
1/45

Operation CuckooBees: A Winnti Malware Arsenal Deep-
Dive

cybereason.com/blog/operation-cuckoobees-a-winnti-malware-arsenal-deep-dive

Written By
Cybereason Nocturnus

May 4, 2022 | 19 minute read

https://www.cybereason.com/blog/operation-cuckoobees-a-winnti-malware-arsenal-deep-dive

2/45

In part one of this research, the Cybereason Nocturnus Incident Response Team provided a
unique glimpse into the Winnti intrusion playbook, covering the techniques that were used by
the group from initial compromise to stealing the data, as observed and analyzed by the
Cybereason Incident Response team.

This part of the research zeroes in on the Winnti malware arsenal that was discovered during
the investigation conducted by the Cybereason IR and Nocturnus teams. In addition, our
analysis of the observed malware provides a deeper understanding of the elaborate and multi-
layered Winnti infection chain, including evasive maneuvers and stealth techniques that are
baked-in to the malware code, as well as the functionality of the various malware.

Perhaps one of the most interesting and striking aspects of this report is the level of
sophistication introduced by the malware authors. The infection and deployment chain is long,
complicated and interdependent–should one step go wrong, the entire chain collapses - making
it somewhat vulnerable, yet at the same time provides an extra level of security and stealth for
the operation.

These steps have proven themselves effective time and time again, as the operation remained
under-the-radar for years. While there have been past reports describing some aspects of
these intrusions, at the time of writing this report there was no publicly available research that
discussed all of the tools and techniques and the manner in which they all fit together, as
mentioned in this report.

Key Findings

Attribution to the Winnti APT Group: based on the analysis of the forensic artifacts,
Cybereason estimates with medium-high confidence that the perpetrators of the attack
are linked to the notorious Winnti APT group, a group that has existed since at least 2010
and is believed to be operating on behalf of Chinese state interests and specializes in
cyberespionage and intellectual property theft.

Discovery of New Malware in the Winnti Arsenal: the report exposes previously
undocumented malware strain called DEPLOYLOG used by the Winnti APT group and
highlights new versions of known Winnti malware, including Spyder Loader,
PRIVATELOG, and WINNKIT.
Rarely Seen Abuse of the Windows CLFS Feature: the attackers leveraged the
Windows CLFS mechanism and NTFS transaction manipulations which provided them
with the ability to conceal their payloads and evade detection by traditional security
products.

https://www.cybereason.com/blog/operation-cuckoobees-deep-dive-into-stealthy-winnti-techniques
https://www.cybereason.com/services/incident-response
https://attack.mitre.org/groups/G0044/

3/45

Intricate and Interdependent Payload Delivery: the report includes an analysis of the
complex infection chain that led to the deployment of the WINNKIT rootkit composed of
multiple interdependent components. The attackers implemented a delicate “house of
cards” approach, meaning that each component depends on the others to function
properly, making it very difficult to analyze each component separately. The malware from
the Winnti arsenal that are analyzed in this report include:

Spyder: A sophisticated modular backdoor

STASHLOG: The initial deployment tool “stashing” payloads in Windows CLFS

SPARKLOG: Extracts and deploys PRIVATELOG to gain privilege escalation and
achieve persistence

PRIVATELOG: Extracts and deploys DEPLOYLOG

DEPLOYLOG: Deploys the WINNKIT Rootkit and serves as a userland agent

WINNKIT: The Winnti Kernel-level Rootkit

The following graph describes the infection chain presented in this attack:

Winnti infection chain as observed in Operation CuckooBees

Initial Payload: Weaving in the Spyder Loader

4/45

The Spyder loader is the first malicious binary the attackers execute on a targeted machine.
This malware is executed from the batch files we discussed in our blog’s part 1 - cc.bat or
bc.bat:

Batch

file execution command

The loader’s purpose is to decrypt and load additional payloads and is being delivered in 2
variations. The first variation, is a modified SQLite3 DLL, that uses the export’s ordinal number
138 to serve malicious code, that loads and executes a file argument provided at runtime, in
our case C:\Windows\System32\x64.tlb:

Malicious export ordinal number 138 “sqlite3_profile_v2”

As seen above, the loader is executed via the famous LOLBIN rundll32.exe, in the following
manner:

rundll32.exe <modified sqlite3.dll file>,#138 C:\Windows\System32\x64.tlb

Interestingly, Cybereason found this loader in different names and in different locations across
infected machines:

C:\Windows\System32\iumatl.dll
C:\Windows\System32\msdupld.dll
C:\Windows\System32\mscuplt.dll
C:\Windows\System32\msdupld.dll
C:\Windows\System32\netapi.dll
C:\Windows\System32\rpcutl.dll
C:\Windows\System32\dot3utl.dll
C:\Windows\System32\nlsutl.dll

https://st.drweb.com/static/new-www/news/2021/march/BackDoor.Spyder.1_en.pdf

5/45

C:\Windows\Branding\Basebrd\language.dll
C:\Program Files\Internet Explorer\SIGNUP\install.dll

The attackers utilized the System32 directory, which holds a multitude of TLB and DLL files, to
hide their external “TLB” payload and DLL loader to make it harder to detect.

This DLL wasn’t the only Spyder Loader we found, as Cybereason discovered a second
variation of this malware in the form of a standalone executable called sqlite3.exe,
masquerading as a SQLite3-related executable as well.

