
1/7

April 29, 2022

Adventures in the land of BumbleBee – a new malicious
loader

research.nccgroup.com/2022/04/29/adventures-in-the-land-of-bumblebee-a-new-malicious-loader/

Authored by: Mike Stokkel, Nikolaos Totosis and Nikolaos Pantazopoulos

tl;dr

BUMBLEBEE is a new malicious loader that is being used by several threat actors and has
been observed to download different malicious samples. The key points are:

BUMBLEBEE is statically linked with the open-source libraries OpenSSL 1.1.0f, Boost
(version 1.68). In addition, it is compiled using Visual Studio 2015.
BUMBLEBEE uses a set of anti-analysis techniques. These are taken directly from the
open-source project [1].
BUMBLEBEE has Rabbort.DLL embedded, using it for process injection.
BUMBLEBEE has been observed to download and execute different malicious
payloads such as Cobalt Strike beacons.

Introduction

In March 2022, Google’s Threat Analysis Group [2] published about a malware strain linked
to Conti’s Initial Access Broker, known as BUMBLEBEE. BUMBLEBEE uses a comparable
way of distribution that is overlapping with the typical BazarISO campaigns.

In the last months BUMBLEBEE, would use three different distribution methods:

https://research.nccgroup.com/2022/04/29/adventures-in-the-land-of-bumblebee-a-new-malicious-loader/

2/7

Distribution via ISO files, which are created either with StarBurn ISO or PowerISO
software, and are bundled along with a LNK file and the initial payload.
Distribution via OneDrive links.
Email thread hijacking with password protected ZIPs

BUMBLEBEE is currently under heavy development and has seen some small changes in
the last few weeks. For example, earlier samples of BUMBLEBEE used the user-agent
‘bumblebee’ and no encryption was applied to the network data. However, this functionality
has changed, and recent samples use a hardcoded key as user-agent which is also acting
as the RC4 key used for the entire network communication process.

Technical Analysis

Most of the identified samples are protected with what appears to be a private crypter and
has only been used for BUMBLEBEE binaries so far. This crypter uses an export function
with name SetPath and has not implemented any obfuscation method yet (e.g. strings
encryption).

The BUMBLEBEE payload starts off by performing a series of anti-analysis checks, which
are taken directly from the open source Khasar project[1]. After these checks passed,
BUMBLEBEE proceeds with the command-and-control communication to receive tasks to
execute.

Network Communication

BUMBLEBEE’s implemented network communication procedure is quite simple and
straightforward. First, the loader picks an (command-and-control) IP address and sends a
HTTPS GET request, which includes the following information in a JSON format (encrypted
with RC4):

Key Description

client_id A MD5 hash of a UUID value taken by executing the WMI command
‘SELECT * FROM Win32_ComputerSystemProduct’.

group_name A hardcoded value, which represents the group that the bot
(compromised host) will be added.

sys_version Windows OS version

client_version Default value that’s set to 1

user_name Username of the current user

domain_name Domain name taken by executing the WMI command ‘SELECT * FROM
Win32_ComputerSystem’.

3/7

task_state Set to 0 by default. Used only when the network commands ‘ins’ or ‘sdl’
are executed.

task_id Set to 0 by default. Used only when the network commands ‘ins’ or ‘sdl’
are executed.

Once the server receives the request, it replies with the following data in a JSON format:

Key Description

response_status Boolean value, which shows if the server correctly parsed the loader’s
request. Set to 1 if successful.

tasks Array containing all the tasks

task Task name

task_id ID of the received task, which is set by the operator(s).

task_data Data for the loader to execute in Base64 encoded format

file_entry_point Potentially represents an offset value. We have not observed this being
used either in the binary’s code or during network communication (set
to an empty string).

Tasks

Based on the returned tasks from the command-and-control servers, BUMBLEBEE will
execute one of the tasks described below. For two of the tasks, shi and dij, BUMBLEBEE
uses a list of predefined process images paths:

C:\Program Files\Windows Photo Viewer\ImagingDevices.exe
C:\Program Files\Windows Mail\wab.exe
C:\Program Files\Windows Mail\wabmig.exe

Task
name

Description

shi Injects task’s data into a new process. The processes images paths are
embedded in the binary and a random selection is made

dij Injects task’s data into a new process. The injection method defers from the
method used in task ‘dij’. The processes images paths are embedded in the binary
[1] and a random selection is made.

dex Writes task’s data into a file named ‘wab.exe’ under the Windows in AppData
folder.

4/7

sdl Deletes loader’s binary from disk.

ins Adds persistence to the compromised host.

