
1/31

Reverse Engineering PsExec for fun and knowledge
cybergeeks.tech/reverse-engineering-psexec-for-fun-and-knowledge/

Summary

PsExec is a tool developed by Mark Russinovich that can be used to execute applications on
remote systems. This post’s purpose is to give details about the inner workings of PsExec for
research purposes only. This is not an extensive analysis of every argument that PsExec
uses, and we only provide details about the general usage of the tool. The idea of Reverse
Engineering PsExec was initially proposed in the following tweet:
https://twitter.com/DebugPrivilege/status/1512851119688531976.

Disclaimer: Our approach is not intended to break the Sysinternals Software License
mentioned at https://docs.microsoft.com/en-us/sysinternals/license-terms. The binary was
not decompiled using IDA Pro (disassembled code only).

Analyst: @GeeksCyber

Technical analysis

SHA256:
3B08535B4ADD194F5661E1131C8E81AF373CA322CF669674CF1272095E5CAB95

The blog post is split into two parts. The first part presents a situation where PsExec is
running on a remote machine specified by a computer name or an IP address.

First process: psexec.exe \\192.168.164.130 -u test -p test -h cmd.exe

The GetModuleFileNameW API is utilized to retrieve the path of the executable:

Figure 1
The process extracts version information size for PsExec by calling the
GetFileVersionInfoSizeW routine:

Figure 2

https://cybergeeks.tech/reverse-engineering-psexec-for-fun-and-knowledge/
https://twitter.com/DebugPrivilege/status/1512851119688531976
https://docs.microsoft.com/en-us/sysinternals/license-terms
https://twitter.com/GeeksCyber

2/31

The version information for PsExec is copied to a buffer using GetFileVersionInfoW:

Figure 3
The translation array is retrieved from the version-information resource:

Figure 4
The InternalName string is extracted by calling the VerQueryValueW function (see figure 5).
040904B0 is a combination of 0x409 (English – United States language) and 0x4B0
(UTF_16).

Figure 5
A similar approach is used to extract FileVersion, FileDescription, LegalCopyright, and
CompanyName.

There is a function call to GetVersion, and the return value is expected to be < 0x80000000;
otherwise, it prints the “PsExec requires Windows NT/2000/XP/2003.” message:

Figure 6
The file performs a comparison between the command line arguments and “/accepteula” (or
“-accepteula”):

3/31

Figure 7

RegCreateKeyW is utilized to create the “Software\Sysinternals\PsExec” registry key
(0x8000001 = HKEY_CURRENT_USER):

Figure 8
The PsExec executable is looking for a registry value called “EulaAccepted”, which
determines whether the user has accepted the EULA (License Agreement):

Figure 9
The executable loads the “Riched32.dll” module into the address space of the process:

Figure 10
The DialogBoxIndirectParamW routine is utilized to create a modal dialog box based on a
dialog box template:

4/31

Figure 11
The text of the window’s title bar is changed to “PsExec License Agreement” by calling the
SetWindowTextW API:

Figure 12
The binary obtains a handle to a control in the dialog box created above using GetDlgItem:

Figure 13
The process sends the TTM_GETTOOLINFO (0x435) message to the window in order to get
the current tooltip definition:

Figure 14
The anchor highlight setting for the window’s toolbar is set by sending the
TB_SETANCHORHIGHLIGHT (0x449) message to the window:

Figure 15
The PsExec License Agreement window appears on the screen, and we need to accept the
terms in order to continue the execution:

5/31

Figure 16

The PsExec executable destroys the modal dialog box created earlier using EndDialog:

Figure 17
RegSetValueExW is used to set the value of the “EulaAccepted” registry value to 1:

Figure 18
The binary extracts the NetBIOS name of the local computer via a function call to
GetComputerNameW:

Figure 19
There is a second (redundant) call to GetVersion; however, a different message is printed
this time:

6/31

Figure 20
For example, if an argument is too long, then PsExec displays a message that contains a
typo:

Figure 21

The executable retrieves the command-line string for the process by calling the
GetCommandLineW routine:

Figure 22
GetFullPathNameW is used to extract the full path and file name of PsExec:

Figure 23
The file retrieves the address of “CreateRestrictedToken” and other export functions via a call
to GetProcAddress:

Figure 24

7/31

The function that contains the switch statement, which chooses an execution flow depending
on the command line arguments, is shown below (IDA Pro graph):

Figure 25

Firstly, every argument that starts with “-” is compared with “accepteula”, “low”,
“belownormal”, “normal”, “abovenormal”, “high”, “realtime”, and “background”.

