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About two years ago I quit being a full-time red team operator. However, it still is a field of
expertise that stays very close to my heart. A few weeks ago, I was looking for a new side
project and decided to pick up an old red teaming hobby of mine: bypassing/evading
endpoint protection solutions.

In this post, I’d like to lay out a collection of techniques that together can be used to
bypassed industry leading enterprise endpoint protection solutions. This is purely for
educational purposes for (ethical) red teamers and alike, so I’ve decided not to publicly
release the source code. The aim for this post is to be accessible to a wide audience in the
security industry, but not to drill down to the nitty gritty details of every technique. Instead, I
will refer to writeups of others that deep dive better than I can.

In adversary simulations, a key challenge in the “initial access” phase is bypassing the
detection and response capabilities (EDR) on enterprise endpoints. Commercial command
and control frameworks provide unmodifiable shellcode and binaries to the red team operator
that are heavily signatured by the endpoint protection industry and in order to execute that
implant, the signatures (both static and behavioural) of that shellcode need to be obfuscated.

In this post, I will cover the following techniques, with the ultimate goal of executing malicious
shellcode, also known as a (shellcode) loader:

1. Shellcode encryption
2. Reducing entropy
3. Escaping the (local) AV sandbox
4. Import table obfuscation
5. Disabling Event Tracing for Windows (ETW)

https://vanmieghem.io/blueprint-for-evading-edr-in-2022/
https://vanmieghem.io/
https://vanmieghem.io/blog
https://vanmieghem.io/projects
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6. Evading common malicious API call patterns
7. Direct system calls and evading “mark of the syscall”
8. Removing hooks in ntdll.dll
9. Spoofing the thread call stack

10. In-memory encryption of beacon
11. A custom reflective loader
12. OpSec configurations in your Malleable profile

1. Shellcode encryption

Let’s start with a basic but important topic, static shellcode obfuscation. In my loader, I
leverage a XOR or RC4 encryption algorithm, because it is easy to implement and doesn’t
leave a lot of external indicators of encryption activities performed by the loader. AES
encryption to obfuscate static signatures of the shellcode leaves traces in the import address
table of the binary, which increase suspicion. I’ve had Windows Defender specifically trigger
on AES decryption functions (e.g. CryptDecrypt , CryptHashData , CryptDeriveKey
etc.) in earlier versions of this loader.

Output of dumpbin /imports, an easy giveaway of only AES decryption functions being used
in the binary.

2. Reducing entropy

Many AV/EDR solutions consider binary entropy in their assessment of an unknown binary.
Since we’re encrypting the shellcode, the entropy of our binary is rather high, which is a clear
indicator of obfuscated parts of code in the binary.

There are several ways of reducing the entropy of our binary, two simple ones that work are:

1. Adding low entropy resources to the binary, such as (low entropy) images.
2. Adding strings, such as the English dictionary or some of "strings C:\Program

Files\Google\Chrome\Application\100.0.4896.88\chrome.dll"  output.

https://0xrick.github.io/win-internals/pe6/
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A more elegant solution would be to design and implement an algorithm that would
obfuscate (encode/encrypt) the shellcode into English words (low entropy). That would kill
two birds with one stone.

3. Escaping the (local) AV sandbox

Many EDR solutions will run the binary in a local sandbox for a few seconds to inspect its
behaviour. To avoid compromising on the end user experience, they cannot afford to inspect
the binary for longer than a few seconds (I’ve seen Avast taking up to 30 seconds in the
past, but that was an exception). We can abuse this limitation by delaying the execution of
our shellcode. Simply calculating a large prime number is my personal favourite. You can go
a bit further and deterministically calculate a prime number and use that number as (a part
of) the key to your encrypted shellcode.