This version featured some improvements, such as logging messages, which shed some light
on some of its functionality and capabilities:

https://docs.microsoft.com/en-us/windows/win32/midl/com-dcom-and-type-libraries

6/45

Malicious export ordinal number 138 “sqlite3_profile_v2”

The Spyder Loader Bag of Tricks

Throughout its execution, the Spider Loader implements a few interesting methods to evade
detection and to maintain stealth:

7/45

Anti Analysis/Sandboxing

At the beginning of execution, the loader checks if the file argument exists:

File argument validation

If it does, the loader checks for its size: if it is larger than 1.04 MB, it deletes it; if it is smaller
than 1.04 MB or equal to it, it decrypts it in memory using the open-source CryptoPP C++
library and then deletes it from disk.

Cybereason assesses this condition is intended to validate that the loader won’t try to decrypt
the wrong file, and as a precaution against analysis environments or Sandboxes.

EDR Bypass Tricks

After decrypting the payload, the attackers copy the system ntdll.dll file to
C:\Windows\System32\TN{random_characters}.dll, and load it to memory:

Copying ntdll.dll to C:\Windows\System32\TN{randoms_chars}.dll

Then, they acquire the NtProtectVirtualMemory address from the copied and loaded file and
call a specific routine (which we named as “BypassEdrHook”) multiple times using 2
arguments:

The acquired address of NtProtectVirtualMemory in the loaded, copied DLL.

https://cryptopp.com/
https://attack.mitre.org/techniques/T1523/
https://attack.mitre.org/techniques/T1497/

8/45

A string representing a native api function:

Calling for the BypassEdrHook routine

The BypassEdrHook function will compare the first bytes in memory of the native API functions
in the loaded ntdll.dll image to the first bytes in memory of the same function in the
loaded/copied DLL memory image.

If the ntdll function’s first bytes are different from the first bytes of the copied DLL in memory,
the attackers will conclude that this native function is hooked by an EDR tool.

To override it, the attackers count the number of different bytes at the beginning of these two
functions, then they change the permissions of the relevant patched bytes in the original ntdll.dll
image to READWRITE_EXECUTE, copy the original bytes from the loaded/copied DLL
memory, and restore the previous page protection settings:

Check for EDR hook and bypass if true

This procedure will occur for the following native API functions:

LdrLoadDll

9/45

KiUserApcDispatcher
NtAlpcConnectPort
NtAllocateVirtualMemory
NtFreeVirtualMemory
NtMapViewOfSection
NtQueueApcThread
NtReadVirtualMemory
NtSetContextThread
NtUnmapViewOfSection
NtWriteVirtualMemory
RtlInstallFunctionTableCallback

Right afterward, the Spyder Loader will execute the payload reflectively, and lastly, will delete
TN{random_characters}.dll to leave no traces.

Attribution of the Spyder Payloads

The above-mentioned PE files share similar code with other known Spyder loaders, such as the
oci.dll payload mentioned in a SonicWall blog from March 2021:

Allocate memory and save WINAPI functions in array

https://securitynews.sonicwall.com/xmlpost/chinas-winnti-spyder-module/

10/45

Jump to the payload

Moreover, our PE files also share a similar evasion technique in masquerading as a legitimate
executable. In the aforementioned blog post, it disguised as D3D DLL - a Direct3D 11 runtime
DLL, now it disguise as SQLite3:

11/45

Same method with different targeted DLLs

These similarities, in addition to others, have led us to conclude that this file is an evolution of
the Winnti Spyder Loader.

A Long and Winnti(ng) Road: The Winnti Multi-Phased Arsenal
Deployment

After deploying the initial payload, Winnti employs a sophisticated and unique multi-staged
infection chain with numerous payloads. Each payload fulfills a unique role in the infection
chain, which is successful only upon the complete deployment of all of the payloads.

In the upcoming sections, we will discuss the following payloads:

STASHLOG: Stashes encrypted data in a CLFS log
SPARKLOG: Extracts data from the CLFS log and deploys PRIVATELOG while
escalating privileges
PRIVATELOG: Extracts data from the CLFS log and deploys DEPLOYLOG. This payload
also enables persistence in some cases
DEPLOYLOG: Extracts data from the CLFS log, deploys the WINNKIT Rootkit driver, and
acts as the user-mode agent
WINNKIT: The Winnti Kernel-level Rootkit

Several unique techniques are used by the Winnti group to store data, evade detection, and
thwart investigations during this infection flow. One of those techniques, which Winnti heavily
uses, is the CLFS mechanism.

Abusing the Rarely Used CLFS Mechanism for Evasion

So what is CLFS?

CLFS (Common Log File System) is a logging framework that was first introduced by Microsoft
in Windows Server 2003 R2, and is included in later Windows operating systems.

This mechanism provides a high-performance logging system for a variety of purposes ranging
from simple error logs to transactional systems and data stream collection.

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/introduction-to-the-common-log-file-system

12/45

One of the main uses of CLFS in the Windows operating system is in the Windows Kernel
Transaction Manager (KTM) for both Transactional NTFS (TxF) and Transactional Registry
(TxR) operations. Transactional operations bring the concept of atomic transactions to
Windows, allowing Windows to log different operations on those components and support the
ability to roll back if needed.

The high-performance aspect of this framework is based on the concept of storing the log data
in memory buffers for fast writing, reading and flushing them to disk–but not continuously,
according to a stated policy.

