
1/22

Old Services, New Tricks: Cloud Metadata Abuse by
UNC2903

mandiant.com/resources/cloud-metadata-abuse-unc2903

Since July 2021, Mandiant identified exploitation of public-facing web applications by
UNC2903 to harvest and abuse credentials using Amazon’s Instance Metadata Service
(IMDS). Mandiant tracked access attempts by UNC2903 to access S3 buckets and additional
cloud resources using the stolen credentials. This blog post covers how UNC2903 performed
exploitation and IMDS abuse, as well as related best practices on cloud hardening
techniques.

Although UNC2903 targeted Amazon Web Services (AWS) environments, many other cloud
platforms offer similar metadata services that could be at risk of similar attacks. Similar threat
actor motives and operations are gaining prominence as enterprises continue their migration
to cloud hosting services. This article also describes potential risks and considerations for
security and information technology teams using hosted services.

Timeline

Mandiant’s Incident Response, Intelligence, and Transformational Services teams collected
information described in this blog post to help better detect, prevent, and respond to similar
opportunistic intrusions. The following timeline describes UNC2903 activity performed during
their earliest observed campaigns.

https://www.mandiant.com/resources/cloud-metadata-abuse-unc2903

2/22

February 2021, CVE-2021-21311 was published describing vulnerable database
administration software called Adminer
February 2021, proof-of-concept code (PoC) was published to show how to leverage
the exploit and obtain credentials in AWS applications hosting vulnerable versions
June 2021, UNC2903 exploited a server-side request forgery vulnerability, gaining
access to victim Amazon Web Services secret keys and subsequently steal data

Although this blog post discusses a now patched version of Adminer software, any web-
application vulnerable to request forgery or remote code execution may also open avenues
for similar metadata service attacks.

Usage in the Wild and Evidence of Exploitation

The Threat Landscape for Cloud Metadata

Mandiant’s analysts identified recent upticks in the abuse and exploitation of services hosted
in AWS and similar cloud platforms. The threats identified in campaigns carried out by
UNC2903 were multi-phased attacks, which involved infrastructure scanning,
reconnaissance and further abuse of the underlying abstraction layers offered by cloud-
hosted platforms. Once exploitation and abuse of the underlying systems occurred, stolen
credentials are leveraged for data exfiltration in other AWS services in the compromised
tenant.

Namely, for events leading up to UNC2903 stealing data, Mandiant’s Incident Response
team identified:

1. Network scanning attempts on externally facing AWS web infrastructure hosting
Adminer software

2. Additional web navigation and reconnaissance performed, once infrastructure is
identified

3. Attempts of multiple web application exploits which may exist on the hosted web server
4. Further attempts indicative of manual exploitation and testing using the identified

exploit

Given that the infrastructure is hosted within Amazon Web Services cloud, IMDS is an
attractive target for threat actors like UNC2903. In UNC2903’s case, the threat actor was
observed targeting exploitable web applications which were also running IMDSv1. Amazon’s
IMDSv1 permits web requests to a specialized URL against the link local IP address
(169.254.169.254) which was designed to enhance internal service communication and
troubleshooting within the overall hosting platform. The retrievable metadata includes
information to understand configuration, topology, and even obtain user role and
credentialing.

https://advantage.mandiant.com/cve/vulnerability--5a1fbe9b-f51e-5cdb-8e5f-25681276b02f
https://github.com/vrana/adminer/security/advisories/GHSA-x5r2-hj5c-8jx6
https://www.mandiant.com/services/incident-response

3/22

Amazon released IMDSv2 to add additional layers of protection and alerting through AWS
security features such as GuardDuty. The way IMDSv2 remediates this type of attack is by a
user obtaining a token via a PUT from http://169.254.169[.]254/latest/api/token, then that
token is used and repeated for all requests to the IMDS via a special header (x-aws-ec2-
metadata-token).

Although Amazon recommends implementing the IMDSv2 with GuardDuty enhancements,
EC2 instances created by Amazon customers that instead use IMDSv1 may be at risk when
combined with also running unpatched vulnerable third party software. As the adoption of
cloud technology expands, so does the threat surface and targeting for vulnerable web
infrastructure with underlying dated or deprecated metadata services with limited security
capabilities. The level of risk related to web application vulnerabilities should be evaluated
and paired with the understanding that underlying metadata services in cloud environments
could increase the possibility of advanced or continued threats.

