
1/7

Peeking into PrivateLoader
zscaler.com/blogs/security-research/peeking-privateloader

Key Points

PrivateLoader is a downloader malware family that was first identified in early 2021
The loader’s primary purpose is to download and execute additional malware as part of a pay-per-install (PPI)
malware distribution service
PrivateLoader is used by multiple threat actors to distribute ransomware, information stealers, banking trojans,
downloaders, and other commodity malware

PrivateLoader is a downloader malware family whose primary purpose is to download and execute additional malware.
Intel 471 and Walmart reported on PrivateLoader’s pay-per-install (PPI) service that distributes malware on behalf of
other threat actors. The malware payloads can be selectively delivered to victims based on certain criteria (e.g. location,
cryptocurrency or financial activity, on a corporate network, specific software installed, etc.) As previously reported,
some of the payloads being distributed include Redline Stealer, Vidar Stealer, SmokeLoader, Stop ransomware, and
other commodity malware.

The PrivateLoader malware is written in the C++ programming language, and based on the existence of multiple
versions it seems to be in active development. The name “PrivateLoader” comes from debugging strings that can be
found in some versions of the malware, for example:

C:\Users\Young Hefner\Desktop\PrivateLoader\PL_Client\PL_Client\json.h

PrivateLoader is modularized into a loader component and a main component.

Anti-Analysis Techniques

Both the loader and main components of PrivateLoader make use of similar anti-analysis techniques. These anti-
analysis techniques include obfuscating integer constants with various mathematical operations as shown in Figure 1.

Figure 1: Example of a PrivateLoader obfuscated integer constant.

https://www.zscaler.com/blogs/security-research/peeking-privateloader
https://intel471.com/blog/privateloader-malware
https://medium.com/walmartglobaltech/privateloader-to-anubis-loader-55d066a2653e

2/7

Most of the malware’s important strings are stored as encrypted stack strings where each string is decoded with its own
XOR key as shown in Figure 2. A listing of PrivateLoader’s decrypted strings for the loader component can be found
here and the main component’s decrypted strings can be found here.

Figure 2: Example of a PrivateLoader encrypted stack string.

Most of the important Windows DLL and API names used by PrivateLoader are also stored as encrypted stack strings.
After decryption, PrivateLoader dynamically resolves the API functions at runtime. Finally, PrivateLoader adds junk
code to obfuscate the program’s logic and control flow.

Loader Component

The PrivateLoader loader component contains three dead drop resolver URLs hardcoded in the malware that
communicate via an HTTP GET request. An example of PrivateLoader’s dead drop resolvers is the following:

hxxp://45.144.225[.]57/server.txt
hxxps://pastebin[.]com/raw/A7dSG1te
hxxp://wfsdragon[.]ru/api/setStats.php

The purpose of these resolvers is to retrieve PrivateLoader’s command and control (C2) address. The first two dead
drop resolver URLs return a plaintext response, while the third dead drop resolver returns a response that is XOR
encrypted with a one-byte key (e.g., 0x6d). PrivateLoader expects the (decrypted) response to be in the format HOST:
<IP_Address>. An example dead drop resolver response is the following:

HOST:212.193.30[.]21

If PrivateLoader is unable to retrieve the primary C2 address via the dead drop resolvers, there is a secondary C2
address (2.56.59[.]42) stored in the malware. The C2 address obtained from the dead drop resolver (or the hardcoded
C2 address) is combined with the path /base/api/statistics.php. PrivateLoader sends an HTTP GET request to this URL,
which in turn fetches another URL that is XOR encrypted with a one-byte key (0x1d). Similar to the previous request,
PrivateLoader expects the decrypted response from the C2 to be in the format URL:
<PrivateLoader_Main_Component_URL>. An example of a decrypted response from the PrivateLoader C2 is shown
below:

URL:hxxps://cdn.discordapp[.]com/attachments/934006169125679147/963471252436172840/PL_Client.bmp

PrivateLoader retrieves the content from this URL via an HTTP GET request. The response contains an unknown
DWORD followed by encrypted data. To decrypt the data, first some of the bytes are replaced as shown in Table 1.

Byte to Replace Replacement Byte

0x00 0x80

0x80 0x0a

0x0a 0x01

https://pastebin.com/BY8CnYzN
https://pastebin.com/CtDaPrkD

3/7

0x01 0x05

0x05 0xde

0xde 0xfd

0xfd 0xff

0xff 0x55

0x55 0x00

Table 1: Replacement bytes used in PrivateLoader’s decryption algorithm.

After the replacement, the data is XOR decrypted with a one-byte key (0x9d). The decrypted data contains the main
component, which is a DLL that is injected into the loader process and then executed. The loader passes a structure to
the main component containing:

The C2 IP address
A hard coded integer used in some of the main component’s C2 communications
A hard coded integer used to represent the campaign that the malware sample is associated with

Main Component

The campaign ID passed in from the loader component is mapped to one of 33 campaign names as shown below in
Table 2.

EU USA_1 USA_2 WW_1 WW_2 WW_3 WW_4

WW_5 WW_6 WW_7 WW_OPERA WW_8 WW_9 WW_10

WW_11 WW_12 WW_13 WW_14 WW_15 WW_P_1 WW_16

WW_17 WW_P_2 WW_P_3 WW_P_4 WW_P_5 WW_P_6 WW_P_7

WW_P_8 WW_18 WW_19 WW_20 WW_21

Table 2: Listing of PrivateLoader campaign names.

