHLOG will create this file.

o Step 2: Clear the targeted BLF file.

o Step 3: Encrypt the malicious data and write it to a CLFS file.

Anti-Analysis Techniques

String Obfuscation

14/45

Throughout the execution, STASHLOG uses the same string decryption technique used in
other samples by XORing strings with pre-defined bytes, words or qwords, using the XMM
registers. This decryption sequence is present at the beginning of every function that uses
strings, where those strings are not saved globally, likely in an attempt to protect them.

As can be seen in the example below from STASHLOG, it uses it to decrypt several debug
strings:

15/45

POFC191E 058 mov al, byte FF2835

PAFC1923 058 mov cl, byte FF2839
EBFC1929 058 movups xmm@, xmmword FF2930
PAFC1938 058 mov ah, byte FF2945
@OFC1936 @58 mov dl, 25h

POFC1938 058 mov ch, byte FF2A49
@OFC193E @58 xor al, 6Eh

@OFC1948 058 xorps xmm@, ds:xmmword FD9728
B@eOFC1947 @58 xor ch, ©B8h

POFC194A 058 mov byte FF2855, al
POFC194F 058 mov al, byte FF2836

@OFC1954 858 movups STR log prep_error, xmm@
@OFC195B 058 movups xmm@, xmmword FF29D@

POFC1962 @58 xor al, 9Ch

POFC1964 058 mov byte FF2856, al
@OFC1969 @58 mov al, byte FF2837
@OFC196E 058 xorps xmm@, ds:xmmword FD9738
@OFC1975 @58 xor al, 8Bh

POFC1977 058 mov byte FF2857, al
@OFC197C @58 mov al, byte FF2838

@OFC1981 858 movups STR log trans step 1, xmm@ String

EAFC1988 @58 movups xmm@, xmmword FF29E@

BOFC198F 658 xor al, @D7h

POFC1991 858 mov byte FF2858, al
BOFC1996 G528 mov al, OFDh

@OFC1998 058 xorps xmm@, ds:xmmword FD9748
@OFC199F 858 xor cl, al

POFC19A1 058 xor al, byte FF283D
@OFC19A7 @58 mov byte FF2859, cl
POFC19AD 858 mov cl, byte FF283A

OBFC19B3 058 movups xmmword FF2A10, xmm@
@OFC19BA 058 movups xmm@, xmmword FF2A30

@OFC19C1 @58 xor cl, 3Bh

POFC19C4 958 mov byte FF285A, cl
@OFC19CA @58 mov cl, byte FF283B
@OFC19D8 058 xorps xmm@, ds:xmmword FD9758
@aFC19D7 @58 xor cl, 68h

POFC19DA 0958 mov byte FF285B, cl
POFC19E@ 058 mov cl, byte FF283C

@OFC19E6 058 movups STR get dst file path _error, xmm@
decryption algorithm from shiver.exe

16/45

This technique is also being used in other samples in the chain, including SPARKLOG,
PRIVATELOG and DEPLOYLOG.

Anti-Disassembly

This sample uses an interesting Anti-Disassembly technique which thwarts the disassembly
process and makes the investigation job harder. Each function inside STASHLOG contains a
jump list of every node in the function:

data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:

POFF52E8
POFF52E8
PBFF52F0
OOFF52F4
POFF52F8
BBFF52FC
BOFF52FC
POFF5300
PBFF5304
PBFF5304
POFF5308
BBFF5308C
BBFF530C
PBFF5310
PBFF5314
POFF5318
BBFF531C
BBFF531C
POFF5320
PBFF5324
PBFF5328
BBFF532C
POFF5330
BOFF5334
BOFF5338
BBFF533C
BBFF533C
BBFF533C
OOFF5340
BOFF5340

50

84
84
84

8A
90

9D
9D

EA
58
58
58

56
70
70
70
72
7A
7A
7A
7C

24

25
25
25

25
25

25
25

28
24
24
24

24
24
24
21
24
24
24
24
24

FC

FC
FC
FC

FC
FC

FC
FC

FC
FC
FC
FC

FC
FC
FC
FC
FC
FC
FC
FC
FC

09 84 25 FC 00

00
00
00

00
00

00
00

e
oa
(5]
08

00
00
08
00
00
00
00
00
08

8A 24 FC @@ B2 25 FC @@

offset
offset
offset
offset
offset
; int (*off_FF52FC)(void)
off FF52FC dd offset

dd offset
; int (*off_FF5304)(void)
off_FF5304 dd offset

dd offset
; int (*off_FF530C) (void)
off FF538C dd offset

dd offset

dd offset

dd offset
; int (*off_FF531C)(void)
off_FF531C dd offset
offset
offset
offset
offset
offset
offset
offset
offset

off FF52ES

off_FF532C

off_FF533C

off_FF5340 dd offset

dd offset

Part of a Jump List from a function in STASHLOG

loc FC2450
loc_FC2584
loc_FC2584
loc FC2584
loc FC2584

loc FC258A
loc_FC2590

loc_FC259D
loc_FC259D

loc FC28EA
loc_FC2456
loc_FC2450
loc_FC2450

loc FC2456
loc FC2470
loc_FC2470
loc_FC2470
loc_FC2472
loc_FC247A
loc_FC247A
loc_FC247A
loc_FC247C

loc_FC248A
loc FC25B2

M M M W W

M M W W

[P I T P P P L P N P P T

DATA XREF:
jump table
jumptable
jumptable
jumptable

DATA XREF:

DATA XREF:

DATA XREF:
jumptable
jumptable
jumptable

DATA XREF:
loc_FC2472
loc_FC2472
loc_FC2472
DATA XREF:
loc_FC247C
loc_FC247C
loc_FC247C
DATA XREF:
iid retrie
True is er
DATA XREF:
jump table

Huge_switch+E621r
for switch statement
@OFC2449 case 1
POFC2449 case 1
POFC2449 case 1

e switch:loc FC25841r
uge_switch:loc_FC258ATr

Huge_switch+FC51r
POFC2449 case @
@OFC2449 case @
QOFC2449 case @

Huge_switch:loc_FC245@1r

e_switch+E841r

5

Huge_s
ve chec
r
Huge_switch+E9C*r
for switch statement

witch:loc_FC24721r

This jump list is then used as a flow control during the function execution. In some cases the
address of the next node will be pushed to a register and then there will be a JMP to this
reqgister:

17/45

PBFC2654 858 mov eax, off FF54BC

POFC2659 858 mov ecx, [esi+ldh]
ABFC265C 858 mov edx, [esi+8@Ch]
FFE
@OFC265F Jump
BRFC265F loc_ FC265F:
PBFC265F 858 jmp eax

to register

The more interesting use of the jump list is replacing the conditional jump commands like JZ
and JNZ with a SET command that changes the register given as an argument to the value of

the corresponding checked flag. For example, when using SETZ eax, the EAX register will be
changed to “1” if the “0” flag is checked.