Clever Techniques, Some SSRF, and Easy Access

Mandiant has observed in campaigns that UNC2903 utilized a dedicated operational relay
box to perform web scanning and carry out exploitation and related IMDSv1 abuse. The
threat actor carries out a series of web scans and activity consistent with manual
reconnaissance of the identified application prior to the attack. The attack observed by
UNC2903 utilized a Server-Side Request Forgery (“SSRF”) vulnerability to return the
temporary access keys used for AWS S3 bucket storage access.

Figure 1 provides the critical attack path identified during UNC2903 using CVE-2021-21311.

Figure 1: UNC2903 attack leveraged CVE-2021-21311 and IMDSv1 abuse

https://aws.amazon.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://aws.amazon.com/guardduty/

4/22

In the observed campaign, UNC2903 utilized CVE-2021-21311 to perform the following
attack:

Threat actor hosts a web server on their operational relay box with a script configured
to 301 redirect to http://169.254.169[.]254/latest/meta-data/iam/security-credentials/.

Figure 2: Mandiant test environment
Next, the threat actor navigates to the Adminer page versioned between 4.0.0 and
before 4.7.9, of which they’re trying to perform the SSRF vulnerability.

Figure 3: Adminer
The IP address and port for the operational relay box hosting the malicious redirection
script is typed into the victim Adminer’s server dialogue box, and the login button is
pressed.

5/22

Figure 4: Exploiting Adminer
The victim server with Adminer is fooled into making a web request to the operational
relay box, then the victim server requests and follows the 301 redirect which completes
the SSRF.

Figure 5: Web log
The victim server returns an error to the threat actor, but since the IMDS returns the
results from the service, the metadata credentials are displayed directly in the response
in an error message.

6/22

Figure 6: Credential theft
Note that the while these steps do not reflect the exact threat actor commands used to
perform an attack, this highlights the methods used by UNC2903. Since the attack involves
exploitation and SSRF abuse through CVE-2021-21311, limited artifacts are available based
on default cloud-based system and tenant configurations.

Artifacts and Notable Observations

Mandiant Incident Response identified and collected artifacts of the related exploitation and
IMDS abuse carried out by UNC2903. The activity recorded from initial scanning and
exploitation, as well as the AWS metadata service and credential abuse may be subject to
the configuration of the hosted infrastructure and cloud logs available in the tenant. Without a
security operator’s keen eye on event logs, even with increased levels of logging enabled,
similar attacks carried out by UNC2903—or other threat actors—may go undetected.

Since the attack leverages an exploit of the Adminer PHP application page, the malicious
navigation and interaction may be easily overlooked by investigators. The activity identified is
characteristically unique compared to some exploits which return a standard successful web
response to the screen or within recorded event logs.

The few sources which evidenced the exploitation and abuse included:

Web access and error logs
GuardDuty events
VPC Flow Logs
S3 Data and Access Events

Figure 7 provides an example of the initial access and web application scanning activity
identified for the Adminer web page. Note that the web response shows a 302 redirect or
other 403 error as the web response in the available log although the exploit was successful.

7/22

Figure 7: Web access logs generated after a simulated attacker types in their server
information and performs CVE-2021-21311
Figure 8 provides an example of a VPC flow which represents the web server when the
SSRF completes. Note that the victim server which made the outbound request is suspicious
to an external IP address. However, the port could be configured to any desired, or more
discrete, port chosen for an attack.

Figure 8: AWS VPC flow logs noting that the simulated victim server made a web request
outbound over a malicious port 1337
Figure 9 provides an example of a GuardDuty event after credentials are stolen and
leveraged. Note that GuardDuty in our testing alerted after data theft was complete from the
S3 bucket.

8/22

Figure 9: AWS GuardDuty event showing data theft from S3 using the stolen metadata
credential

Mission Completion and Future Implications

Final phases of attacks carried out by UNC2903, and similar threat actors, have involved
data exfiltration or interaction with the AWS tenant. The information stolen through
application exploitation and metadata service abuse could allow threat actors to manipulate
or steal data from an organization’s cloud environments. Abuse of similar cloud-oriented
metadata services show how threat actors can further exploit environments beyond the
original application targets. When architecting cloud services and solutions, configurations
for prevention and response should be evaluated and considered by the technology teams.
Later, we cover potential strategies to mitigate, limit, and aid in unauthorized metadata
service usage detection.

Mandiant Intelligence Findings

Attribution

UNC2903 is a group whose motivations are unknown and tracked by Mandiant since July
2021. UNC2903 is opportunistic, hunting for vulnerable systems on the internet, and has
been observed stealing data from at least one victim, however, Mandiant did not observe any

9/22

monetization of the stolen data such as extortion or sale. Analysis of web logs showed that
the actors were specifically scanning for adminer.php and testing for CVE-2019-0211, an
Apache Root Privilege Escalation to install the WSO webshell, directly from GitHub.

