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The life of a malware reverse-engineer is not always easy. You might think that it is all fun
and games, but in reality, it is bits and assembly. And as it is true for the whole security
industry, it is a cat and mouse game with malware developers. As we continuously expose
their malware, which leads us to learn more about the attackers and develop
countermeasures, they keep trying to implement new ways of slowing down analysts and
reverse engineering. In a recent blog, we analyzed the Pandora ransomware and discussed
that it is filled with anti-reverse-engineering techniques, and has multiple layers of code
obfuscation.

 
In this blog post, instead of talking about what we discovered in the Pandora ransomware, I
would like to discuss how we did that. More specifically, we will fight the function call
obfuscation and string encryption in this sample, using emulation. We will implement an
IDAPython script using the flare-emu framework to turn the disassembly in IDA Pro more
readable. This will be a great help in the static analysis of the sample.

Affected Platforms: Windows

Challenges in Pandora

For the detailed list of challenges we faced while reversing Pandora, read our analysis blog.
In this post I will discuss two specific anti-reverse-engineering techniques that we’ve seen in
Pandora:

   -    Function call obfuscation with opaque predicates 

   -    Encrypted strings

First, let’s discuss what these challenges are exactly.

Function Call Obfuscation with Opaque Predicates

Figure 1 shows what a simple function call looks like in the Pandora ransomware after it was
unpacked.

Figure 1 - Standard function call in Pandora
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We can see that the address of the function that is being called is calculated in runtime.
cs:qword_7FF6B6FF9AB8 seems to be the base address of some kind of function address
table. Then we use hardcoded values to find the right function pointer in that table and that is
what we load into rax before calling it. An opaque predicate generally means an expression
in the program whose outcome is known to the programmer, but it still needs to be evaluated
in runtime. It is used in many different ways as an obfuscation and anti-analysis technique. In
this case, the value that goes in rax is fixed, but because it still has to be calculated in
runtime it disrupts static-analysis tools.

If we use Figure 1 as an example, the address in rax is calculated like this:

rax = *(*address_table_base + 0x260BB2E4) + 0xFFFFFFFFAAF7CABC)

or in decimal:

rax = *(*address_table_base + 638300900) - 1426601284)

The trivial solution for such a problem is to run the malware in a debugger and get the
address from there. But in this sample all function calls were like this (except those in the
statically linked libraries). That means that we would have needed to break at every function
call in the debugger just to have the slightest idea of what is happening in the malware. This
called for automation.

Encrypted Strings

Another challenge of this particular ransomware sample was that all the interesting strings
were encrypted. There were a lot of plain text strings in the binary (shown in Figure 2), but
they were mostly Windows API function names and the strings in the embedded libraries.
None of the strings that would help us understand what the malware is doing are available in
plain text. This is very common in modern malware, thus the solution to this challenge could
be used against a wide variety of malware.

Figure 2 - Strings in the Pandora sample

Usually when one encounters malware with encrypted strings, there are two approaches:

-        Use a dynamic approach, such as debugging or emulation, and use the malware’s own
string decryption functions to do the work.

-        Understand the decryption function in such detail that one can reimplement it in a
simple script. This is usually the way to go when the encryption is a simple one-byte XOR.

In the case of Pandora, there is not one, but at least 14 different string decryption functions,
so reimplementing the decryption algorithm might not always be feasible.
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Emulation

Emulation allows us to pretend that the code is running on a CPU, but instead of running on
a real CPU, the emulation software runs the code. Emulation is usually very slow compared
to real execution. However, it allows us full control over what we want to run and a very high
level of interaction with the emulated code. With an emulator, for instance, we can emulate
just one function of the malware (or even just a couple of lines of code) and evaluate the
state of the program at every instruction. A big advantage of emulation in this case is that we
can do it directly in IDA Pro.

flare-emu

flare-emu is an emulation framework created by the FLARE team at Mandiant. It builds on
the well-known emulation engine called Unicorn Engine and IDAPython. One could use the
Unicorn Engine directly but flare-emu hides some of its complexities. Essentially, one can
define what (which part of the code) one wants to emulate and define callback functions for
specific hooks that will be called when the emulation reaches that hook. A good example is
the callHook parameter, which accepts a callback function that will be called every time a
CALL instruction is about to be emulated. In this callback function we can implement
whatever we want to do in that situation, i.e., dump registers, change data, skip call, etc.
flare-emu turned out to be very straightforward and relatively easy to use (which does not
mean that I did not need to look into its source code to figure out a few things).

Solving the Challenges

After this extensive introduction, let’s finally write some code to solve these challenges with
an IDAPython script.

Function Call Obfuscation

Figure 3 shows again the problem we are trying to solve first. This is the first function call in
the main()function in the unpacked part of Pandora’s code. At this point we can be fairly sure
that if we emulate the main()function and check rax’s value before it is called then we get the
right result. When we are already there, we could read out the arguments of the function call
as well and add all this information to the assembly code as a comment in IDA Pro.