CLFS employs a proprietary file format that isn't documented, and can only be accessed
through the CLFS API functions. As of writing this report, there is no tool which can parse the
flushed logs. This is a huge benefit for attackers, as it makes it more difficult to examine and
detect them while using the CLFS mechanism.

On disk, the CLFS log store consists of:

Base Log File (BLF file): Contains the log metadata.
One or more Container files: Contains the log data, where the container file sizes are
registered in the BLF file.

As will be discussed, Winnti group used this mechanism to store and hide the payload that will
be extracted from the CLFS file and used by other PEs in the execution chain to build the
attacker’s next steps.

STASHLOG: Stashing the Winnti Arsenal via CLFS

STASHLOG (shiver.exe / forsrv.exe) is a 32 bit executable that is being used to prepare the
victim machine for further compromise, and to “stash” a malicious, encrypted payload to a
CLFS log file. This payload will be decrypted at each phase to deliver the next phase in the
infection.

https://www.mandiant.com/resources/unknown-actor-using-clfs-log-files-for-stealth

13/45

Both STASHLOG and SPARKLOG, which will be described further in the next section, are
executed using a second cc.bat file in the following form:

STASHLOG and SPARKLOG execution

Different Modes of Execution

STASHLOG has 2 modes of execution:

Without arguments to initialize the environment towards infection.
With one argument to store the CLFS file for further use.

No Arguments Mode

When no arguments are passed, STASHLOG prints the following output:

Execution

example of STASHLOG without an argument

This output consists of the machine Globally Unique Identifier (GUID) along with a 56 byte
string:

The machine’s GUID - derived from the HKLM\SOFTWARE\Microsoft\Cryptography
registry key.
The 56 byte string is generated from a random GUID created by the CoCreateGUID
function. The string consists of the hex representation of the GUID, SHA1 hash of the hex
GUID, and a SHA1 hash of the GUID + SHA1 of the GUID.

This example demonstrates the process of building the 56 byte string:

Let’s take a random GUID: {4684A5A2-942A-4DF6-AF1D-2A672F78F73E}
The random GUID’s Hex representation will be:
A2A584462A94F64DAF1D2A672F78F73E
Its SHA1 will be: 12C736FE6C9165B1C1026FAAD0051FB9F51DFF35

14/45

And finally the SHA1 of (GUID + SHA1(GUID)):
FAB426F085460CEFD4A65B8A4396C05BF582CB20

The final string will be:

A2A584462A94F64DAF1D2A672F78F73E
12C736FE6C9165B1C1026FAAD0051FB9F51DFF35
FAB426F085460CEFD4A65B8A4396C05BF582CB20

The random GUID is then registered as a global atom entry in the form of win::{GUID}:

An

example of added Global Atom by STASHLOG

If an atom prefixed with win:: already exists during execution, then the existing atom will be
used instead of the newly generated one.

One Argument Mode

Upon execution with command line arguments, STASHLOG checks the existence of the global
atom table entry win::{GUID}, and the process will quit immediately unless the value exists.

Then, STASHLOG loads the file found in the given argument into memory, checks its content,
and stores it in a CLFS log file. STASHLOG prints log information about this process to the
terminal:

Preparing for log format transformation
Log transform step 1 completed
Log transform step 2 completed
Log transform step 3 completed
Log data transform completed
Successful STASHLOG execution log

This output in this operation was redirected to a log file, as can be seen on cc.bat. Breaking
down the transformation steps from the log:

Step 1: Decrypt the given encrypted file and check the file validity
 by looking for the destination BLF file location:

C:\Users\Default\NTUSER.DAT{<GUID>}.TM.BLF. If the search yields no results,
STASHLOG will create this file.
Step 2: Clear the targeted BLF file.
Step 3: Encrypt the malicious data and write it to a CLFS file.

Anti-Analysis Techniques

String Obfuscation

15/45

Throughout the execution, STASHLOG uses the same string decryption technique used in
other samples by XORing strings with pre-defined bytes, words or qwords, using the XMM
registers. This decryption sequence is present at the beginning of every function that uses
strings, where those strings are not saved globally, likely in an attempt to protect them.

As can be seen in the example below from STASHLOG, it uses it to decrypt several debug
strings:

16/45

String

decryption algorithm from shiver.exe

17/45

This technique is also being used in other samples in the chain, including SPARKLOG,
PRIVATELOG and DEPLOYLOG.

Anti-Disassembly

This sample uses an interesting Anti-Disassembly technique which thwarts the disassembly
process and makes the investigation job harder. Each function inside STASHLOG contains a
jump list of every node in the function:

Part of a Jump List from a function in STASHLOG

This jump list is then used as a flow control during the function execution. In some cases the
address of the next node will be pushed to a register and then there will be a JMP to this
register:

18/45

Jump

to register

The more interesting use of the jump list is replacing the conditional jump commands like JZ
and JNZ with a SET command that changes the register given as an argument to the value of
the corresponding checked flag. For example, when using SETZ eax, the EAX register will be
changed to “1” if the “0” flag is checked.