Eighteen minutes after the CVE-2021-21311 vulnerable adminer.php was discovered by the
threat actor through automated scanning, Mandiant observed indexing of the adminer.php by
Telegram bot, indicating that the link to the adminer.php was shared in a Telegram chat
group. A few minutes later, an automated session from a free VPN service also scanned the
adminer.php. The same automated process was executed from different a different IP a few
hours later, followed by interactive activity and successful access of the IMDS service 3
hours and 15 minutes after the initial access.

Scanning Activity

Mandiant observed indications that the UNC2903 infrastructure was used to scan over 2,100
IP addresses in late June 2021. Scanning focused on web services such as port 80 or 443
and did not focus on any specific service provider suggesting the actor may have been
operating from a list of targets with open HTTP ports from prior research and not targeting
any specific service provider.

User Agent Strings

User agent strings used by UNC2903 observed by Mandiant:

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/91.0.4472.101 Safari/537.36 Edg/91.0.864.48
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/91.0.4472.106 Safari/537.36
Mozilla/5.0 (X11; Linux x86_64; rv:84.0) Gecko/20100101 Firefox/84.0

Transform Security and Mitigate Similar Threats

Mandiant recommends organizations detect, remediate, and prevent EC2 Instances from
having IMDSv1 enabled. Before remediating and converting EC2 Instances to use IMDSv2,
the organization should test all instances/application to ensure the operations will not be
impacted by such remediation measures.

Using our vulnerable Adminer web application, once the EC2 Instance running the
application has IMDSv2 enabled, the secrets/credentials are no longer able to be obtained
by the threat actor (see Figure 10).

10/22

Figure 10: Error message received when attempted to obtain credentials from an EC2
Instance with IMDSv2 enforced
Next we will provide multiple ways an organization can detect, remediate, and prevent
IMDSv1 from their environment.

Detections, Remediations, and Preventions

Detecting EC2 Instances with IMDSv1

Audit currently deployed EC2 Instance to verify if IMDSv1 or IMDSv2 is being used in the
environment.

Native AWS Services:
AWS Security Hub – Check [EC2.8] EC2 instances should use IMDS v2
CloudWatch – MetadataNoToken (Counts the number of times the Instance
Metadata service was successfully access without a token (i.e., IMDSv1))
AWS Config – A Config rule that checks if the organization’s EC2 Instance is set
to require HTTPTokens (see the following).

https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-standards-fsbp-controls.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/viewing_metrics_with_cloudwatch.html

11/22

AWSTemplateFormatVersion: "2010-09-09"

Description: ""

Resources:

 ConfigRule:

 Type: "AWS::Config::ConfigRule"

 Properties:

 ConfigRuleName: "ec2-imdsv2-check"

 Scope:

 ComplianceResourceTypes:

 - "AWS::EC2::Instance"

 Description: "A Config rule that checks whether your Amazon Elastic
Compute Cloud (Amazon EC2) instance metadata version is configured with
Instance Metadata Service Version 2 (IMDSv2). The rule is COMPLIANT if the
HttpTokens is set to required and is NON_COMPLIANT ..."

 Source:

 Owner: "AWS"

 SourceIdentifier: "EC2_IMDSV2_CHECK"

Parameters: {}

Metadata: {}

Conditions: {}

Open-Source Tools:
Prowler - Check 7.86 – Check if EC2 Instance Metadata Service Version 2
(IMDSv2) is Enabled and Required

./prowler -c check786

Metabadger

./metabadger discover-metadata

CloudMapper – EC2_IMDSV2_NOT_ENFORCED
AWS CLI:

https://github.com/prowler-cloud/prowler/blob/master/checks/check_extra786
https://github.com/salesforce/metabadger
https://github.com/duo-labs/cloudmapper

12/22

aws ec2 describe-instances --filters Name=metadata-options.http-
tokens,Values=optional --query "Reservations[*].Instances[*].
{Instance:InstanceId}" --region [EnterRegionHere]

GuardDuty alert for use of EC2 instance credential from outside of current account.

InstanceCredentialExfiltration.InsideAWS - High: If EC2 Instance Credential is used by
another AWS Account (see Figure 9).
InstanceCredentialExfiltration.OutsideAWS - High: If EC2 Instance Credential is used
by an external IP Address.
Restrict access to IMDS to a limited set of users or EC2 role

Execute the following command to limit the IMDS service to bobuser:

ip-lockdown 169.254.169.254 bobuser

Remediating IDMSv1

Note: Before proceeding to disable IMDSv1 from an organization’s EC2 Instance, there must
be extensive testing performed prior to the remediation actions.