Using the set register, there will be a JMP to an address on the function’s jump list. This JMP is
usually resolved for a switch-case mechanism, and IDA Pro disassembles it as one:

18/45

e [5

aae6d4le4ds
28641648 loc 641648:
8841645 xor eCx, ecx

aaedlodh test eax, eax
ea64164C setz cl
B864164F jmp off_675258[ecx™4]

Example of jmp usage in IDA Pro

Using this method, the disassembler displays all the available JMP options based on the
function’s jump list even though there are only two jump options - when the assigned register is
either 0 or 1 (in the example above it's the ECX register). These methods make the
disassembled function very hard to read and investigate:

19/45

,1'E,Gra|:hh OVErView O &/ X

Single function

tree as could be seen in IDA Pro

SPARKLOG: Deploying PRIVATELOG, the Next Link in the Infection Chain

SPARKLOG

.Q‘Q‘
& Launcher
& &
«F *
Iy,
On
)
NI W
Qe S}
'(l ™ Batch Execution _I Execution CLFS Log
° Installation
STASHLOG
Installer
5%9 CLFS Log
Q,(f
%

Spyder Loader

SPARKLOG (spark.exe) is a 32 bit executable written in C++, employed in this attack to extract

a DLL from the CLFS file, decrypt it and then launch it for side-loading by Windows services
running as SYSTEM. Executing this phase of the attack successfully enables the attackers to

20/45

https://twitter.com/ESETresearch/status/1433819571207774209?s=20&t=vQjvuSCLkka_ZKrngChcYg

gain Privilege Escalation and also Persistence in a specific case.

SPARKLOG Execution Flow

The execution of SPARKLOG starts by creating a non-visible window followed by a message

posted to trigger the execution of the main thread:

_ Y
il e =]
push eax ; hMem
call ds:LocalFree
call ds:GetCurrentThreadId
mow idThread, eax
mov hInstance, esi
push & ; lpParam
push esi ; hInstance
push @ ; hMenu
push @ ; huWndParent
push @ ; nHeight
push gepaesaeh ; nWidth
push g ;Y
push geepaaaah ; X
push aCreaaeh ; dwsStyle
push offset WindowName ; lpWindowName
push offset ClassName ; lpClassName
push @ ; dwExStyle
call ds:CreatelindowExA
test eax, eax
jz loc_55FB2
i 4
ol i =]

push eax ; hkind

call ds:UpdateWindow

push &60h ; lpTableName

push esi ; hInstance

call ds:LoadAcceleratorsA

maw esi, eax

push 8 ; int

push 8 ; dwStackSize

push offset sub 55FA8 ; lpModuleMame

call sub_5A391

add esp, BCh

push 8 ; wMsgFilterMax

push 8 ; wMsgFilterMin

push @ ; huWnd

push edi ; lpMsg

call ds:GetMessageh

test eax, eax

jz short loc_55F78

Non-visible window creation

The PE then retrieves an encrypted DLL content from the CLFS log file, decrypts it and gets the

OS version in use. This OS version will be required later to understand how to deploy the DLL
in the compromised machine. Then, it decrypts the strings Global\HVID _and Global\APCI#.
First, it uses the GetVolumeNameForVolumeMountPointA API call to get the GUID of the
operating system volume and acquires a handle to a HVID _<OS Volume GUID> event.

21/45

https://attack.mitre.org/tactics/TA0004/
https://attack.mitre.org/tactics/TA0003/

Then, it queries the MachineGUID value from the registry
HKLM\SOFTWARE\Microsoft\Cryptography key and creates an event by the name of
Global\APC#<Machine GUID>. Using these events is a means of communication between the
modules in the attack, and it will be used in further modules as well:

Ly D LEr 1w 0 I Ty LCU'—'TLUUELEJ} Tr

88 a8 86 e

68 @4 21 oo o8 push 1@4h ; Size

68 F@ 32 30 06 push offset aGlobalHvid ; "Global‘\\HVID "
56 push esi ; wvoid *

E8 7A 57 @@ @@ call memmove @

83 C4 ac add esp, BCh

8D 90 E4 FC FF FF lea ebx, [ebp+APCIEvent]

68 B8 92 00 0O push 288h ; Size

68 F4 33 3@ ee push offset aGlobalApci ; "Global‘\\APCI#"
53 push ebx ; wvoid *

E8 61 57 @@ 88 call _memmove_@

83 C4 Bc add esp, BCh

56 push esi ; Str - HVID
E8 93 37 00 06 call _strlen

83 C4 b4 add esp, 4

B9 a4 81 90 A8 mov ecx, 184h

29 C1 sub ECH, EAX

8D 84 B85 EC FE FF+lea eax, [ebpt+eax+HVIDEvent]

FF

51 push eCx 3 SizelInBytes
58 push eax ; Destination
EE8 48 FD FF FF call GetVolGuid

Building the HVID_ and APCI# events

Next, it starts to deploy PRIVATELOG based on the OS version. From Windows Vista to
Windows 7, SPARKLOG uses a popular DLL side loading technique that involves dropping the
DLL with the name wibsctrl.dll to the %SYSTEM32%\WindowsPowershell\v1.0 directory. It then
stops IKEEXT, a service that was compromised by WINNTI in the past, changes the
configuration using ChangeServiceConfigA based on the argument count, then starts it again:

o

Mame PID Description Status Group 2
Lo lossve Windows Mobile Hotspot Service Stopped Local5ervicelM...
{0 IKEEXT IKE and AuthlP IPsec Keying Modules Stopped netsvecs '