Using the set register, there will be a JMP to an address on the function’s jump list. This JMP is
usually resolved for a switch-case mechanism, and IDA Pro disassembles it as one:

19/45

Example of jmp usage in IDA Pro

Using this method, the disassembler displays all the available JMP options based on the
function’s jump list even though there are only two jump options - when the assigned register is
either 0 or 1 (in the example above it’s the ECX register). These methods make the
disassembled function very hard to read and investigate:

20/45

Single function

tree as could be seen in IDA Pro

SPARKLOG: Deploying PRIVATELOG, the Next Link in the Infection Chain

SPARKLOG (spark.exe) is a 32 bit executable written in C++, employed in this attack to extract
a DLL from the CLFS file, decrypt it and then launch it for side-loading by Windows services
running as SYSTEM. Executing this phase of the attack successfully enables the attackers to

https://twitter.com/ESETresearch/status/1433819571207774209?s=20&t=vQjvuSCLkka_ZKrngChcYg

21/45

gain Privilege Escalation and also Persistence in a specific case.

SPARKLOG Execution Flow

The execution of SPARKLOG starts by creating a non-visible window followed by a message
posted to trigger the execution of the main thread:

Non-visible window creation

The PE then retrieves an encrypted DLL content from the CLFS log file, decrypts it and gets the
OS version in use. This OS version will be required later to understand how to deploy the DLL
in the compromised machine. Then, it decrypts the strings Global\HVID_ and Global\APCI#.
First, it uses the GetVolumeNameForVolumeMountPointA API call to get the GUID of the
operating system volume and acquires a handle to a HVID_<OS Volume GUID> event.

https://attack.mitre.org/tactics/TA0004/
https://attack.mitre.org/tactics/TA0003/

22/45

Then, it queries the MachineGUID value from the registry
HKLM\SOFTWARE\Microsoft\Cryptography key and creates an event by the name of
Global\APCI#<Machine GUID>. Using these events is a means of communication between the
modules in the attack, and it will be used in further modules as well:

Building the HVID_ and APCI# events

Next, it starts to deploy PRIVATELOG based on the OS version. From Windows Vista to
Windows 7, SPARKLOG uses a popular DLL side loading technique that involves dropping the
DLL with the name wlbsctrl.dll to the %SYSTEM32%\WindowsPowershell\v1.0 directory. It then
stops IKEEXT, a service that was compromised by WINNTI in the past, changes the
configuration using ChangeServiceConfigA based on the argument count, then starts it again:

Stopped IKEEXT service

https://github.com/securycore/Ikeext-Privesc
https://speakerdeck.com/aragorntseng/winnti-is-coming-evolution-after-prosecution-at-hitcon2021?slide=23

23/45

Change IKEEXT service configuration based on argument count

After a successful service start, the service executes and triggers the DLL side-loading
vulnerability using SYSTEM privileges. It is interesting to note that in this case, if a command
line argument is provided, the DLL will be deleted after the execution starts. This might be due
to the fact that abusing wlbsctrl.dll is pretty common, and might trigger EDR vendors later on.

From Windows Server 2012 to Windows 10, SPARKLOG acts in a similar fashion, but with a
different name and location:

It drops PRIVATELOG with the name prntvpt.dll to the %SYSTEM32%\spool\drivers\x64\3
directory
It then stops, changes configuration and starts the PrintNotify service to side-load the DLL
(PrintNotify is a legitimate Windows service like IKEEXT, also running as SYSTEM):

Opening and querying the PrintNotify service

In both cases, the attackers gain stealth by deploying PRIVATELOG while masquerading
legitimate file names in privileged locations, as well as gaining persistence and privilege
escalation to execute their next step as SYSTEM, the most privileged user in a local machine:

http://elastic.co/guide/en/security/current/suspicious-dll-loaded-for-persistence-or-privilege-escalation.html

24/45

Spark.exe execution as seen in Cybereason’s XDR Platform

PRIVATELOG: Extracting and Deploying DEPLOYLOG

PRIVATELOG is a module that exists in 2 forms:

Wlbsctrl.dll: A DLL to be side-loaded by the IKEEXT service, aiming to execute on
Windows Vista to Windows 7 operating systems.
Prntvpt.dll: A DLL to be side loaded by the PrintNotify service, aiming to execute on
Windows Server 2012 to Windows 10 operating systems.

As both of the DLLs are being loaded by native Windows services, they both live in the context
of the svchost process, but differ in their execution flow.

The IKEEXT Hijacker

At the beginning of its execution, wlbsctrl.dll is loaded by the IKEEXT service and verifies
similarly to prntvpt.dll that it’s being executed from svchost using the right command line
(netsvcs). After this check, wlbsctrl.dll goes straight to dropping DEPLOYLOG.

The PrintNotify Hijacker

https://www.mandiant.com/resources/unknown-actor-using-clfs-log-files-for-stealth
https://en.wikipedia.org/wiki/Svchost.exe

25/45

At the beginning of its execution, prntvpt.dll verifies it is being loaded by the correct process
with the right command line (svchost -k print), similar to wlbsctrl.dll. This command line is the
one being executed upon starting the PrintNotify service.

When the PrintNotify service starts, it also loads PrintConfig.dll, which is being executed from
its ServiceMain function. To hijack the execution flow, prntvpt.dll loads PrintConfig.dll and
acquires the address of its ServiceMain function. Then, it patches this function, and adds a
jump instruction to itself, to continue its execution.

The prntvpt.dll component is different, as it is also the persistence tool for the infection, as
opposed to the previous samples we discussed which execute only once to infect the machine,
this tool runs every time the PrintNotify service is executed. From this point on, the different
DLL files act almost the same.