Every argument that starts with “-” is converted to uppercase using _toupper. The
0xFFFFFFBF constant is added to the return value, and then the result is supposed to be
between 0x0 and 0x17 (23 in decimal). Just based on this simple calculus, the “-y” and “-z”
arguments couldn’t be valid:

Figure 26
In the case of invalid parameters, the process prints out the instructions for parameters:

8/31

Figure 27
There is a comparison between the local computer name and the computer name\IP address
passed as a parameter:

Figure 28
The NetIsServiceAccount function is used to test whether the user name passed as a
parameter exists in the Netlogon store on the local machine:

9/31

Figure 29
The executable creates an unnamed event object by calling the CreateEventW API:

Figure 30
A new function is added to the list of handler functions for the current process:

Figure 31
An intermediary message that gives details about what action will occur next is displayed
(these messages aren’t visible during normal execution because they’re deleted after the
action is complete):

Figure 32
The PsExec process makes a connection to the IPC$ share on the remote machine using
the WNetAddConnection2W API. The credentials passed as parameters must be valid on
the remote host:

Figure 33

10/31

The binary determines the location of a resource called “PSEXESVC” via a function call to
FindResourceW:

Figure 34
The resource is loaded in memory, and a pointer to the specified resource in memory is
retrieved by calling the following functions: LoadResource, SizeofResource, and
LockResource (see figure 35).

Figure 35
The executable creates a file called “PSEXESVC.exe” in the ADMIN$ share on the remote
machine:

Figure 36
The above file is populated using the _fwrite function (see figure below) . The hash of the file
is 6A6A9AA6ED43EB3F857392459C7B05A5A0DF89E00A3214D333949A561BCFF368 and
we’ll describe its purpose in the upcoming paragraphs.

Figure 37
The binary retrieves a handle to the standard output device using GetStdHandle
(0xFFFFFFF5 = STD_OUTPUT_HANDLE):

Figure 38
GetConsoleScreenBufferInfo is utilized to obtain information about the console screen buffer:

11/31

Figure 39
The next action of PsExec is to start the PSEXESVC service on the remote host, as
highlighted below:

Figure 40
The binary establishes a connection to the service control manager on the remote machine
by calling the OpenSCManagerW routine (0xF003F = SC_MANAGER_ALL_ACCESS):

Figure 41
A new service called “PSEXESVC” is created by the process on the remote host (0xF01FF =
SERVICE_ALL_ACCESS, 0x10 = SERVICE_WIN32_OWN_PROCESS, 0x3 =
SERVICE_DEMAND_START):

Figure 42
The number of milliseconds that have elapsed since the system was started is extracted via
a function call to GetTickCount:

Figure 43
The executable opens the newly created service using OpenServiceW (0xF01FF =
SERVICE_ALL_ACCESS):

12/31

Figure 44
The “PSEXESVC” service is started using the StartServiceW routine:

Figure 45
The file retrieves the current status of the above service by calling the
QueryServiceStatus API:

Figure 46
The next step of the execution flow is connecting with the PsExec service on the remote
computer:

Figure 47
The PsExec executables opens the “\pipe\PSEXESVC” pipe from the remote machine
(0xC0000000 = GENERIC_READ | GENERIC_WRITE, 0x3 = OPEN_EXISTING):

Figure 48
The pipe mode is modified by calling the SetNamedPipeHandleState API (0x2 =
PIPE_READMODE_MESSAGE):

13/31

Figure 49
Interestingly, there are some indirect calls (jmp instructions instead of call instructions) that
appear in the code. For example, the RtlInitUnicodeString function is used to initialize the
“\Device\LanmanRedirector\<Computer name\IP Address>\ipc$” Unicode string:

Figure 50
The file opens the “\\192.168.164.130\ipc$” share using NtOpenFile (0x100001 =
FILE_READ_DATA | SYNCHRONIZE, 0x1 = FILE_SHARE_READ, 0x90 =
FILE_SYNCHRONOUS_IO_ALERT | FILE_CREATE_TREE_CONNECTION):

Figure 51
PsExec obtains connection information by calling the NtFsControlFile function with a specific
control code 0x1401a3 = FSCTL_NETWORK_GET_CONNECTION_INFO:

Figure 52
There is a second call to NtFsControlFile that sends another control code 0x1401AC =
FSCTL_NETWORK_DELETE_CONNECTION:

14/31

Figure 53
The major and minor version numbers of the OS are retrieved using the GetVersion API:

Figure 54
The information extracted above is written to the “\pipe\PSEXESVC” pipe by calling
TransactNamedPipe:

Figure 55
The binary acquires a handle to a key container within a particular CSP (cryptographic
service provider) via a call to CryptAcquireContextW (0x18 = PROV_RSA_AES):

Figure 56
CryptCreateHash is utilized to create a hash object (0x8004 = CALG_SHA1):

Figure 57
The executable hashes a buffer that contains 16 bytes (probably generated based on the
GetTickCount call) and the “Sysinternals Rocks” string:

15/31

Figure 58
An AES256 key is derived from the SHA1 hash using CryptDeriveKey (0x6610 =
CALG_AES_256):

Figure 59
The process identifier is obtained via a function call to GetCurrentProcessId:

Figure 60
An event object called “Global\PSEXESVC-<Computer Name\IP address>-<Process ID>” is
created:

Figure 61
PsExec displays a message that states the process name passed as a parameter is going to
be started on the remote host:

Figure 62
A buffer that contains the following information is encrypted using the AES256 algorithm
(figure 63): size of the buffer – 8, process ID in hex, local computer name, and the process
that will be spawned.

16/31

Figure 63
The encrypted buffer size and the encrypted buffer are written to the
“\\192.168.164.130\pipe\PSEXESVC” pipe:

Figure 64

Figure 65
PsExec waits until an instance of the “\\192.168.164.130\pipe\PSEXESVC-<Local computer
name>-<Process ID>-stdin” pipe is available for connection (see figure below). This pipe and
the others that correspond to the standard output\error are created by the PSEXESVC
process started on the remote host. The entire execution flow will be explained in the 2nd
part of the blog post, when we’ll also analyze the execution of that process.

Figure 66
The executable opens the above named pipe using CreateFileW (0x40000000 =
GENERIC_WRITE, 0x3 = OPEN_EXISTING):

17/31

Figure 67
A similar approach is applied to the “\\192.168.164.130\pipe\PSEXESVC-<Local computer
name>-<Process ID>-stdout” and “\\192.168.164.130\pipe\PSEXESVC-<Local computer
name>-<Process ID>-stderr” pipes, with only one notable different – the requested access is
0x80000000 (GENERIC_READ).

The binary retrieves a pseudo handle for the current process via a call to
GetCurrentProcess:

Figure 68
A new thread is created by the process. Please note that the starting address of the thread is
different than the actual relevant function, which is sub_404240 in this case (0x4 =
CREATE_SUSPENDED):

Figure 69
The thread handle is duplicated using DuplicateHandle (0x10000000 = GENERIC_ALL):

Figure 70

18/31

The CreateThread API is used to create two threads that will eventually execute the
sub_4043D0 and sub_404190 functions (0x4 = CREATE_SUSPENDED):

Figure 71

Figure 72
The PsExec executable changes the title for the console window using SetConsoleTitleW:

Figure 73
The binary performs a call to WaitForMultipleObjects in order to suspend the process until
the above threads finish and the event object created above is in the signaled state:

Figure 74
Thread activity – sub_404190 (handling the standard input)

The thread obtains a handle to the standard input device by calling the GetStdHandle routine
(0xFFFFFFF6 = STD_INPUT_HANDLE):

Figure 75

19/31

PsExec checks whether the event object is in the signaled state via a function call to
WaitForSingleObject:

Figure 76
The executable reads a character from the console input buffer using the ReadConsoleW
function:

Figure 77
Our objective is to run the “whoami” command in the command prompt. As we can see
below, the process encrypts the command byte-by-byte using the AES algorithm:

Figure 78
The length of the encrypted data and then the actual data from above are written to the
“\\192.168.164.130\pipe\PSEXESVC-<Local computer name>-<Process ID>-stdin” pipe:

Figure 79

Figure 80

20/31

The server end of the above pipe instance is disconnected from the process using
DisconnectNamedPipe:

Figure 81
Thread activity – sub_4043D0 (handling the standard error)

The thread reads 4 bytes from the “\\192.168.164.130\pipe\PSEXESVC-<Local computer
name>-<Process ID>-stderr” pipe:

Figure 82
The server end of the above pipe instance is disconnected from the process using
DisconnectNamedPipe:

Figure 83
Thread activity – sub_404240 (handling the standard output)

The thread reads 4 bytes from the “\\192.168.164.130\pipe\PSEXESVC-<Local computer
name>-<Process ID>-stdout” pipe:

Figure 84
The ReadFile API is utilized to read encrypted data from the above pipe:

Figure 85

21/31

The buffer is decrypted using the AES algorithm via a call to CryptDecrypt:

Figure 86

Figure 87

MultiByteToWideChar is used to map character strings to UTF-16 (wide character) strings:

Figure 88
The process retrieves a handle to the standard output device using GetStdHandle
(0xFFFFFFF5 = STD_OUTPUT_HANDLE):

Figure 89
The buffer that was decrypted above is written to the standard output via a call to WriteFile:

Figure 90
Figure 91 reveals that we get a shell on the remote machine using the above method:

Figure 91

22/31

We continue with the analysis of the main thread.

The PsExec process sets the event object to the signaled state using SetEvent:

Figure 92
There is a second call to WaitForMultipleObjects that suspends the process until two of the
above threads finish:

Figure 93
The process reads 4 bytes from the “\\192.168.164.130\pipe\PSEXESVC” pipe:

Figure 94
In the case of successful command execution, the remote PSEXESVC.exe process sends
the result through the above pipe (in this case, the username).

In the case of an error, the binary retrieves the thread’s last-error code value using the
GetLastError API:

Figure 95
The error message is formatted by calling the FormatMessageA routine (0x1300 =
FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS |
FORMAT_MESSAGE_ALLOCATE_BUFFER, 0x3B = ERROR_UNEXP_NET_ERR, 0x400
= LANG_USER_DEFAULT):

23/31

Figure 96
The error message is written to the standard output:

Figure 97

Figure 98
The WNetCancelConnection2W API is utilized to cancel the existing network connection:

Figure 99
Second process: psexec.exe -c -f -s win.exe

We’ll only highlight the differences between running PsExec on the local machine and the
first case.

The process retrieves the content of the %PATH% environment variable by calling the
GetEnvironmentVariableW function:

Figure 100
GetFileAttributesW is used to obtain file system attributes for the specified file:

24/31

Figure 101
An intermediary message that gives details about what action will occur next is displayed:

Figure 102
The binary initializes the use of the Winsock DLL using the WSAStartup routine:

Figure 103
The gethostname function is utilized to extract the standard host name for the local machine:

Figure 104
PsExec retrieves host information corresponding to the local host:

Figure 105
The local IP address in hex is converted into an ASCII string in dotted-decimal format:

Figure 106
The executable extracts the path of the System directory via a function call to
GetSystemDirectoryW:

Figure 107

25/31

The same workflow of extracting the PSEXESVC resource as in the first case is repeated.
However, this time the parameter is C:\Windows\PSEXESVC.exe, which is created and
populated using _wfopen and _fwrite:

Figure 108
The process obtains a handle to the standard output device using GetStdHandle
(0xFFFFFFF5 = STD_OUTPUT_HANDLE):

Figure 109
GetConsoleScreenBufferInfo is used to retrieve information about the console screen buffer:

Figure 110
The next step of the process is to start the PSEXESVC service on the local machine, as
highlighted below:

Figure 111
The OpenSCManagerW API is utilized to establish a connection to the service control
manager on the local computer (0xF003F = SC_MANAGER_ALL_ACCESS):

Figure 112
A new service called “PSEXESVC” is created on the local host (0xF01FF
= SERVICE_ALL_ACCESS, 0x10 = SERVICE_WIN32_OWN_PROCESS, 0x3
= SERVICE_DEMAND_START):