Stopped IKEEXT service

22/45

https://github.com/securycore/Ikeext-Privesc
https://speakerdeck.com/aragorntseng/winnti-is-coming-evolution-after-prosecution-at-hitcon2021?slide=23

‘ vy
Mz
loc_55470:
cmp [ebp+arg @], @
jz loc_55587
= ' = '
M Lol i [-=]
push 2 ; dwStartType
push offset IKEEXT ; lpSerwviceName| |loc_55587: ; dwStartType
call ChangeServiceConfigh @ push 3
add esp, 3 push offset IKEEXT ; lpSerwiceName
jmp loc_55596 call ChangeServiceConfigh @
add

esp, 8
L)

Change IKEEXT service configuration based on argument count

After a successful service start, the service executes and triggers the DLL side-loading
vulnerability using SYSTEM privileges. It is interesting to note that in this case, if a command
line argument is provided, the DLL will be deleted after the execution starts. This might be due
to the fact that abusing wibsctrl.dll is pretty common, and might trigger EDR vendors later on.

From Windows Server 2012 to Windows 10, SPARKLOG acts in a similar fashion, but with a
different name and location:

¢ |t drops PRIVATELOG with the name prntvpt.dll to the %SYSTEM32%\spool\drivers\x64\3

directory

« |t then stops, changes configuration and starts the PrintNotify service to side-load the DLL
(PrintNotify is a legitimate Windows service like IKEEXT, also running as SYSTEM):

Y

lall =

mov esi, eax

push 24h ; dwDesiredAccess

push [ebp+lpSE'viCEHdme] ; lpServiceName - PrintMotify

push eax ; h5CManager

call ds:0penServicef

test eax, eax

jz loc_547@2

_ h J
i e =

mov edi, eax
lea eax, [esp+eCh+pcbBytesNeeded]
lea ecx, [esp+eCh+Buffer]
push eax ; pcbBytesNeeded
push 24h ; cbBufsize
push ecx ; lpBuffer
push @ ; Infolevel
push edi ; hService
call ds:QueryServiceStatusEx
test eax, eax
jz short loc_54784

Opening and quérying the PrintNotify service

In both cases, the attackers gain stealth by deploying PRIVATELOG while masquerading
legitimate file names in privileged locations, as well as gaining persistence and privilege
escalation to execute their next step as SYSTEM, the most privileged user in a local machine:

23/45

http://elastic.co/guide/en/security/current/suspicious-dll-loaded-for-persistence-or-privilege-escalation.html

svchost exe

)
"o
P =

®/'

spark exs
(QQ ®)

Spark.exe execution as seen in Cybereason’s XDR Platform

PRIVATELOG: Extracting and Deploying DEPLOYLOG

Execution

&
Se SPARKLOG
O
z Launcher
<& ﬁ'('re _ Extracted
q’o,,
=1
o7 R , ®
..... °
{; l ~ Batch Execution @ 22 Execution N CLFS Log =
¢ Installation _—
STASHLOG
Installer
CLFS Log
Gﬁ%

Spyder Loader

PRIVATELOG is a module that exists in 2 forms:

o Wibsctrl.dll: A DLL to be side-loaded by the IKEEXT service, aiming to execute on
Windows Vista to Windows 7 operating systems.

e Prntvpt.dil: A DLL to be side loaded by the PrintNotify service, aiming to execute on
Windows Server 2012 to Windows 10 operating systems.

As both of the DLLs are being loaded by native Windows services, they both live in the context
of the svchost process, but differ in their execution flow.

The IKEEXT Hijacker

At the beginning of its execution, wibsctrl.dll is loaded by the IKEEXT service and verifies
similarly to prntvpt.dil that it's being executed from svchost using the right command line
(netsvces). After this check, wibsctrl.dll goes straight to dropping DEPLOYLOG.

The PrintNotify Hijacker

24/45

https://www.mandiant.com/resources/unknown-actor-using-clfs-log-files-for-stealth
https://en.wikipedia.org/wiki/Svchost.exe

At the beginning of its execution, prntvpt.dil verifies it is being loaded by the correct process
with the right command line (svchost -k print), similar to wibsctrl.dll. This command line is the
one being executed upon starting the PrintNotify service.

When the PrintNotify service starts, it also loads PrintConfig.dll, which is being executed from
its ServiceMain function. To hijack the execution flow, prntvpt.dll loads PrintConfig.dll and
acquires the address of its ServiceMain function. Then, it patches this function, and adds a
jump instruction to itself, to continue its execution.

The prntvpt.dll component is different, as it is also the persistence tool for the infection, as
opposed to the previous samples we discussed which execute only once to infect the machine,
this tool runs every time the PrintNotify service is executed. From this point on, the different
DLL files act almost the same.

Dropping DEPLOYLOG

PRIVATELOG decrypts DEPLOYLOG in memory from the CLFS log file, then it copies
dbghelp.dll from its original place in C:\Windows\System32\dbghelp.dll to
C:\Windows\System32\WindowsPowerShell\v1.0\dbghelp.dll. Next, the attackers use a rather
unique technique to overwrite the copied dbghelp.dll with the aforementioned decrypted buffer
using Windows Transactional NTFS (TxF).

Transactional NTFS is a component introduced in Windows Vista that allows developers to
create, edit and delete files and directories while giving them the option to roll back in case of
errors. This mechanism is used in major operating system components like Windows Update,
Task Scheduler and System Restore.

Using Transactional NTFS, the attackers can perform file operations using unconventional
methods that can be hard to detect for some security products. They leverage it to create a new
malicious dbghelp.dll using the following steps:

25/45

https://docs.microsoft.com/en-us/windows/win32/fileio/transactional-ntfs-portal

1. A transaction handle is created for dbghelp.dll:
» CreateTransaction: Creates a new transaction object
» CreateFileTransactedA: with GENERIC_READ_WRITE access.
2. The file is overwritten with the decrypted payload:
WriteFile: On the transacted file handle.
3. Load the file to a memory section (more about this method is covered here):

» NtCreateSection: with the SEC_IMAGE section attribute.

s NtMapViewOfSection: Mapping the file view in the created section which
validates the PE header and splits the section, but doesn’t build the import
address table and set section permissions.

4. Set the right section permissions and resolve the imports of the DLL.:

= Fixing section permissions using VirtualProtect calls.