4. Import table obfuscation

You want to avoid suspicious Windows API (WINAPI) from ending up in our IAT (import
address table). This table consists of an overview of all the Windows APIs that your binary
imports from other system libraries. A list of suspicious (oftentimes therefore inspected by
EDR solutions) APIs can be found here. Typically, these are VirtualAlloc ,
VirtualProtect , WriteProcessMemory , CreateRemoteThread , SetThreadContext

etc. Running dumpbin /exports <binary.exe>  will list all the imports. For the most part,
we’ll use Direct System calls to bypass both EDR hooks (refer to section 7) of suspicious
WINAPI calls, but for less suspicious API calls this method works just fine.

We add the function signature of the WINAPI call, get the address of the WINAPI in
ntdll.dll  and then create a function pointer to that address:

typedef BOOL (WINAPI * pVirtualProtect)(LPVOID lpAddress, SIZE_T dwSize, DWORD  
flNewProtect, PDWORD lpflOldProtect); 
pVirtualProtect fnVirtualProtect; 

unsigned char sVirtualProtect[] = { 
'V','i','r','t','u','a','l','P','r','o','t','e','c','t', 0x0 }; 
unsigned char sKernel32[] = { 'k','e','r','n','e','l','3','2','.','d','l','l', 0x0 }; 

fnVirtualProtect = (pVirtualProtect) GetProcAddress(GetModuleHandle((LPCSTR) 
sKernel32), (LPCSTR)sVirtualProtect); 
// call VirtualProtect 
fnVirtualProtect(address, dwSize, PAGE_READWRITE, &oldProt); 

Obfuscating strings using a character array cuts the string up in smaller pieces making them
more difficult to extract from a binary.

The call will still be to an ntdll.dll  WINAPI, and will not bypass any hooks in WINAPIs in
ntdll.dll , but is purely to remove suspicious functions from the IAT.

https://0xrick.github.io/win-internals/pe6/
https://github.com/Mr-Un1k0d3r/EDRs
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5. Disabling Event Tracing for Windows (ETW)

Many EDR solutions leverage Event Tracing for Windows (ETW) extensively, in particular
Microsoft Defender for Endpoint (formerly known as Microsoft ATP). ETW allows for
extensive instrumentation and tracing of a process’ functionality and WINAPI calls. ETW has
components in the kernel, mainly to register callbacks for system calls and other kernel
operations, but also consists of a userland component that is part of ntdll.dll  (ETW
deep dive and attack vectors). Since ntdll.dll  is a DLL loaded into the process of our
binary, we have full control over this DLL and therefore the ETW functionality. There are quite
a few different bypasses for ETW in userspace, but the most common one is patching the
function EtwEventWrite  which is called to write/log ETW events. We fetch its address in
ntdll.dll , and replace its first instructions with instructions to return 0 ( SUCCESS ).

void disableETW(void) { 
// return 0 
unsigned char patch[] = { 0x48, 0x33, 0xc0, 0xc3};     // xor rax, rax; ret 
 
ULONG oldprotect = 0; 
size_t size = sizeof(patch);
 
HANDLE hCurrentProc = GetCurrentProcess(); 
 
unsigned char sEtwEventWrite[] = { 

'E','t','w','E','v','e','n','t','W','r','i','t','e', 0x0 }; 
 
void *pEventWrite = GetProcAddress(GetModuleHandle((LPCSTR) sNtdll), (LPCSTR) 

sEtwEventWrite); 
 
NtProtectVirtualMemory(hCurrentProc, &pEventWrite, (PSIZE_T) &size, 

PAGE_READWRITE, &oldprotect); 
 
memcpy(pEventWrite, patch, size / sizeof(patch[0])); 
 
NtProtectVirtualMemory(hCurrentProc, &pEventWrite, (PSIZE_T) &size, 

oldprotect, &oldprotect); 
FlushInstructionCache(hCurrentProc, pEventWrite, size); 
 

} 

I’ve found the above method to still work on the two tested EDRs, but this is a noisy ETW
patch.