Disable IMDS completely on infrastructure that does not require the metadata service.

aws ec2 modify-instance-metadata-options –instance-id <instance-id> –
http-endpoint disabled

If IMDS is needed, then an organization can enforce an EC2 Instance to run only
IMDSv2:

aws ec2 modify-instance-metadata-options –instance-id <INSTANCE-ID> –
http-endpoint enabled –http-token required

Utilize an open-source tool, such as Remediate AWS-IMDSv1, to detect and remediate
all EC2 instances that have IMDSv1 enabled.

python remediate-imdsv1.py --profile <AWS_PROFILE> --remediate –debug

Set iptables rules to DENY access to the metadata service

iptables -A OUTPUT –proto tcp -m owner --uid-owner root -d
169.254.169.254 -j REJECT

Preventing IMDSv1 from the Environment

An organization can create a Service Control Policy (SCP) to require API Calls to utilize
IMDSv2 if there are role credentials for an EC2. See the following Sample SCP:

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-iam.html#unauthorizedaccess-iam-instancecredentialexfiltrationinsideaws
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-iam.html#unauthorizedaccess-iam-instancecredentialexfiltrationinsideaws
https://github.com/latacora/remediate-AWS-IMDSv1

13/22

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "RequireAllEc2RolesToUseV2",

 "Effect": "Deny",

 "Action": "*",

 "Resource": "*",

 "Condition": {

 "NumericLessThan": {

 "ec2:RoleDelivery": "2.0"

 }

 }

 }

]

}

An organization should utilize Infrastructure-as-Code (IaC) to disallow and/or disable
the use of IMDSv1. There are several ways to enforce IMDSv2, here are a few via
CloudFormation:

14/22

Create a custom CloudFormation or Terraform template that prevents users from
launching EC2 instances that are not configured for IMDSv2

CloudFormation

AWSTemplateFormatVersion: "2010-09-09"

Description: ""

Resources:

 IamPolicy:

 Type: "AWS::IAM::ManagedPolicy"

 Properties:

 PolicyDocument:

 Version: "2012-10-17"

 Statement:

 - Action:

 - "ec2:RunInstances"

 Resource:

 - "arn:aws:ec2:*:*:instance/*"

 Effect: "Deny"

 Condition:

 StringNotEquals:

 ec2:MetadataHttpTokens: "required"

 Description: "An IAM policy that prevents users from
launching new EC2 Instances if they are not configured to use the
new Instance Metadata Service (IMDSv2)"

Parameters: {}

Metadata: {}

Conditions: {}

15/22

Terraform

provider "aws" {

}

resource "aws_iam_policy" "IamPolicy" {

 name = "Require_IMDSv2"

 description = "IAM Policy that requires IMDSv2"

 policy = <<POLICY

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Action": [

 "ec2:RunInstances"

],

 "Resource": [

 "arn:aws:ec2:*:*:instance/*"

],

 "Effect": "Deny",

 "Condition": {

 "StringNotEquals": {

 "ec2:MetadataHttpTokens": "required"

 }

 }

 }

]

}

POLICY

}

16/22

Create an IAM Policy that prevents users from launching an EC2 Instance if the EC2
instance is not configured for using IMDSv2.

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Action": [

 "ec2:RunInstances"

],

 "Resource": [

 "arn:aws:ec2:*:*:instance/*"

],

 "Effect": "Deny",

 "Condition": {

 "StringNotEquals": {

 "ec2:MetadataHttpTokens": "required"

 }

 }

 }

]

}

Create an IAM Policy that enforces all newly created EC2 Instances are configured to
use IMDSv2 (note: existing EC2 Instances will not be impacted by this IAM Policy).

17/22

{

 "Version": "2012-10-17",

 "Statement": {

 "Sid": "RequireImdsV2",

 "Effect": "Deny",

 "Action": "ec2:RunInstances",

 "Resource": "arn:aws:ec2:*:*:instance/*",

 "Condition": {

 "StringNotEquals": {

 "ec2:MetadataHttpTokens": "required"

 }

 }

 }

}

Additional Preventions and Hardening

Review all EC2 Instances, and ensure User Data Scripts for EC2s do not contain
cleartext secrets or sensitive data

User Data Scripts are a set of commands that you provide during the launch of
the EC2. The User Data Scripts are performed using root permissions, and it can
be viewed via IMDS. An attacker can read the script being ran by a simple curl
command.

curl http://169.254.169.254/latest/user-data

Limit the number of HTTP Put Response Hops (minimum value is defaulted to 1 and
the maximum is 64).