= Building the DLL’s import address table with LoadLibrary and GetProcAddress
calls.

5. Execute the DEPLOYLOG payload entry point followed by the SvcMain.

DEPLOYLOG: The Winnti Rootkit Deployment and A Usermode Agent

Execution Execution

PRIVATELOG

< SPARKLOG
QE‘

Launcher

<& 5*!,‘9 Extracted
Cr

% Extraction

' T » .
o7 ok £
(?\9 ’ Batch Execution il Execution @ CLFS Log @

Installation

Extracted
STASHLOG
Installer

CLFS Log
e, 7

Y

@

Spyder Loader

DEPLOYLOG (dbghelp.dll) is a 64 bit DLL, with two purposes:

o The first one is responsible for extracting and executing the attackers’ rootkit, dubbed
WINNKIT, from the CLFS log file.

» After a successful deployment of the WINNKIT rootkit, DEPLOYLOG switches to its
second task, which is communicating both with the remote C2 and the kernel-level
rootkit.

26/45

https://www.ired.team/offensive-security/code-injection-process-injection/ntcreatesection-+-ntmapviewofsection-code-injection

It's noteworthy to mention that to evade detection, the attackers deployed DEPLOYLOG as
dbghelp.dll, a generic, widely used name leveraged to masquerade as a legitimate file at the
same location as PRIVATELOG (C:\Windows\System32\WindowsPowerShell\v1.0).

DEPLOYLOG Initialization

Once DEPLOYLOG is executed, it starts with a sleep of 7777 milliseconds:

il e [5

; wvold cdecl sub FFF9422F51BF (void *)
sub 7FF9422F51BF proc near

sub rsp, 28h | |

Mo ECE, 7777 3 dwMilliseconds Figure #: Sleep
call cs:5leep

nop

add rsp, 28h

Jjmp main

sub 7FF9422F51BF endp

before the main method

Afterward, it tries to acquire a handle to the earlier HVID _<OS Volume GUID> event, and If it
doesn’t exist it creates it. Then, it initializes the communication channel with the future deployed
rootkit:

o First, it tries to acquire a handle to the Beep device object: \\?
\GLOBALROOT\Device\Beep.

o If it fails, it tries to do the same for \2\GLOBALROOT\Device\Null. To test if the rootkit
was deployed in the past and is running, DEPLOYLOG tries to send the IOCTL 715E030 to
the acquired device handle:

27/45

https://en.wikipedia.org/wiki/Ioctl

memset{vi, @, exleduisd);

memset({v7, @, Bxled4uisd);

device_handle = (__inte4)}CreateFileA(A/ WGNGLOBALROOT\Device\Beep
beep _str,

H GENERIC_NRITE|GENERIC_RE&D,

! FILESHARE_CHANGE_MODIFY,

| Picd,

OPEN_EXISTING,

FILE_ATTRIBUTE_DEVICE,

Bi6d);
if { device_handle == -1)
device_handle = (__inte4)}CreateFileA(J/OWNNGLOBALROOT\Device\Null
null str,
GEMERIC WRITE|GEMERIC READ,
I 3u,
Picd,
OPEN_EXISTING,
FILE_ATTRIBUTE_DEWICE,
Bi64);
if { device_handle == -1)
1
i device_handle = -1is4;
"ILABEL_8:
; w3 = GetLlastError();
| goto Error;
' ¥
h
v7[8] = 16; |
vaE[B] = B;

¥
if { !DeviceloControl({HANDLE)device handle, @x15E@30u, v7, Bu, v8, 8x1e4du,
goto LABEL &;
i[Error:
CloseHandle{ (HANDLEYdewvice handle};
i return v3;

DEPLOYLOG gets handles to device objects and sends an IOCTL

WINNKIT Deployment

vG, Bi64))

Upon succeeding the earlier steps, DEPLOYLOG extracts the rootkit from the CLFS log file,
decrypts its content, then stops the amdk8 service. This service is the AMD K8 processor
kernel driver service. Aiming for this specific service can tell something about the Winnti modus
operandi, indicating they aim only for AMD-related machines to be infected, which could also

indicate having a prior knowledge of the victim's infrastructure.

Then, DEPLOYLOG decrypts the string SystemRoot\System32\drivers\bqDsp.sys and changes

the amdk8 service configuration to point to this path:

28/45

http://revertservice.com/7/amdk8/

49 8B 4C 24 1@ mow rex, [rl2+418h] ; Stringl - C:\System32\drivers\amdks.sys
48 89 FA mov rdx, rdi 3 String2 - Ci\System32\drivers\bgqDsp.sys
E8 A5 (3 84 e call _stricmp
31 DB xor ebw, ebx
35 €@ test eax, eax
74 58 jz short loc_7FF94C7@4D91
Y
FEE
49 8B 74 24 1@ mov rsi, [rl2+18h]
48 89 F1 mov rcx, rsi 3 Str
E3 1A BD &4 ee call strlen
4C 39 F9 mov rcx, rils ; woid *
48 89 F2 mov rdx, rsi 3 Src
49 39 C@ mov rg, rax ; Size
E3 48 D6 FF FF call _memove
BF 57 C8 xorps Xmmé, xmme
BF 11 44 24 48 movups xmmword ptr [rsp+@A8h+lpPassword], xmm@ ; lpPassword
BF 11 44 24 38 movups xmmword ptr [rsp+H@ABh+lpDependencies], xmm@ ; lpDependencies
BF 11 44 24 28 movups xmmword ptr [rsp+H@ASh+lpleadOrderGroup], xmm@ ; lploadOrderGroup
48 89 7C 24 2@ mov [rsp+@Agh+1lpBinaryPathiame], rdi ; lpBinaryPathMame - C:\System32\driwvers\bqDsp.sys
4C 89 F1 mov rcx, rilg ; hservice
BA FF FF FF FF MoV h ; dwserviceType
41 B8 FF FF FF FF mow FFh ; dwStartType
41 B9 FF FF FF FF mov h ; dwErrorControl
FF 15 7B A2 @5 @8 call c€s:ChangeServiceConfigh
85 Ce test eax, eax
75 @83 jnz short loc_7FF94({784D91

Changing amdk8 service configuration to execute WINNKIT

Next, DEPLOYLOG writes the bgDsp.sys rootkit driver from the CLFS log file to the