For the persistence mechanism, BUMBLEBEE creates a new directory in the Windows
AppData folder with the directory’s name being derived by the client_id MD5 value. Next,
BUMBLEBEE copies itself to its new directory and creates a new VBS file with the following
content:

Set objShell = CreateObject(“Wscript.Shell”)

objShell.Run “rundll32.exe my_application_path, IternalJob”

Lastly, it creates a scheduled task that has the following metadata (this can differ from
sample to sample):

1. Task name – Randomly generated. Up to 7 characters.
2. Author – Asus
3. Description – Video monitor
4. Hidden from the UI: True
5. Path: %WINDIR%\\System32\\wscript.exe VBS_Filepath

Similarly with the directory’ name, the new loader’s binary and VBS filenames are derived
from the ‘client_id’ MD5 value too.

Additional Observations

This sub-section contains notes that were collected during the analysis phase and worth to
be mentioned too.

The first iterations of BUMBLEBEE were observed in September 2021 and were using
“/get_load” as URI. Later, the samples started using “/gate“. On 19th of April, they
switched to “/gates“, replacing the previous URI.
The “/get_load” endpoint is still active on the recent infrastructure – this is probably
either for backwards compatibility or ignored by the operator(s). Besides this, most of
the earlier samples using URI endpoint are uploaded from non-European countries.
Considering that BUMBLEBEE is actively being developed on, the operator(s) did not
implement a command to update the loader’s binary, resulting the loss of existing
infections.
It was found via server errors (during network requests and from external parties) that
the backend is written in Golang.
As mentioned above, every BUMBLEBEE binary has an embedded group tag.
Currently, we have observed the following group tags:

5/7

VPS1GROUP ALLdll

VPS2GROUP 1804RA

VS2G 1904r

VPS1 2004r

SP1 1904l

RA1104 25html

LEG0704 2504r

AL1204 2704r

RAI1204

As additional payloads, NCC Group’s RIFT has observed mostly Cobalt Strike and
Meterpeter being sent as tasks. However, third parties have confirmed the drop of
Sliver and Bokbot payloads.
While analyzing NCC Group’s RIFT had a case where the command-and-control server
sent the same Meterpeter PE file in two different tasks in the same request to be
executed. This is probably an attempt to ensure execution of the downloaded payload
(Figure 1). There were also cases where the server initially replied with a Cobalt Strike
beacon and then followed up with more than two additional payloads, both being
Meterpeter.

Figure

1 – Duplicated received tasks

6/7

In one case, the downloaded Cobalt Strike beacon was executed in a sandbox
environment and revealed the following commands were executed by the operator(s):

net group “domain admins” /domain
ipconfig /all
netstat -anop tcp
execution of Mimikatz

Indicators of Compromise

Type Description Value

IPv4 Meterpreter
command-
and-control
server, linked
to Group ID
2004r &
25html

23.108.57[.]13

IPv4 Meterpreter
command-
and-control
server, linked
to Group ID
2004r &
2504r

130.0.236[.]214

IPv4 Cobalt Strike
server, linked
to Group ID
1904r

93.95.229[.]160

IPv4 Cobalt Strike
server, linked
to Group ID
2004r

141.98.80[.]175

IPv4 Cobalt Strike
server, linked
to Group ID
2504r &
2704r

185.106.123[.]74

7/7

IPv4 BUMBLEBEE
command-
and-control
servers

103.175.16[.]45 103.175.16[.]46 104.168.236[.]99 108.62.118[.]236
108.62.118[.]56 108.62.118[.]61 108.62.118[.]62 108.62.12[.]12
116.202.251[.]3 138.201.190[.]52 142.234.157[.]93 142.91.3[.]109
142.91.3[.]11 149.255.35[.]167 154.56.0[.]214 154.56.0[.]216
168.119.62[.]39 172.241.27[.]146 172.241.29[.]169
185.156.172[.]62 192.236.198[.]63 193.29.104[.]176
199.195.254[.]17 199.80.55[.]44 209.141.59[.]96
209.151.144[.]223 213.227.154[.]158 213.232.235[.]105
23.106.160[.]120 23.106.160[.]39 23.227.198[.]217
23.254.202[.]59 23.81.246[.]187 23.82.140[.]133 23.82.141[.]184
23.82.19[.]208 23.83.133[.]1 23.83.133[.]182 23.83.133[.]216
23.83.134[.]110 23.83.134[.]136 28.11.143[.]222 37.72.174[.]9
45.11.19[.]224 45.140.146[.]244 45.140.146[.]30 45.147.229[.]177
45.147.229[.]23 45.147.231[.]107 49.12.241[.]35 71.1.188[.]122
79.110.52[.]191 85.239.53[.]25 89.222.221[.]14 89.44.9[.]135
89.44.9[.]235 91.213.8[.]23 91.90.121[.]73

References

[1] – https://github.com/LordNoteworthy/al-khaser

[2] – https://blog.google/threat-analysis-group/exposing-initial-access-broker-ties-conti/

https://github.com/LordNoteworthy/al-khaser
https://blog.google/threat-analysis-group/exposing-initial-access-broker-ties-conti/