6. Evading common malicious API call patterns

Most behavioural detection is ultimately based on detecting malicious patterns. One of these
patters is the order of specific WINAPI calls in a short timeframe. The suspicious WINAPI
calls briefly mentioned in section 4 are typically used to execute shellcode and therefore
heavily monitored. However, these calls are also used for benign activity (the
VirtualAlloc , WriteProcess , CreateThread  pattern in combination with a memory

https://binarly.io/posts/Design_issues_of_modern_EDRs_bypassing_ETW-based_solutions/index.html
https://whiteknightlabs.com/2021/12/11/bypassing-etw-for-fun-and-profit/
https://www.mdsec.co.uk/2020/03/hiding-your-net-etw/
https://modexp.wordpress.com/2020/04/08/red-teams-etw/
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allocation and write of ~250KB of shellcode) and so the challenge for EDR solutions is to
distinguish benign from malicious calls. Filip Olszak wrote a great blog post leveraging
delays and smaller chunks of allocating and writing memory to blend in with benign WINAPI
call behaviour. In short, his method adjusts the following behaviour of a typical shellcode
loader:

1. Instead of allocating one large chuck of memory and directly write the ~250KB implant
shellcode into that memory, allocate small contiguous chunks of e.g. <64KB memory
and mark them as NO_ACCESS . Then write the shellcode in a similar chunk size to the
allocated memory pages.

2. Introduce delays between every of the above mentioned operations. This will increase
the time required to execute the shellcode, but will also make the consecutive
execution pattern stand out much less.

One catch with this technique is to make sure you find a memory location that can fit your
entire shellcode in consecutive memory pages. Filip’s DripLoader implements this concept.

The loader I’ve built does not inject the shellcode into another process but instead starts the
shellcode in a thread in its own process space using NtCreateThread . An unknown
process (our binary will de facto have low prevalence) into other processes (typically a
Windows native ones) is suspicious activity that stands out (recommended read “Fork&Run –
you’re history”). It is much easier to blend into the noise of benign thread executions and
memory operations within a process when we run the shellcode within a thread in the
loader’s process space. The downside however is that any crashing post-exploitation
modules will also crash the process of the loader and therefore the implant. Persistence
techniques as well as running stable and reliable BOFs can help to overcome this downside.

7. Direct system calls and evading “mark of the syscall”

The loader leverages direct system calls for bypassing any hooks put in ntdll.dll  by the
EDRs. I want to avoid going into too much detail on how direct syscalls work, since it’s not
the purpose of this post and a lot of great posts have been written about it (e.g. Outflank).

In short, a direct syscall is a WINAPI call directly to the kernel system call equivalent. Instead
of calling the ntdll.dll  VirtualAlloc  we call its kernel equivalent
NtAlocateVirtualMemory  defined in the Windows kernel. This is great because we’re

bypassing any EDR hooks used to monitor calls to (in this example) VirtualAlloc  defined
in ntdll.dll .

In order to call a system call directly, we fetch the syscall ID of the system call we want to call
from ntdll.dll , use the function signature to push the correct order and types of function
arguments to the stack, and call the syscall <id>  instruction. There are several tools that
arrange all this for us, SysWhispers2 and SysWhisper3 are two great examples. From an
evasion perspective, there are two issues with calling direct system calls:

https://blog.redbluepurple.io/offensive-research/bypassing-injection-detection
https://github.com/xuanxuan0/DripLoader
https://www.cobaltstrike.com/blog/cobalt-strike-4-5-fork-run-youre-history/
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/beacon-object-files_main.htm
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://github.com/jthuraisamy/SysWhispers2
https://github.com/klezVirus/SysWhispers3
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1. Your binary ends up with having the syscall  instruction, which is easy to statically
detect (a.k.a “mark of the syscall”, more in “SysWhispers is dead, long live
SysWhispers!”).

2. Unlike benign use of a system call that is called through its ntdll.dll  equivalent, the
return address of the system call does not point to ntdll.dll . Instead, it points to
our code from where we called the syscall, which resides in memory regions outside of
ntdll.dll . This is an indicator of a system call that is not called through
ntdll.dll , which is suspicious.