C:\WINDOWS\system32\drivers directory and starts the service again, this time to execute its
malicious payload. By doing so, DEPLOYLOG finishes deploying the rootkit. To cover its tracks,

DEPLOYLOG will then stop the service, restore its previous configuration to point to the
amdk8.sys driver, and finally delete WINNKIT:

29/45

s ee e - Cops me
43 C7 44 24 38 @B+mov [rsp+3@@h+hTemplateFile], @ ; hTemplateFile
Be g2 Be
C7 44 24 23 5@ @8+mov [rsp+3@eh+dwFlagsandAttributes], 88h ; "€’ ; dwFlagsAndAttributes
Be aa
C7 44 24 28 83 @B+mov [rsp+3@8h+dwCreationDisposition], 3 ; dwCreationDisposition
ge aa
4C 89 F1 mowv rcx, rld ; lpFileName - \\.\Pipe2PortCtrl
Generic_RW: 3 dwDesiredAccess
BA @8 68 BB (8 mov edx, GENERIC_WRITE or GEMERIC_READ
41 B8 €1 B8 8@ BB mov red, 1 3 dwShareMode
45 31 C9 xor rad, rad 3 lpSecurityAttributes
FF 15 84 98 85 @8 call cs:CreateFileld
43 B3 C4 48 add rsp, 48h
43 83 F8 FF cmp rax, BFFFFFFFFFFFFFFFFh
BF B4 CB ee eg . jz loc_7FF94C7861A5
1 Y
[l s =
48 BB 4D F@ mow rcx, [rbp+4@h+lpBytesReturned]
89 19 mov [rex], ebx
48 B3 EC 48 sub rsp, 48h
48 B9 5C 24 38 mow [rsp+3@@h+lpOverlapped], rbx ; lpOverlapped
48 39 4C 24 3@ mov [rsp+3@eh+hTemplateFile], rcx ; lpBytesReturned
89 5C 24 23 mowv [rsp+3@@h+dwFlagsAndAttributes], ebx ; nOutBufferSize
48 B9 5C 24 28 mow gqword ptr [rsp+3@Bh+dwCreationDisposition], rbx ; lpOutBuffer
48 89 C3 mov rbx, rax
43 89 C1 mowv rox, rax 3 hDewvice
BA B4 (B BR 38 mov edx, 8@eBCeash ; dwIoControlCode
49 89 F@ mov rg, rsi 3 lpInBuffer
4C BB 4D F8 mow r9, gqword ptr [rbp+4@h+nInBuffersSize] ; nInBufferSize
FF 15 B9 8F @5 @@ call cs:DeviceIloControl
—AA - Al

Sending WINNKIT the IOCTL 0x8000C004 using Pipe2PortCtrl

DEPLOYLOG as a User-Mode Agent

Once deployed, DEPLOYLOG turns to its second mission, effectively acting as a user-mode
agent whose purpose is to bridge the newly deployed rootkit and the remote C2. The DLL will
start communicating with the C2 servers which will send data that will be intercepted by the
driver, as will be explained in the next section discussing WINNKIT. Using this agent, the
attackers will load new modules, pop a CMD shell, drop MFSDLL.exe for credential grabbing
and more:

wininit.exe
(&

« Execution

& services.exe

&2 5 children
False

» Printer Extensions and Motifications

) ™ N 57 loaded modules
(G SENVICES.EXE G)
e = /

Q dbg

dbghelp.dll @

@ View all elements

NO#F

svchost.exe
(:;53 ® o

DEPLOYLOG loaded by svchost.exe as seen in the Cybereason XDR Platform

30/45

Behold WINNKIT, The Evasive Winnti Rootkit

Command & Control

c2
c2 Communication
Communication

Communication

Execution Execution Execution

o PRIVATELOG DEPLOYLOG
0;9 SPARKLOG
& Launcher
& &”a Extracted
U, .
n Extraction
)
<L @ -
@ ° @ (ﬁ“\ Extraction
'/l ™ gatch Execution 53:}_ Execution CLFS Log =
¢ Installation = Extracted
STASHLOG
Installer
€+g CLFS Log
Cy,
©n

Spyder Loader

The final payload deployed by Winnti is also the most evasive and sophisticated: a driver acting
as a rootkit, dubbed WINNKIT. WINNKIT’s previous version was researched in the past, and its
purpose is to act as a kernel-mode agent, interacting with the user-mode agent and intercepting
TCP/IP requests, by talking directly to the network card. The almost zero detection rate in
VirusTotal, together with the compilation timestamp from 2019, illustrates just how evasive this
rootkit really is, staying in the shadows for 3 years:

a
1 @ 1 security vendor and no sandboxes flagged this file as malicious
\.,_______,/
ele0b887bAB307ed192d3932886d8b982e4221d2322e13c2f20cd0BFF1358594
BoDisplay.sys
rl
4dbits assembly inwalid-signature native owverlay peexe signed
be Community o
Score

Low detection rate in VirusTotal

31/45

https://exatrack.com/public/winnti_EN.pdf

compiler-stamp OxBCDOFFA7 (Tue May 07 06:45:11 2019)
debugger-stamp

resources-stamp

exports-stamp The
version-stamp

certificate-stamp OxB7EBCOOO0 (Wed Mar 28 02:00:00 2012)

rootkit’s compilation timestamp

WINNKIT contains an expired BenQ digital signature, which is leveraged to bypass the Driver
Signature Enforcement (DSE) mechanism that requires drivers to be properly signed with
digital signatures in order to be loaded successfully. This mechanism was first introduced in
Windows Vista 64-bit, and is affected for all versions of Windows since then:

Signature Info
Signature Verification

A File signature could not be verified

File Veersion | ion

® Varsion Informatio Revoked rootkit certificate and file version
Copyright Copyright (C) 2019

Product Monitor Display Driver

Description Maonitor Display Driver

Original Name BgDisplay.sys
Internal Name BgDisplay.sys
File Version 2.1.75.491
information as seen in VirusTotal
After successfully loading, WINNKIT hooks network communication, and operates based on

custom commands that are being sent from the aforementioned user-mode agent,
DEPLOYLOG.