Figure 3 - Function call obfuscation

Let’s start to put together our IDAPython script. Figure 4 shows how we can initialize the
emulation. When we launch the script, it should emulate the function in which the cursor
stands at the moment in IDA (returned by get_screen_ea()).

Figure 4 - Initialize the emulation
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To initialize flare-emu, we just need to instantiate an EmuHelper. Flare-emu offers different
ways to run our emulation. We use the emulateRange() function, which is used to specify a
memory range we want to emulate. We set the start address to the beginning of the function
and the end address can be omitted (None in python) which means that the emulation will
run until a return type instruction is reached. Note that the iterateAllPaths() instead of the
emulateRange() should also work, however that caused problems due to another
obfuscation technique in Pandora, which is not in the scope of this post. But in a less
complex malware iterateAllPaths()could be a better option.

When one of flare-emu’s emulation functions is called (emulateRange()in this case), then the
emulation starts. The framework allows us to provide additional details for the emulation,
such as processor state with registers and stack, or data for the callback functions, but we
don’t need those at this point.

emulateRange()allows us to define callback functions for different hooks:

-        instruction hook: called before the emulation of every instruction. I used this to color
every instruction that was emulated in IDA to visualize the coverage of the emulation.

-        call hook: called whenever a CALL type of instruction will be emulated. Note that the
called function is not emulated by default.

-        memory access hook: called whenever memory is accessed for reading or writing.

For our current task we only need the callHook. As you can see in line 9 in Figure 4, we
already passed the call_hook function name as the callHook parameter (might not be the
cleverest naming). Next, we need to define the callHook function, which can be seen in
Figure 5.

Figure 5 - First implementation of call_hook ()

We created the call_hook() function, that will be called by the emulator every time before a
CALL instruction is emulated. In its current state, this function will log that it was executed,
then uses the analysisHelper to check whether the operand in the current CALL instruction is
a register or not. If not, then we can return because only the register case is interesting for
us. Then we recover the register’s name (operand_name) and its value (operand_name) and
log them for now. If we run the script against the main function, then we get the results in
Figure 6. Note that due to the numerous other evil obfuscations in the Pandora code, this
simple script won’t be able to emulate the whole function. But this can be done by extending
the script.

Figure 6 - Results of the first test
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The emulation found three CALL instructions and printed the values of the operand registers.
If we think about it, we have mostly solved the problem of function call obfuscation, because
we now know which addresses are called by the different CALL instructions. Now we just
need to add this to the disassembly in IDA. These are the things we want to do in IDA
whenever we resolve a CALL instruction:

-        Add a comment with the address of the function that is being called

-        Add a comment with the arguments for that function call

-        Add a cross-reference in IDA to the function that is called

Figure 7 shows the updated code.

Figure 7 - Adding comment and cross-reference

When creating the comment we use a nice feature from flare-emu. It allows us to get the
function parameters in an architecture-independent way. This malware is x86_64 so we
could just take rcx, rdx, r8, r9, and the stack, but this way we don’t have to deal with that.
One of the arguments the call hook gets is the arguments variable and this will contain the
values flare-emu thinks are the parameters of this function call. Of course, without analyzing
the called function, we won’t know how many parameters are expected so we will just print
all of them.

At the end (line 23) we add an IDA cross-reference, which will be a great help further along
in our analysis. If we run this code again on the main function, we get the result in Figure 8.

Figure 8 - Results of the function call resolution

Encrypted String

Now that we have the first problem out of the way, and have an emulation framework to work
with, we can move onto our second challenge, decrypting the strings. To be able to know
which function to emulate to get the strings decrypted, our only requirement is that we need
to know which functions are decryption functions. As always, reverse engineering is an
iterative process. Once we run the script we wrote on the main function, then we can start to
analyze the called functions. So how do we figure out if a function is a decryption function?
(Spoiler: 0x7ff6b6f971e0 points to a decryption function.)

A)    We see it in IDA. Without diving deep in the function at 0x7ff6b6f971e0, we can see in
the graph view (Figure 10) that it is fairly simple and has some loops.

Figure 9. - Graph view at the function at 0x7ff6b6f971e0
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If we scroll through the code, we find the basic block in Figure 10, where we see that it
iterates through some value and XORs it. This indicates that it might be an XOR-based
encoding/encryption.

Figure 10 - XOR indicates decoding/decryption

B)    We see it in a debugger. Parallel to our static analysis, we of course can also debug the
malware (in a safe environment). In the debugger when we see a function that gets some
addresses as an input and returns a string, that could mean that it is a decryption function.
Figure 11 shows when the function at 0x7ff6b6f971e0 returns and indeed it returns the string
“ThisIsMutexa” in rcx.