To overcome these issues we can do the following:

1. Implement an egg hunter mechanism. Replace the syscall  instruction with the egg
(some random unique identifiable pattern) and at runtime, search for this egg  in
memory and replace it with the syscall  instruction using the ReadProcessMemory
and WriteProcessMemory  WINAPI calls. Thereafter, we can use direct system calls
normally. This technique has been implemented by klezVirus.

2. Instead of calling the syscall  instruction from our own code, we search for the
syscall  instruction in ntdll.dll  and jump to that memory address once we’ve

prepared the stack to call the system call. This will result in an return address in RIP
that points to ntdll.dll  memory regions.

Both techniques are part of SysWhisper3.

8. Removing hooks in ntdll.dll

Another nice technique to evade EDR hooks in ntdll.dll  is to overwrite the loaded
ntdll.dll  that is loaded by default (and hooked by the EDR) with a fresh copy from
ntdll.dll . ntdll.dll  is the first DLL that gets loaded by any Windows process. EDR

solutions make sure their DLL is loaded shortly after, which puts all the hooks in place in the
loaded ntdll.dll  before our own code will execute. If our code loads a fresh copy of
ntdll.dll  in memory afterwards, those EDR hooks will be overwritten. RefleXXion is a

C++ library that implements the research done for this technique by MDSec. RelfeXXion
uses direct system calls NtOpenSection  and NtMapViewOfSection  to get a handle to a
clean ntdll.dll  in \KnownDlls\ntdll.dll  (registry path with previously loaded DLLs).
It then overwrites the .TEXT  section of the loaded ntdll.dll , which flushes out the EDR
hooks.

I recommend to use adjust the RefleXXion library to use the same trick as described above
in section 7.

9. Spoofing the thread call stack

https://klezvirus.github.io/RedTeaming/AV_Evasion/NoSysWhisper/
https://klezvirus.github.io/RedTeaming/AV_Evasion/NoSysWhisper/
https://github.com/klezVirus/SysWhispers3
https://github.com/hlldz/RefleXXion
https://www.mdsec.co.uk/2022/01/edr-parallel-asis-through-analysis/
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The next two sections cover two techniques that provide evasions against detecting our
shellcode in memory. Due to the beaconing behaviour of an implant, for a majority of the time
the implant is sleeping, waiting for incoming tasks from its operator. During this time the
implant is vulnerable for memory scanning techniques from the EDR. The first of the two
evasions described in this post is spoofing the thread call stack.

When the implant is sleeping, its thread return address is pointing to our shellcode residing in
memory. By examining the return addresses of threads in a suspicious process, our implant
shellcode can be easily identified. In order to avoid this, want to break this connection
between the return address and shellcode. We can do so by hooking the Sleep()  function.
When that hook is called (by the implant/beacon shellcode), we overwrite the return address
with 0x0  and call the original Sleep()  function. When Sleep()  returns, we put the
original return address back in place so the thread returns to the correct address to continue
execution. Mariusz Banach has implemented this technique in his ThreadStackSpoofer
project. This repo provides much more detail on the technique and also outlines some
caveats.

We can observe the result of spoofing the thread call stack in the two screenshots below,
where the non-spoofed call stack points to non-backed memory locations and a spoofed
thread call stack points to our hooked Sleep ( MySleep ) function and “cuts off” the rest of
the call stack.

Default beacon thread call stack.

Spoofed beacon thread call stack.

https://twitter.com/mariuszbit
https://github.com/mgeeky/ThreadStackSpoofer
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10. In-memory encryption of beacon

The other evasion for in-memory detection is to encrypt the implant’s executable memory
regions while sleeping. Using the same sleep hook as described in the section above, we
can obtain the shellcode memory segment by examining the caller address (the beacon code
that calls Sleep()  and therefore our MySleep()  hook). If the caller memory region is
MEM_PRIVATE  and EXECUTABLE  and roughly the size of our shellcode, then the memory

segment is encrypted with a XOR function and Sleep()  is called. Then Sleep()  returns,
it decrypts the memory segment and returns to it.