The following example limits the maximum number of hops that occurs to 1:

18/22

{

 "Version": "2012-10-17",

 "Statement": {

 "Sid": "MaxImdsHopLimit",

 "Effect": "Deny",

 "Action": "ec2:RunInstances",

 "Resource": "arn:aws:ec2:*:*:instance/*",

 "Condition": {

 "NumericLessThanEquals":
 {"ec2:MetadataHttpPutResponseHopLimit": "1"}

 }

 }

}

Limit API Calls to use IMDSv2 to deliver the Amazon EC2 Role credentials via an IAM
Policy

{

 "Version": "2012-10-17",

 "Statement": {

 "Sid": "RequireAllEc2RolesToUseV2",

 "Effect": "Deny",

 "Action": "*",

 "Resource": "*",

 "Condition": {

 "NumericLessThan":
 {"ec2:RoleDelivery": "2.0"}

 }

 }

}

19/22

Limit access to be able to modify the EC2 Instance metadata service

{

 "Version": "2012-10-17",

 "Statement": {

 "Sid": "LimitModifyInstanceMetadataService",

 "Effect": "Deny",

 "Action": "ec2:ModifyInstanceMetadataOptions",

 "Resource": "*",

 "Condition": {

 "StringNotLike":
 {"aws:PrincipalARN”: “arn:aws:iam:*:role/ec2-imds-admin"}

 }

 }

}

Restrict the scope of IAM role / credential access to S3 buckets
Block or reduce of IAM role / credential usage ability from the public Internet
Limit server Internet egress to prevent outbound server traffic
Implement S3 Bucket Policies to further restrict access to the S3 Bucket
Enable VPC flows and S3 bucket / object level access data events
Proxy or monitor web requests for possible exploitation
Limit service ports allowed inbound or outbound to the server
Sanitize or limit unnecessary HTTP headers to the web server
Log all the things, and prioritize alerting for possible credential abuse
Follow Amazon Web Services best practices for solutions, and regularly test security
controls

Key Takeaways

As organizations move further into cloud environments, additional complexities of default
settings can offer opportunities for an attacker to leverage access from one system, to pivot
to many others similar. Data stored in cloud systems can be stolen, tampered, or deleted just
like any other environment. Mandiant’s expertise in responding to intrusions extends to cloud
environments which continue to be targeted both by espionage and financially motivated
groups.

20/22

Acknowledgements

With thanks to Nick Richard for technical review and Justin Moore for MITRE D3FEND
mapping.

Indicators

141.94.43.37
37.59.152.171
191.96.108.227
191.96.108.8
hxxps://raw.githubusercontent[.]com/wso3/wso3/master/wso.php
35b03c6bc21d140201670005923333de

MITRE Mappings

MITRE ATT&CK UNC2903

Tactic Description

Discovery T1580: Cloud Infrastructure Discovery

Initial Access T1190: Exploit Public-Facing Application

Persistence T1505.003: Web Shell

Credential Access T1552.004: Private Keys
 T1552.005: Cloud Instance Metadata API

Collection T1530: Data from Cloud Storage Object

MITRE D3FEND UNC2903

Tactic Description

21/22

Harden Application Hardening

D3-PSEP: Process Segment Execution
Prevention
D3-SAOR: Segment Address Offset
Randomization

Detect File Analysis

D3-DA: Dynamic Analysis
D3-EFA: Emulated File Analysis
D3-FCR: File Content Rules
D3-FH: File Hashing

Network Traffic Analysis

D3-CSPP: Client-Server Payload Profiling
D3-NTCD: Network Traffic Community
Deviation
D3-PHDURA: Per Host Download-Upload
Ratio Analysis
D3-PMAD: Protocol Metadata Anomaly
Detection
D3-RTSD: Remote Terminal Session
Detection
D3-UGLPA: User Geolocation Logon
Pattern Analysis
D3-ISVA: Inbound Session Volume
Analysis

Process Analysis

D3-DQSA: Database Query String
Analysis
D3-PSMD: Process Self-
Modification Detection
D3-PSA: Process Spawn Analysis
D3-PLA: Process Lineage
Analysis

Isolate Network Isolation

D3-ITF: Inbound Traffic Filtering
D3-OTF: Outbound Traffic Filtering

22/22

Execution Isolation

D3-HBPI: Hardware-based
Process Isolation
D3-MAC: Mandatory Access
Control
D3-EDL: Executable Denylisting

Deceive Decoy Object

D3-DF: Decoy File
D3-DNR: Decoy Network Resource
D3-DUC: Decoy User Credential

Evict Credential Invalidation

D3-ACI: Authentication Cache Invalidation

Process Eviction

D3-PT: Process Termination