The sample analyzed for this blog post was configured with campaign ID 27 which maps to WW_P_7. The campaign a
particular sample is associated with determines what payloads are downloaded and executed. For some campaigns,
the payload URLs are hardcoded into the main component (see the decrypted strings listing), while for others the
payload URLs are retrieved from the C2.

Some campaigns are also interested in a victim's cryptocurrency and banking activity. PrivateLoader performs this
action by searching a large number of file paths, registry keys, browser extensions, and saved browser logins for the
following broad groups (see the decrypted strings listing for details):

cryptoWallets browser
cryptoWallets cold
cryptoWallets_part1
cryptoWallets_part2

4/7

cryptoGames
bankWallets
cuBankWallets
bankAUWallets
paypal
bankCAWallets
bankWallets_part1
bankWallets_part2
bankMXWallets
bankPKWallets
bankESWallets
shops
amazon_eu
webhosts
VBMT (travel related sites)

The wallet and/or saved login data themselves aren’t exfiltrated, rather PrivateLoader just checks for the existence of
them. This data is likely used to help determine follow-on payloads such as stealer or banking malware that can make
better use of the credentials.

The PrivateLoader main component creates a URL by combining the C2 address passed in from the loader with the
path /base/api/getData.php. The malware then sends HTTP POST requests containing a command and various data.
An example PrivateLoader main component’s request and response is similar to Figure 3.

Figure 3: Example C2 request and response by the PrivateLoader main component.

The POST data contents in the data field and corresponding response data can be decrypted as follows:

Replace the characters "_" with "/" and "-" with "+"
Base64 decode the data
Generate a 32-byte AES key and a 32-byte HMAC secret with PBKDF2

The password Snowman+under_a_sn0wdrift_forgot_the_Snow_Maiden is stored as an encrypted stack
string
The salt is stored as the first 16-bytes of the Base64 decoded data
The iteration count is hardcoded to 20,000
The HMAC hashing algorithm is SHA512

An IV is stored as the second 16-bytes of the Base64 decoded data
An HMAC hash is stored as the last 32-bytes of the Base64 decoded data
Between the IV and the HMAC hash is AES encrypted data
The HMAC hash is validated

Once decrypted, an example C2 beacon looks similar to the following:

5/7

AddLoggerStat|WW_P_7|{"extensions":[],"links":[{"id":"1916"},{"id":"468"},{"id":"1920"},{"id":"1750"},{"id":"1927"},
{"id":"1929"},{"id":"1946"},{"id":"1985"}],"net_country_code":"US","os_country_code":"US"}

Each field is pipe delimited and contains the following parameters:

Command
Campaign name
JSON object

In this example the JSON object contains:

IDs of browser extension payloads that have been downloaded and executed
IDs of hardcoded or retrieved payloads that have been downloaded and executed
Location of victim based on GeoIP
Location of victim based on system data

The response data depends on the command and can contain a simple status message (e.g. “success”) or a JSON
object.

C2 commands may include the following values:

GetLinks - get payload URLs
GetExtensions - get browser extension payload URLs
AddExtensionStat - used to update C2 panel statistics
GetIP - used to obtain the victim's external IP address
AddLoggerStat - used to update C2 panel statistics
SetIncrement|not_elevated - indicates if the malware's process token is not elevated
SetIncrement|ww_starts
GetCryptoSleeping
IsUseDominationProject
SetLoaderAnalyze

As an example of the GetLinks command, a listing of payload URLs returned for the analyzed sample’s campaign on
04/14/2022 is available here. Some of the payload URLs are encrypted similarly to how the main component was
encrypted, while others are unencrypted PE executable files.

Conclusion

PrivateLoader is a typical downloader malware family that provides a PPI service that has gained traction as a viable
malware distribution method for multiple threat actors. PrivateLoader is currently used to distribute ransomware, stealer,
banker, and other commodity malware. The loader will likely continue to be updated with new features and functionality
to evade detection and effectively deliver second-stage malware payloads.

Cloud Sandbox Detection

https://pastebin.com/amiYQYu7

6/7

In addition to sandbox detections, Zscaler’s multilayered cloud security platform detects indicators related to the
campaign at various levels with the following threat names:

Win32.Trojan.PrivateLoader

Indicators of Compromise

IOC Notes

aa2c0a9e34f9fa4cbf1780d757cc84f32a8bd005142012e91a6888167f80f4d5 SHA256 hash
of analyzed
PrivateLoader
loader
component

077225467638a420cf29fb9b3f0241416dcb9ed5d4ba32fdcf2bf28f095740bb SHA256 hash
of analyzed
PrivateLoader
main
component

hxxp://45.144.225[.]57/server.txt Loader
component
dead drop
resolver

https://threatlibrary.zscaler.com/threats/45f34992-d01a-405b-9a6d-b0d75e0431b4

7/7

hxxps://pastebin[.]com/raw/A7dSG1te Loader
component
dead drop
resolver

hxxp://wfsdragon[.]ru/api/setStats.php Loader
component
dead drop
resolver

212.193.30[.]21 Primary C2
address

2.56.59[.]42 Secondary
C2 address

/base/api/statistics.php Loader
component
URI

hxxps://cdn.discordapp[.]com/attachments/934006169125679147/963471252436172840/PL_Client.bmp Encrypted
main
component

/base/api/getData.php Main
component
URI