At the beginning of its execution, the driver validates the NDIS version, making sure the system
is Windows Vista or above. By using the NDIS API, it communicates directly with the network
card, skipping higher level communication protocols:

32/45

https://j00ru.vexillium.org/2012/11/defeating-windows-driver-signature-enforcement-part-1-default-drivers/https://j00ru.vexillium.org/2012/11/defeating-windows-driver-signature-enforcement-part-1-default-drivers/
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/ndis-drivers

* (_QWORD *)EParameters.PoolTag = L"IPSecMiniPort"™;
*{_DWORD *)&StringZ.Length = OxCO00A;
StringZ.Buffer = L"TCPIP";
ProtocolCharacteristics.Header.Type = 0;
memset (EFrotocolCharacteristics.Header.Revision, 0, O0x77uiéd);
if (!dword_ 14000A32C)
{
v3 = HdisGetVersion();
dword 14000A520 = v3;
if (v3 1= HNDIS RUNTIME VERSION &0)
{
if (v3 == HDIS_RUNTIME VERSION_&1)
{

dword 14000A524 = 0x3C0;
dword 14000A52C = 0x180;
dword 14000A528 = 0x338;

goto LABEL_ 12;
WINNKIT’s communication with the network card

After establishing a connection with the network card, the rootkit tries to open the event
\\BaseNamedObjects\\{75F09225-CD50-460B-BF90-5743B8404D73}. In case it fails, it creates
this event, and then hooks the \\Device\\Null device. Hooking this device is somehow risky, as
this device is often being targeted by modern rootkit, thus making it relatively exposed to
detection. Nevertheless, it enabled the authors to stay undetected for years.

Using the above mentioned mechanisms enables WINNKIT a mean of communication with the
user mode agent:

33/45

ObjectName.Length = @;

*(QWORD *)&0bjectName.MaximumLength = @i64;

*{_DWORD *)((char *)&0bjectName.Buffer + 2) = 8;
HIWORD(ObjectName.Buffer) = 8;

if { L"\\BaseNamedObjects\\{75F@9225-CD50-4608B-BF9@-574368484D73}1")
{

Handle = @ig4;

flag = @;

vE = @;

memset(Dst, @, sizeof(Dst)});

event guid.Length = 8;

*(_QWORD *)&event_guid.MaximumLength = @igd;

*{ _DWORD *)((char *)&event_guid.Buffer + 2) = 8;
HIWORD(event guid.Buffer) = @;
RtlInitUnicodeString(&event_guid, L"\\BaseNamedObjects\\{75F@9225-CD58-468B-BFO@-5743B8484D73}");
vE = 48;

Dst[@] = eisd;

Dst[1] = (__inte4)&event_guid;

LODWORD{Dst[2]) = 7@4;

Dst[3] = eied;

Dst[4] = eisd;

named_event = IwlpenEvent(&Handle, @xSeee0eeeicd, &veE);
if { named_event < @)

i

if { IoCreateSynchronizationEvent(&esvent guid, &Handle))

1

named_ewvent = @;

¥

else

1
Handle = @iG4;
named_ewvent = STATUS_UNSUCCESSFUL;

3
}

else

1
flag = 1;
ZwClose(Handle);
Handle = @ig4;

}
WINNKIT event creation

RtlInitUnicodeString (E0bjectName, L"\‘\Device‘\Null"};
vl = IoGetDeviceObjectPointer (&0bjectName, 1lu, &0Object, EDevicelbject);
if (w0 »>= 0)
{
vz = DeviceObject->DriverObiject;
if ([vz)
{
gword 14000A320 = (__intéd (*) (void))vi->MajorFunction[0xE];
vi->*MajorFunction[l4] = (FDREIVEE_DISPATCH) sub_ 14000Z27A4;
}
else
{
ZwClose (Handle) ;
Handle = 0iéd4;
ObfDereferencelbject (Object) ;
DeviceObject = 0i&4d;
Object = 0164;
vl = =107374177Z;
}
}

WINNKIT hooks the \\Device\\Null device object

34/45

if (v9 4+ B <= v7)
{
switeh (*(_DWORD *)Srec)
{

case 0xl100:

vlid = (unsigned int *)ExAllocatePool (NonPagedPool, v7);

vls v1id;
if (via)
{

memmove (vid, Src, v10);
v4 = sub_1400011CC(v15 4+ 2, w153[1l], a3, a4d);
ExFreePoolWithTag(vls, 0Q);
}
break;
case 0x200:
if (a3 && *ad >= 4u)

{
vd = 1;
*53 = 41355045915;
*ad = 4;

}

break;

case 0x300:
if (a3 && *ad >= (Ox5EAu)

The switch case that handling different commands

A summary of the communication flow of DEPLOYLOG and WINNKIT, can be seen in the

following diagram:

35/45

DEPLOYLOG

Hooks

WINNKIT NDIS

Rootkit high level operation diagram

Below are the functionality we believe that each code represents, according to our findings and
previous conducted research:

Command Operation

0x100 Hide driver

0x200 Determine version

0x300 Access IRQL shared data
0x400 Map and allocate buffer

36/45

0x500 Map a buffer

0x800 Clean up

Winnti Auxiliary Plugins

Winnti used reflective loading injection in order to evade detection. The malicious modules are
reflectively injected into the legitimate svchost processes. The following modules were detected
by Cybereason and seem consistent with previously reported Winnti plugins:

e Cmp2.0: The plugin's purpose is to provide access to the system command line and
appears to be a variant of the Winnti "CmdPlus" plugin.

* Fmg2.0: This plugin is responsible for listing and modifying files on the targeted machine
and appears to be the Winnti "ListFileManager" module.

e Srv2.0: The purpose of the plugin is to display information about system services and is
assessed to be the Winnti “ListService” plugin.

¢ Sck2.0: The purpose of the plugin is to transfer data over the network using a SOCKS5
proxy server and is assessed to be the “Socks5Client” plugin.

¢ Prc2.o: This plugin can list or kill running processes on the targeted machine.

e Trs2.0: This plugin was also used for data transfer via Socks5 proxy.