Another technique is to register a Vectored Exception Handler (VEH) that handles
NO_ACCESS  violation exceptions, decrypts the memory segments and changes the

permissions to RX . Then just before sleeping, mark the memory segments as NO_ACCESS ,
so that when Sleep()  returns, it throws a memory access violation exception. Because we
registered a VEH, the exception is handled within that thread context and can be resumed at
the exact same location the exception was thrown. The VEH can simply decrypt and change
the permissions back to RX and the implant can continue execution. This technique prevents
a detectible Sleep()  hook being in place when the implant is sleeping.

Mariusz Banach has also implemented this technique in ShellcodeFluctuation.

11. A custom reflective loader

The beacon shellcode that we execute in this loader ultimately is a DLL that needs to be
executed in memory. Many C2 frameworks leverage Stephen Fewer’s ReflectiveLoader.
There are many well written explanations of how exactly a relfective DLL loader works, and
Stephen Fewer’s code is also well documented, but in short a Reflective Loader does the
following:

1. Resolve addresses to necessary kernel32.dll  WINAPIs required for loading the
DLL (e.g. VirtualAlloc , LoadLibraryA  etc.)

2. Write the DLL and its sections to memory
3. Build up the DLL import table, so the DLL can call ntdll.dll  and kernel32.dll

WINAPIs
4. Load any additional library’s and resolve their respective imported function addresses
5. Call the DLL entrypoint

Cobalt Strike added support for a custom way for reflectively loading a DLL in memory that
allows a red team operator to customize the way a beacon DLL gets loaded and add evasion
techniques. Bobby Cooke and Santiago P built a stealthy loader (BokuLoader) using Cobalt
Strike’s UDRL which I’ve used in my loader. BokuLoader implements several evasion
techniques:

Limit calls to GetProcAddress()  (commonly EDR hooked WINAPI call to resolve a
function address, as we do in section 4)

https://twitter.com/mariuszbit
https://github.com/mgeeky/ShellcodeFluctuation
https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/boku7/BokuLoader
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AMSI & ETW bypasses
Use only direct system calls
Use only RW  or RX , and no RWX  ( EXECUTE_READWRITE ) permissions
Removes beacon DLL headers from memory

Make sure to uncomment the two defines to leverage direct system calls via HellsGate &
HalosGate and bypass ETW and AMSI (not really necessary, as we’ve already disabled
ETW and are not injecting the loader into another process).

12. OpSec configurations in your Malleable profile

In your Malleable C2 profile, make sure the following options are configured, which limit the
use of RWX  marked memory (suspicious and easily detected) and clean up the shellcode
after beacon has started.

   set startrwx        "false"; 
   set userwx          "false"; 
   set cleanup         "true"; 
   set stomppe         "true"; 
   set obfuscate       "true"; 
   set sleep_mask      "true"; 
   set smartinject     "true"; 

Conclusions

Combining these techniques allow you to bypass (among others) Microsoft Defender for
Endpoint and CrowdStrike Falcon with 0 detections (tested mid April 2022), which together
with SentinelOne lead the endpoint protection industry.

https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://github.com/boku7/BokuLoader/blob/055861a12871e2e7f3396dcac67e8ee40c46d757/BokuLoader64.c#L4
https://blog.sektor7.net/#!res/2021/halosgate.md
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CrowdStrike Falcon with 0 alerts.
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Windows Defender (and also Microsoft Defender for Endpoint, not screenshotted) with 0
alerts.
Of course this is just one and the first step in fully compromising an endpoint, and this
doesn’t mean “game over” for the EDR solution. Depending on what post-exploitation
activity/modules the red team operator choses next, it can still be “game over” for the
implant. In general, either run BOFs, or tunnel post-ex tools through the implant’s SOCKS
proxy feature. Also consider putting the EDR hooks patches back in place in our Sleep()
hook to avoid detection of unhooking, as well as removing the ETW/AMSI patches.

It’s a cat and mouse game, and the cat is undoubtedly getting better.

Related Posts

Towards generic .NET assembly obfuscation (Pt. 1)

https://vanmieghem.io/towards-generic-.net-obfuscation/