Dropping DEPLOYLOG

PRIVATELOG decrypts DEPLOYLOG in memory from the CLFS log file, then it copies
dbghelp.dll from its original place in C:\Windows\System32\dbghelp.dll to
C:\Windows\System32\WindowsPowerShell\v1.0\dbghelp.dll. Next, the attackers use a rather
unique technique to overwrite the copied dbghelp.dll with the aforementioned decrypted buffer
using Windows Transactional NTFS (TxF).

Transactional NTFS is a component introduced in Windows Vista that allows developers to
create, edit and delete files and directories while giving them the option to roll back in case of
errors. This mechanism is used in major operating system components like Windows Update,
Task Scheduler and System Restore.

Using Transactional NTFS, the attackers can perform file operations using unconventional
methods that can be hard to detect for some security products. They leverage it to create a new
malicious dbghelp.dll using the following steps:

https://docs.microsoft.com/en-us/windows/win32/fileio/transactional-ntfs-portal

26/45

1.
1. A transaction handle is created for dbghelp.dll:

CreateTransaction: Creates a new transaction object
CreateFileTransactedA: with GENERIC_READ_WRITE access.

2. The file is overwritten with the decrypted payload:
WriteFile: On the transacted file handle.

3. Load the file to a memory section (more about this method is covered here):
NtCreateSection: with the SEC_IMAGE section attribute.
NtMapViewOfSection: Mapping the file view in the created section which
validates the PE header and splits the section, but doesn’t build the import
address table and set section permissions.

4. Set the right section permissions and resolve the imports of the DLL:
Fixing section permissions using VirtualProtect calls.
Building the DLL’s import address table with LoadLibrary and GetProcAddress
calls.

5. Execute the DEPLOYLOG payload entry point followed by the SvcMain.

DEPLOYLOG: The Winnti Rootkit Deployment and A Usermode Agent

DEPLOYLOG (dbghelp.dll) is a 64 bit DLL, with two purposes:

The first one is responsible for extracting and executing the attackers’ rootkit, dubbed
WINNKIT, from the CLFS log file.
After a successful deployment of the WINNKIT rootkit, DEPLOYLOG switches to its
second task, which is communicating both with the remote C2 and the kernel-level
rootkit.

https://www.ired.team/offensive-security/code-injection-process-injection/ntcreatesection-+-ntmapviewofsection-code-injection

27/45

It’s noteworthy to mention that to evade detection, the attackers deployed DEPLOYLOG as
dbghelp.dll, a generic, widely used name leveraged to masquerade as a legitimate file at the
same location as PRIVATELOG (C:\Windows\System32\WindowsPowerShell\v1.0).

DEPLOYLOG Initialization

Once DEPLOYLOG is executed, it starts with a sleep of 7777 milliseconds:

Figure #: Sleep

before the main method

Afterward, it tries to acquire a handle to the earlier HVID_<OS Volume GUID> event, and If it
doesn’t exist it creates it. Then, it initializes the communication channel with the future deployed
rootkit:

First, it tries to acquire a handle to the Beep device object: \\?
\GLOBALROOT\Device\Beep.
If it fails, it tries to do the same for \\?\GLOBALROOT\Device\Null. To test if the rootkit
was deployed in the past and is running, DEPLOYLOG tries to send the IOCTL 15E030 to
the acquired device handle:

https://en.wikipedia.org/wiki/Ioctl

28/45

DEPLOYLOG gets handles to device objects and sends an IOCTL

WINNKIT Deployment

Upon succeeding the earlier steps, DEPLOYLOG extracts the rootkit from the CLFS log file,
decrypts its content, then stops the amdk8 service. This service is the AMD K8 processor
kernel driver service. Aiming for this specific service can tell something about the Winnti modus
operandi, indicating they aim only for AMD-related machines to be infected, which could also
indicate having a prior knowledge of the victim's infrastructure.

Then, DEPLOYLOG decrypts the string SystemRoot\System32\drivers\bqDsp.sys and changes
the amdk8 service configuration to point to this path:

http://revertservice.com/7/amdk8/

29/45

Changing amdk8 service configuration to execute WINNKIT

Next, DEPLOYLOG writes the bqDsp.sys rootkit driver from the CLFS log file to the
C:\WINDOWS\system32\drivers directory and starts the service again, this time to execute its
malicious payload. By doing so, DEPLOYLOG finishes deploying the rootkit. To cover its tracks,
DEPLOYLOG will then stop the service, restore its previous configuration to point to the
amdk8.sys driver, and finally delete WINNKIT:

30/45

Sending WINNKIT the IOCTL 0x8000C004 using Pipe2PortCtrl

DEPLOYLOG as a User-Mode Agent

Once deployed, DEPLOYLOG turns to its second mission, effectively acting as a user-mode
agent whose purpose is to bridge the newly deployed rootkit and the remote C2. The DLL will
start communicating with the C2 servers which will send data that will be intercepted by the
driver, as will be explained in the next section discussing WINNKIT. Using this agent, the
attackers will load new modules, pop a CMD shell, drop MFSDLL.exe for credential grabbing
and more:

DEPLOYLOG loaded by svchost.exe as seen in the Cybereason XDR Platform

31/45

Behold WINNKIT, The Evasive Winnti Rootkit

The final payload deployed by Winnti is also the most evasive and sophisticated: a driver acting
as a rootkit, dubbed WINNKIT. WINNKIT’s previous version was researched in the past, and its
purpose is to act as a kernel-mode agent, interacting with the user-mode agent and intercepting
TCP/IP requests, by talking directly to the network card. The almost zero detection rate in
VirusTotal, together with the compilation timestamp from 2019, illustrates just how evasive this
rootkit really is, staying in the shadows for 3 years:

Low detection rate in VirusTotal

https://exatrack.com/public/winnti_EN.pdf

32/45

The

rootkit’s compilation timestamp

WINNKIT contains an expired BenQ digital signature, which is leveraged to bypass the Driver
Signature Enforcement (DSE) mechanism that requires drivers to be properly signed with
digital signatures in order to be loaded successfully. This mechanism was first introduced in
Windows Vista 64-bit, and is affected for all versions of Windows since then:

 Revoked rootkit certificate and file version

information as seen in VirusTotal

After successfully loading, WINNKIT hooks network communication, and operates based on
custom commands that are being sent from the aforementioned user-mode agent,
DEPLOYLOG.

At the beginning of its execution, the driver validates the NDIS version, making sure the system
is Windows Vista or above. By using the NDIS API, it communicates directly with the network
card, skipping higher level communication protocols:

https://j00ru.vexillium.org/2012/11/defeating-windows-driver-signature-enforcement-part-1-default-drivers/https://j00ru.vexillium.org/2012/11/defeating-windows-driver-signature-enforcement-part-1-default-drivers/
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/ndis-drivers

33/45

WINNKIT’s communication with the network card

After establishing a connection with the network card, the rootkit tries to open the event
\\BaseNamedObjects\\{75F09225-CD50-460B-BF90-5743B8404D73}. In case it fails, it creates
this event, and then hooks the \\Device\\Null device. Hooking this device is somehow risky, as
this device is often being targeted by modern rootkit, thus making it relatively exposed to
detection. Nevertheless, it enabled the authors to stay undetected for years.

Using the above mentioned mechanisms enables WINNKIT a mean of communication with the
user mode agent:

34/45

WINNKIT event creation

WINNKIT hooks the \\Device\\Null device object

35/45

The switch case that handling different commands

A summary of the communication flow of DEPLOYLOG and WINNKIT, can be seen in the
following diagram:

36/45

Rootkit high level operation diagram

Below are the functionality we believe that each code represents, according to our findings and
previous conducted research:

Command Operation

0x100 Hide driver

0x200 Determine version

0x300 Access IRQL shared data

0x400 Map and allocate buffer

37/45

0x500 Map a buffer

0x800 Clean up

Winnti Auxiliary Plugins

Winnti used reflective loading injection in order to evade detection. The malicious modules are
reflectively injected into the legitimate svchost processes. The following modules were detected
by Cybereason and seem consistent with previously reported Winnti plugins:

Cmp2.o: The plugin's purpose is to provide access to the system command line and
appears to be a variant of the Winnti "CmdPlus" plugin.
Fmg2.o: This plugin is responsible for listing and modifying files on the targeted machine
and appears to be the Winnti "ListFileManager" module.
Srv2.o: The purpose of the plugin is to display information about system services and is
assessed to be the Winnti “ListService” plugin.
Sck2.o: The purpose of the plugin is to transfer data over the network using a SOCKS5
proxy server and is assessed to be the “Socks5Client” plugin.
Prc2.o: This plugin can list or kill running processes on the targeted machine.
Trs2.o: This plugin was also used for data transfer via Socks5 proxy.
Cme2.o: The purpose of this plugin is to enable Remote Desktop access to Winnti:

Example: svchost process that loaded sck2.o and trs2.o modules reflectively, as seen in the
Cybereason XDR Platform

Conclusions

https://securelist.com/winnti-1-0-technical-analysis/37002/

38/45

In part two of the research, we provided a deep dive into the Winnti malware arsenal that was
observed by the Cybereason IR and Nocturnus teams. Our analysis provides a unique and
holistic view of Winnti operational aspects, capabilities and modus operandi. While some of the
tools mentioned in the research were previously reported on, some tools such as DEPLOYLOG
were previously undocumented and first analyzed in this report. In addition, our analysis
provides further insights regarding some of the known Winnti tools.

Perhaps one of the most interesting things to notice is the elaborate and multi-phased infection
chain Winnti employed. The malware authors chose to break the infection chain into multiple
interdependent phases, where each phase relies on the previous one in order to execute
correctly. This demonstrates the thought and effort that was put into both the malware and
operational security considerations, making it almost impossible to analyze unless all pieces of
the puzzle are assembled in the correct order.

Furthermore, the rare abuse of the Windows’ own CLFS logging system and NTFS
manipulations provided the attackers with extra stealth and the ability to remain undetected for
years.

We hope that this report helps to shed light on Winnti operations, tools and techniques, and that
it will assist to expose further intrusions.

Acknowledgments

This research has not been possible without the tireless effort, analysis, attention to details and
contribution of the Cybereason Incident Response team. Special thanks and appreciation goes
to Matt Hart, Yusuke Shimizu, Niamh O’Connor, Jim Hung, and Omer Yampel.

Indicators of Compromise

LOOKING FOR THE IOCs? CLICK ON THE CHATBOT DISPLAYED IN LOWER-RIGHT OF
YOUR SCREEN FOR ACCESS. Due to the sensitive nature of the attack, not all IOCs
observed by Cybereason can be shared in our public report. Please contact us for more
information.