¢ Cme2.0: The purpose of this plugin is to enable Remote Desktop access to Winnti:

Windows

_\ E Windows Server 2012 R2
c svchost.exe)8 version
L5 enoste S
N A
= Execution
& services.exe
T cmd.exe Parent process
@]:a & 5 children
False
A Printer Extensions and Notifications
cmd.exe) 1 48 loaded modules
Q floating
cmd.exe) Be{FGLT

@ View all elements
cmd.exe)

@y

Example: svchost process that loaded sck2.0 and trs2.0 modules reflectively, as seen in the
Cybereason XDR Platform

Conclusions

37/45

https://securelist.com/winnti-1-0-technical-analysis/37002/

In part two of the research, we provided a deep dive into the Winnti malware arsenal that was
observed by the Cybereason IR and Nocturnus teams. Our analysis provides a unique and
holistic view of Winnti operational aspects, capabilities and modus operandi. While some of the
tools mentioned in the research were previously reported on, some tools such as DEPLOYLOG
were previously undocumented and first analyzed in this report. In addition, our analysis
provides further insights regarding some of the known Winnti tools.

Perhaps one of the most interesting things to notice is the elaborate and multi-phased infection
chain Winnti employed. The malware authors chose to break the infection chain into multiple
interdependent phases, where each phase relies on the previous one in order to execute
correctly. This demonstrates the thought and effort that was put into both the malware and
operational security considerations, making it almost impossible to analyze unless all pieces of
the puzzle are assembled in the correct order.

Furthermore, the rare abuse of the Windows’ own CLFS logging system and NTFS
manipulations provided the attackers with extra stealth and the ability to remain undetected for
years.

We hope that this report helps to shed light on Winnti operations, tools and techniques, and that
it will assist to expose further intrusions.

Acknowledgments

This research has not been possible without the tireless effort, analysis, attention to details and
contribution of the Cybereason Incident Response team. Special thanks and appreciation goes
to Matt Hart, Yusuke Shimizu, Niamh O’Connor, Jim Hung, and Omer Yampel.

Indicators of Compromise

LOOKING FOR THE IOCs? CLICK ON THE CHATBOT DISPLAYED IN LOWER-RIGHT OF
YOUR SCREEN FOR ACCESS. Due to the sensitive nature of the attack, not all |IOCs
observed by Cybereason can be shared in our public report. Please contact us for more
information.

MITRE ATT&CK BREAKDOWN
Reconnaissance Initial Execution Persistence Privilege Defense
Access Escalation Evasion

38/45

https://www.cybereason.com/company/contact-us

Gather Victim Exploit Scheduled Server Create or Hijack
Identity Public- Task/Job Software Modify Execution
Information: Facing Component: System Flow: DLL
Credentials Application Web Shell Process: Side-Loading
Windows
Service
Gather Victim Supply Inter-process Hijack Rootkit
Network Chain communication Execution
Information Compromise Flow: DLL
Side-
Loading
Exploitation for Process Masquerading:
Client Injection: Match
Execution Dynamic- Legitimate
link Library Name or
Injection Location
Command and Scheduled Scheduled Process
Scripting Task/Job: Task/Job: Injection:
Interpreter: Scheduled Scheduled Dynamic-link
Windows Task Task Library
Command Injection
Shell
Command and Valid Valid Reflective
Scripting Accounts: Accounts: Code Loading
Interpreter: Domain Domain
Visual Basic Accounts Accounts
Native API Valid Valid Signed Binary
Accounts: Accounts: Proxy
Local Local Execution:
Accounts Accounts Rundll32
Valid
Accounts:
Domain
Accounts
Valid
Accounts:
Local
Accounts

39/45

https://attack.mitre.org/techniques/T1589/001/
https://attack.mitre.org/techniques/T1190/
https://attack.mitre.org/techniques/T1053/
https://attack.mitre.org/techniques/T1505/003/
https://attack.mitre.org/techniques/T1543/003/
https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1590/
https://attack.mitre.org/techniques/T1195/
https://attack.mitre.org/techniques/T1559/
https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1014/
https://attack.mitre.org/techniques/T1203/
https://attack.mitre.org/techniques/T1055/001/
https://attack.mitre.org/techniques/T1036/005/
https://attack.mitre.org/techniques/T1059/003/
https://attack.mitre.org/techniques/T1053/005/
https://attack.mitre.org/techniques/T1053/005/
https://attack.mitre.org/techniques/T1055/001/
https://attack.mitre.org/techniques/T1059/005/
https://attack.mitre.org/techniques/T1078/002/
https://attack.mitre.org/techniques/T1078/002/
https://attack.mitre.org/techniques/T1620/
https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1078/003/
https://attack.mitre.org/techniques/T1078/003/
https://attack.mitre.org/techniques/T1218/011/
https://attack.mitre.org/techniques/T1078/002/
https://attack.mitre.org/techniques/T1078/003/

Credential Discovery Lateral Collection Exfiltration Command
Access movement and
Control
(O} System Exploitation of Archive Automated Application
Credential Network Remote Collected Exfiltration Layer
Dumping Configuration Services Data: Archive Protocol:
Discovery via Utility Web
Protocols
Remote Remote Automated Proxy
System Services: Collection
Discovery Remote
Desktop
Protocol
Password
Policy
Discovery
Permission
Groups
Discovery

Network Share

Discovery

System
Service
Discovery

System Time
Discovery

System
Network
Connections
Discovery

Account
Discovery

40/45

https://attack.mitre.org/techniques/T1003/
https://attack.mitre.org/techniques/T1016/
https://attack.mitre.org/techniques/T1210/
https://attack.mitre.org/techniques/T1560/001/
https://attack.mitre.org/techniques/T1020/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1018/
https://attack.mitre.org/techniques/T1021/001/
https://attack.mitre.org/techniques/T1119/
https://attack.mitre.org/techniques/T1090/
https://attack.mitre.org/techniques/T1201/
https://attack.mitre.org/techniques/T1069/
https://attack.mitre.org/techniques/T1135/
https://attack.mitre.org/techniques/T1007/
https://attack.mitre.org/techniques/T1124/
https://attack.mitre.org/techniques/T1049/
https://attack.mitre.org/techniques/T1087/

System
Owner/User
Discovery

System
Information
Discovery

Process
Discovery

About the Researchers:

Chen Erlich

Chen has almost a decade of experience in Threat Intelligence & Research, Incident Response
and Threat Hunting. Before joining Cybereason, Chen spent three years dissecting APTs,
investigating underground cybercriminal groups and discovering security vulnerabilities in
known vendors. Previously, he served as a Security Researcher in the IDF.