26/31

Figure 113
The PsExec process starts the new service by calling the StartServiceW API:

Figure 114
The QueryServiceStatus routine is used to obtain the current status of the above service:

Figure 115
The process prints the next step in the command line prompt:

Figure 116
The binary opens the “\pipe\PSEXESVC” pipe from the local machine via a function call to
CreateFileW (0xC0000000 = GENERIC_READ | GENERIC_WRITE, 0x3
= OPEN_EXISTING):

Figure 117

27/31

Due to the fact that “-c” was passed as a parameter, the next step is copying the file
specified as a parameter to the local host:

Figure 118
The file is copied to the ADMIN$ share using CopyFileW:

Figure 119
The PsExec process will execute the binary from above, as described in figure 120.

Figure 120
We’re going to describe the activity of the PSEXESVC.exe process that was started earlier.
The only difference between this case and the first one is that the process is running on the
local machine instead of the remote host.

The PSEXESVC.exe process reads data from the “\pipe\PSEXESVC” pipe via a function call
to ReadFile:

Figure 121
The file decrypts the encrypted data using CryptDecrypt (see figure 122). The encryption
algorithm is AES256, and the key is derived based on the same approach as in the first
case.

Figure 122

28/31

The resulting buffer contains the size of the buffer – 8, PsExec process ID in hex, local
computer name, and the file that will be executed:

Figure 123

PSEXESVC.exe creates 3 named pipes called “\\.\pipe\PSEXESVC-<Local computer
name>-<PSEXESVC Process ID>-stdin\stdout\stderr” using the
CreateNamedPipeW function (0x80001 = FILE_FLAG_FIRST_PIPE_INSTANCE |
PIPE_ACCESS_INBOUND, 0x6 = PIPE_TYPE_MESSAGE |
PIPE_READMODE_MESSAGE):

Figure 124
ConnectNamedPipe is used to enable the named pipe server process (PSEXESVC) to wait
for a client process (psexec.exe) to connect to the pipes:

Figure 125
The OpenProcessToken function opens the access token associated with the current
process (0xB = TOKEN_QUERY | TOKEN_DUPLICATE | TOKEN_ASSIGN_PRIMARY):

Figure 126

29/31

The binary creates a new access token that duplicates the above token by calling the
DuplicateTokenEx routine (0x2000000 = MAXIMUM_ALLOWED, 0x1 = TokenPrimary):

Figure 127
The Wow64DisableWow64FsRedirection API is utilized to disable file system redirection for
the current thread:

Figure 128
The process forces the system not to display the critical-error-handler messages via a call to
SetErrorMode (0x1 = SEM_FAILCRITICALERRORS):

Figure 129
The CreatePipe function is repeatedly used to create three anonymous pipes:

Figure 130
The write handles’ properties are modified using SetHandleInformation (0x1 =
HANDLE_FLAG_INHERIT):

Figure 131
The PSEXESVC process executes the file passed through the named pipe using the
CreateProcessAsUserW API (0x414 = CREATE_UNICODE_ENVIRONMENT |
CREATE_NEW_CONSOLE | CREATE_SUSPENDED):

30/31

Figure 132
The execution of the above thread is resumed via a function call to ResumeThread. As in the
first case, the process creates three similar threads, and their execution will not be detailed
again: sub_404B90, sub_404AD0, and sub_404D10.

PsExec writes the confirmation that the new process was successfully started (including the
process ID) and then waits for the process to finish:

Figure 133
The “PSEXESVC” service is stopped by calling the ControlService API (0x1 =
SERVICE_CONTROL_STOP):

Figure 134
The executable deletes the “PSEXESVC” service via a call to DeleteService:

Figure 135
DeleteFileW is used to delete the PSEXESVC.exe file created earlier:

Figure 136
References

31/31

MSDN: https://docs.microsoft.com/en-us/windows/win32/api/

PsExec: https://docs.microsoft.com/en-us/sysinternals/downloads/psexec

https://docs.microsoft.com/en-us/windows/win32/api/
https://docs.microsoft.com/en-us/sysinternals/downloads/psexec