MITRE ATT&CK BREAKDOWN

Reconnaissance Initial
Access

Execution Persistence Privilege
Escalation

Defense
Evasion

https://www.cybereason.com/company/contact-us

39/45

Gather Victim
Identity
Information:
Credentials

Exploit
Public-
Facing
Application

Scheduled
Task/Job

Server
Software
Component:
Web Shell

Create or
Modify
System
Process:
Windows
Service

Hijack
Execution
Flow: DLL
Side-Loading

Gather Victim
Network
Information

Supply
Chain
Compromise

Inter-process
communication

 Hijack
Execution
Flow: DLL
Side-
Loading

Rootkit

 Exploitation for
Client
Execution

 Process
Injection:
Dynamic-
link Library
Injection

Masquerading:
Match
Legitimate
Name or
Location

 Command and
Scripting
Interpreter:
Windows
Command
Shell

Scheduled
Task/Job:
Scheduled
Task

Scheduled
Task/Job:
Scheduled
Task

Process
Injection:
Dynamic-link
Library
Injection

 Command and
Scripting
Interpreter:
Visual Basic

Valid
Accounts:
Domain
Accounts

Valid
Accounts:
Domain
Accounts

Reflective
Code Loading

 Native API Valid
Accounts:
Local
Accounts

Valid
Accounts:
Local
Accounts

Signed Binary
Proxy
Execution:
Rundll32

 Valid
Accounts:
Domain
Accounts

 Valid
Accounts:
Local
Accounts

https://attack.mitre.org/techniques/T1589/001/
https://attack.mitre.org/techniques/T1190/
https://attack.mitre.org/techniques/T1053/
https://attack.mitre.org/techniques/T1505/003/
https://attack.mitre.org/techniques/T1543/003/
https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1590/
https://attack.mitre.org/techniques/T1195/
https://attack.mitre.org/techniques/T1559/
https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1014/
https://attack.mitre.org/techniques/T1203/
https://attack.mitre.org/techniques/T1055/001/
https://attack.mitre.org/techniques/T1036/005/
https://attack.mitre.org/techniques/T1059/003/
https://attack.mitre.org/techniques/T1053/005/
https://attack.mitre.org/techniques/T1053/005/
https://attack.mitre.org/techniques/T1055/001/
https://attack.mitre.org/techniques/T1059/005/
https://attack.mitre.org/techniques/T1078/002/
https://attack.mitre.org/techniques/T1078/002/
https://attack.mitre.org/techniques/T1620/
https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1078/003/
https://attack.mitre.org/techniques/T1078/003/
https://attack.mitre.org/techniques/T1218/011/
https://attack.mitre.org/techniques/T1078/002/
https://attack.mitre.org/techniques/T1078/003/

40/45

Credential
Access

Discovery Lateral
movement

Collection Exfiltration Command
and
Control

OS
Credential
Dumping

System
Network
Configuration
Discovery

Exploitation of
Remote
Services

Archive
Collected
Data: Archive
via Utility

Automated
Exfiltration

Application
Layer
Protocol:
Web
Protocols

 Remote
System
Discovery

Remote
Services:
Remote
Desktop
Protocol

Automated
Collection

 Proxy

 Password
Policy
Discovery

 Permission
Groups
Discovery

 Network Share
Discovery

 System
Service
Discovery

 System Time
Discovery

 System
Network
Connections
Discovery

 Account
Discovery

https://attack.mitre.org/techniques/T1003/
https://attack.mitre.org/techniques/T1016/
https://attack.mitre.org/techniques/T1210/
https://attack.mitre.org/techniques/T1560/001/
https://attack.mitre.org/techniques/T1020/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1018/
https://attack.mitre.org/techniques/T1021/001/
https://attack.mitre.org/techniques/T1119/
https://attack.mitre.org/techniques/T1090/
https://attack.mitre.org/techniques/T1201/
https://attack.mitre.org/techniques/T1069/
https://attack.mitre.org/techniques/T1135/
https://attack.mitre.org/techniques/T1007/
https://attack.mitre.org/techniques/T1124/
https://attack.mitre.org/techniques/T1049/
https://attack.mitre.org/techniques/T1087/

41/45

 System
Owner/User
Discovery

 System
Information
Discovery

 Process
Discovery

About the Researchers:

Chen Erlich

Chen has almost a decade of experience in Threat Intelligence & Research, Incident Response
and Threat Hunting. Before joining Cybereason, Chen spent three years dissecting APTs,
investigating underground cybercriminal groups and discovering security vulnerabilities in
known vendors. Previously, he served as a Security Researcher in the IDF.

Fusao Tanida

Fusao spent over 10 years in the security industry. Before joining, he worked as a mobile
malware researcher and a developer at the security vendor and then worked at the global
mobile phone manufacturer for the development of AntiVirus, VPN client on their Android
mobile phone.

https://attack.mitre.org/techniques/T1033/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1057/

42/45

Fusao joined Cybereason in 2019 and was previously the Senior Security Analyst at the
Advanced Services Team in Cybereason Japan where delivered various security professional
services, Incident Response, consultation and triage malware activity alerts in SOC.