Fusao Tanida

Fusao spent over 10 years in the security industry. Before joining, he worked as a mobile
malware researcher and a developer at the security vendor and then worked at the global
mobile phone manufacturer for the development of AntiVirus, VPN client on their Android
mobile phone.

41/45

https://attack.mitre.org/techniques/T1033/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1057/

Fusao joined Cybereason in 2019 and was previously the Senior Security Analyst at the
Advanced Services Team in Cybereason Japan where delivered various security professional
services, Incident Response, consultation and triage malware activity alerts in SOC.

Ofir is a Incident Response Engineer at Cybereason who has a keen interest in Windows
Internals, reverse engineering, memory analysis and network anomalies. He has years of
experience in Cyber Security, focusing on Malware Research, Incident Response and Threat
Hunting. Ofir started his career as a Security Researcher in the IDF and then became a
malware researcher focusing on Banking Trojans.

Akihiro Tomita

Akihiro is the Senior Manager of Global Security Practice, leading Incident Response team in
the APAC region and Japan. Akihiro has led a substantial number of large-scale Incident

Response, Digital Forensics and Compromise Assessment engagements during recent years.

Akihiro was also a former Team lead of Advanced Security Services team responsible for
managing, developing, delivering a variety of professional services including Proactive threat
hunting, Security Posture Assessment, Advanced security training and consulting services at
Cybereason.

42/45

Niv, IR Practice Director, leads Cybereason's incident response practice in the EMEA region.
Niv began his career a decade ago in the Israeli Air Force as a team leader in the security
operations center, where he specialized in incident response, forensics, and malware analysis.
In former roles at Cybereason, he focused on threat research that directly enhances product
detections and the Cybereason threat hunting playbook, as well as the development of new
strategic services and offerings.

Daniel Frank

o \,f

With a decade in malware research, Daniel uses his expertise with malware analysis and
reverse engineering to understand APT activity and commodity cybercrime attackers. Daniel
has previously shared research at RSA Conference, the Microsoft Digital Crimes Consortium,
and Rootcon.

ASSAF DAHAN, HEAD OF THREAT RESEARCH

K
Assaf has over 15 years in the InfoSec industry. He started his career in the Israeli Military 8200
Cybersecurity unit where he developed extensive experience in offensive security. Later in his

career he led Red Teams, developed penetration testing methodologies, and specialized in
malware analysis and reverse engineering.

43/45

Operation CuckooBees Indicators of Compromise (IOCs)

Hashes

 BB93AEOFEE817FE56C31BDC997F3F7D57A48C187 - STASHLOG
» 4D1B8791D0715FE316B43FC95BDC335CB31A82CA - STASHLOG
o 2D336978AF261E07B1ECFAF65DC903B239E287A4 - STASHLOG

o F2D04FE529E2D8DAB96242305255CFB84CE81E9C - STASHLOG
o F8D46895E738254238473D650D99BDC92C34EE44 - SPARKLOG

» 9267FEOBB6D367FC9186E89EAG65B13BAA7418D87 - PRIVATELOG
o AOO9AOF5A385683AEA74299CBEGDS5429C609F2D2 - PRIVATELOG
e 1316F715D228AE6CC1FBA913C6CC309861F82E14 - PRIVATELOG
e 1275894D8231FE25DB56598DDCF869F88DF5AD8D - WINNKIT

» 9139C89B2B625E2CEEE2CBF72AEF6C5104707A26 - WINNKIT

» 082DBCA2C3CA5C5410DE9951A5C681F0C42235C8 - WINNKIT

File Names & Paths

¢ C:\Windows\temp\bc.bat

¢ C:\Windows\AppPatch\Custom\Custom64\cc.bat

e C:\Windows\temp\cc.log

¢ C:\Windows\AppPatch\Custom\Custom64\log.dat

¢ C:\Windows\Branding\Basebrd\x64.tlb

e C:\Windows\Branding\Basebrd\language.dl|

¢ C:\Windows\System32\mscuplt.dll

¢ C:\Windows\System32\rpcutl.dll

¢ C:\Windows\System32\dot3utl.dll

¢ C:\Windows\System32\iumatl.dll

¢ C:\Windows\System32\NIsutl.dll

¢ C:\Windows\System32\WindowsPowerShell\v1.0\dbghelp.dll
¢ C:\Windows\System32\drivers\bqDsp.sys

e C:\Windows\apppatch\en-us\MFSDLL.exe

¢ C:\Windows\System32\spool\drivers\x64\3\prntvpt.dl|
¢ C:\Windows\System32\WindowsPowerShell\v1.0\wlbsctrl.dll
¢ C:\Windows\assembly\gac_msil\dfsvc\foserv.exe

o C:\Windows\assembly\temp\foserv.exe

o C:\Windows\apppatch\custom\custom64\shiver.exe
o C:\Windows\apppatch\custom\custom64\spark.exe
o mkitzx64.dll

Winnti Malware Modules Names

e Cmp2.0
e Fmg2.0
e Srv2.0

44/45

Sck2.0
Prc2.0
Trs2.0
Cme2.0

Events

¢ \BaseNamedObijects\{75F09225-CD50-460B-BF90-5743B8404D73}
\BaseNamedObjects\{7DODF5FC-3991-4047-921F-32308B1A0459}
\BaseNamedObjects\{B73AB0OF4-A1D0-4406-9066-41E00BA78E9F}
Global\APCI#<GUID>
Global\HVID_<GUID>

Named Pipes
Pipe2PortCtrl

Scheduled Task Name

test

About the Author

Cybereason Nocturnus

ink

The Cybereason Nocturnus Team has brought the world’s brightest minds from the military,

government intelligence, and enterprise security to uncover emerging threats across the globe.

They specialize in analyzing new attack methodologies, reverse-engineering malware, and
exposing unknown system vulnerabilities. The Cybereason Nocturnus Team was the first to
release a vaccination for the 2017 NotPetya and Bad Rabbit cyberattacks.

All Posts by Cybereason Nocturnus

45/45

https://www.linkedin.com/company/cybereason
https://twitter.com/cr_nocturnus
https://www.cybereason.com/blog/authors/cybereason-nocturnus