Figure 11 - The decrypted string appears in rcx

Once we know that a function is a decryption function, we can rename it accordingly (we
used mw_decrypt_str()). Interestingly, Pandora uses multiple decryption functions, which we
discovered slowly as we dived deeper into the code. At the end we identified 14 different
decryption functions, however most of them looked very similar to Figure 9, which allowed us
to quickly see if a function is just another decryption function.

Once we know (some) of the decryption functions, we can improve our IDAPython script to
emulate the function call whenever we see that a decryption function is called. This is
actually very similar to one of the examples in flare-emu’s documentation, which shows how
well such code can often be reused.

Figure 12 shows the updated call_hook() function. Starting from line 23, we first check
whether the function at the address we are calling has a name that contains the string
mw_decrypt_str. This is how we decide whether the called function is a decryption function.
This is not a very scientific method, but we want to reverse malware, not get a PhD.

Figure 12 - Adding decryption to the call_hook()

If it is a decryption function, then we call the decrypt()function in our script. This will return
the decrypted plain text string. Then we create a comment that will include the decrypted
string as well.

How the decryption is emulated can be seen in Figure 13. We create a new EmuHelper
instance and when starting emulateRange, we use the function name (fname) to get the
function’s address as the start address. We also pass the first four elements of the argv array
as the argument registers. At the end we return the value in argv[0],        which should contain the
address of the decrypted string.

Figure 13 - Emulating the decryption
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After running the script in IDA, the results are shown in Figure 12. The decrypted string was
ThisIsMutexa, which was added to the comment and logged in the output.

Figure 14 - String decryption is successful

Now we can automatically decrypt strings. As we progress with the analysis of the code and
more decryption functions are discovered, we can just rerun the script on the functions that
call these decryption functions to recover the plain text strings.

Conclusion

The Pandora ransomware is packed with obfuscation and anti-reverse-engineering
techniques. In this post we looked at two of these: function call obfuscation and string
encryption. We used the flare-emu emulation framework to write an IDAPython script to
resolve the addresses and arguments of the function calls as well as emulate the decryption
functions to recover the strings as plain text. The final script can be developed further to deal
with the other anti-reverse-engineering challenges discussed in the deep dive analysis of the
Pandora ransomware.

Fortinet Protection

The analyzed Pandora ransomware sample is detected by the following (AV) signature:

W64/Filecoder.EGYTYFD!tr.ransom

FortiEDR also detects and mitigates execution of Pandora ransomware through the
combination of behavioral analysis, and integration with machine learning and threat
intelligence feeds. Execution of the Pandora sample analyzed as part of this blog triggers
seven rules resulting in nine security events. Triggered rules were a result of pre-execution
analysis and post-execution behaviors. These security events can be observed below in
Figure 15.

Figure 15 - FortiEDR security events generated following execution of Pandora ransomware
sample. Note that during this execution, FortiEDR was set to only log events rather than
mitigate, to properly demonstrate detections post-execution.

Pre-execution detections included: identifying the malicious file (hash based), detection of a
suspicious packer, and presence of writeable code. Post-execution detections included:
detection of each file encryption attempt, detection of encrypted file rename attempt,
dropping of the ransom note, and attempts to access SMB shares.

In Protect mode, FortiEDR will detect and mitigate detected behavior. In the case of
Pandora, this will prevent execution of the ransomware, mitigating malicious activity before it
occurs, and will prevent subsequent file encryption attempts if the adversary is able to
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execute the sample. The post-exploitation detections are not dependent on signature,
meaning they will effectively mitigate this activity for newer Pandora variants even with no
prior knowledge of the samples.

IOCs

Mutex: ThisIsMutexa
 Ransom note: Restore_My_Files.txt

 SHA256 hash of hardcoded public key:
7b2c21eea03a370737d2fe7c108a3ed822be848cce07da2ddc66a30bc558af6b

 SHA256 hash of sample:
5b56c5d86347e164c6e571c86dbf5b1535eae6b979fede6ed66b01e79ea33b7b

ATT&CK TTPs

TTP Name TTP ID Description

Obfuscated Files or Information:
Software Packing

T1027.002 Modified UPX packer

Impair Defenses: Disable Windows
Event Logging

T1562.002 Disable event logging

Impair Defenses: Disable or Modify
Tools

T1562.001 Bypass AMSI

Data from Local System T1005 Searches unmounted drives and
partitions

Modify Registry T1112 Cryptographic keys are stored in
the registry

Data Encrypted for Impact T1486 As a ransomware it encrypts files

Command and Scripting Interpreter T1059 Uses cmd.exe to remove the
shadow copies

System Information Discovery T1082 Collects system information with
GetSystemInfo()
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File and Directory Discovery T1083 Discovers drives and enumerates
filesystems

Inhibit System Recovery T1490 Deletes shadow copies

Service Stop T1489 Terminates processes if they lock a
file

Learn more about Fortinet’s FortiGuard Labs threat research and intelligence organization
and the FortiGuard Security Subscriptions and Services portfolio.
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