Ofir Ozer

Ofir is a Incident Response Engineer at Cybereason who has a keen interest in Windows
Internals, reverse engineering, memory analysis and network anomalies. He has years of
experience in Cyber Security, focusing on Malware Research, Incident Response and Threat
Hunting. Ofir started his career as a Security Researcher in the IDF and then became a
malware researcher focusing on Banking Trojans.

Akihiro Tomita

Akihiro is the Senior Manager of Global Security Practice, leading Incident Response team in
the APAC region and Japan. Akihiro has led a substantial number of large-scale Incident
Response, Digital Forensics and Compromise Assessment engagements during recent years.
Akihiro was also a former Team lead of Advanced Security Services team responsible for
managing, developing, delivering a variety of professional services including Proactive threat
hunting, Security Posture Assessment, Advanced security training and consulting services at
Cybereason.

43/45

Niv Yona

Niv, IR Practice Director, leads Cybereason's incident response practice in the EMEA region.
Niv began his career a decade ago in the Israeli Air Force as a team leader in the security
operations center, where he specialized in incident response, forensics, and malware analysis.
In former roles at Cybereason, he focused on threat research that directly enhances product
detections and the Cybereason threat hunting playbook, as well as the development of new
strategic services and offerings.

Daniel Frank

With a decade in malware research, Daniel uses his expertise with malware analysis and
reverse engineering to understand APT activity and commodity cybercrime attackers. Daniel
has previously shared research at RSA Conference, the Microsoft Digital Crimes Consortium,
and Rootcon.

ASSAF DAHAN, HEAD OF THREAT RESEARCH

Assaf has over 15 years in the InfoSec industry. He started his career in the Israeli Military 8200
Cybersecurity unit where he developed extensive experience in offensive security. Later in his
career he led Red Teams, developed penetration testing methodologies, and specialized in
malware analysis and reverse engineering.

44/45

Operation CuckooBees Indicators of Compromise (IOCs)

Hashes

BB93AE0FEE817FE56C31BDC997F3F7D57A48C187 - STASHLOG
4D1B8791D0715FE316B43FC95BDC335CB31A82CA - STASHLOG
2D336978AF261E07B1ECFAF65DC903B239E287A4 - STASHLOG
F2D04FE529E2D8DAB96242305255CFB84CE81E9C - STASHLOG
F8D46895E738254238473D650D99BDC92C34EE44 - SPARKLOG
9267FE0BB6D367FC9186E89EA65B13BAA7418D87 - PRIVATELOG
A009A0F5A385683AEA74299CBE6D5429C609F2D2 - PRIVATELOG
1316F715D228AE6CC1FBA913C6CC309861F82E14 - PRIVATELOG
1275894D8231FE25DB56598DDCF869F88DF5AD8D - WINNKIT
9139C89B2B625E2CEEE2CBF72AEF6C5104707A26 - WINNKIT
082DBCA2C3CA5C5410DE9951A5C681F0C42235C8 - WINNKIT

File Names & Paths

C:\Windows\temp\bc.bat
C:\Windows\AppPatch\Custom\Custom64\cc.bat
C:\Windows\temp\cc.log
C:\Windows\AppPatch\Custom\Custom64\log.dat
C:\Windows\Branding\Basebrd\x64.tlb
C:\Windows\Branding\Basebrd\language.dll
C:\Windows\System32\mscuplt.dll
C:\Windows\System32\rpcutl.dll
C:\Windows\System32\dot3utl.dll
C:\Windows\System32\iumatl.dll
C:\Windows\System32\Nlsutl.dll
C:\Windows\System32\WindowsPowerShell\v1.0\dbghelp.dll
C:\Windows\System32\drivers\bqDsp.sys
C:\Windows\apppatch\en-us\MFSDLL.exe
C:\Windows\System32\spool\drivers\x64\3\prntvpt.dll
C:\Windows\System32\WindowsPowerShell\v1.0\wlbsctrl.dll
C:\Windows\assembly\gac_msil\dfsvc\foserv.exe
C:\Windows\assembly\temp\foserv.exe
C:\Windows\apppatch\custom\custom64\shiver.exe
C:\Windows\apppatch\custom\custom64\spark.exe
mktzx64.dll

Winnti Malware Modules Names

Cmp2.o
Fmg2.o
Srv2.o

45/45

Sck2.o
Prc2.o
Trs2.o
Cme2.o

Events

\BaseNamedObjects\{75F09225-CD50-460B-BF90-5743B8404D73}
\BaseNamedObjects\{7D0DF5FC-3991-4047-921F-32308B1A0459}
\BaseNamedObjects\{B73AB0F4-A1D0-4406-9066-41E00BA78E9F}
Global\APCI#<GUID>
Global\HVID_<GUID>

Named Pipes

Pipe2PortCtrl

Scheduled Task Name

test

About the Author

Cybereason Nocturnus

The Cybereason Nocturnus Team has brought the world’s brightest minds from the military,
government intelligence, and enterprise security to uncover emerging threats across the globe.
They specialize in analyzing new attack methodologies, reverse-engineering malware, and
exposing unknown system vulnerabilities. The Cybereason Nocturnus Team was the first to
release a vaccination for the 2017 NotPetya and Bad Rabbit cyberattacks.

All Posts by Cybereason Nocturnus

https://www.linkedin.com/company/cybereason
https://twitter.com/cr_nocturnus
https://www.cybereason.com/blog/authors/cybereason-nocturnus

