Qakbot Series: Process Injection

malwarology.com/2022/04/qakbot-series-process-injection/

April 16, 2022

2022-04-16

Malware Analysis , Qakbot

In late March 2022, | was requested to analyze a software artifact. It was an instance of
Qakbot, a modular information stealer known since 2007. Differently to other analyses | do
as part of my daily job, in this particular case | can disclose wide parts of it with you readers.
I’m addressing them in a post series. Here, I'll discuss about the Qakbot process injection
techinque based on this specific sample.

ST T 2 P el s e PR R T PR SRR | AR L L ST LT LSS,
85500367 PM 3 qakbot.dil Istrompid | “chrome.exe”, “ccSveHst exe” |
8:5%:00.361 PM 3 gakbot.dil Istrempid [“chrome.exe”, "avgosnve exe” |
8:5%:00.361 PM 3 gakbot.dil Istrempid [“chrome.exe”, "avgsvorexe” |
8:59:00.361 PM 3 gakbot.dil Istrempid [“chrome.exe”, "avgosrva, exe” |
8:59:00.361 PM 3 gakbot.dil Istrempii [“chrome.exe”, "MsMpEng. exe”)
8:59:00.361 PM 3 gakbot.dil Istrempil [“chrome.exe®, "mcshield. exe”)
8:5%:00.361 PM 3 gakbot.dil Istrompif | “chrome. exe”, “avp.exe”]
8:59:00.361 PM 3 gakbot.dil Istrempii [“chrome.exe”, “kaviray.exe”)
8:5%:00.361 PM 3 gakbot.dil Istrempid ["chrome.exe”, “egui.exe”)
8:5%:00.361 PM 3 gakbot.dil Istrempid ["chrome.exe”, “ekrn.exe”)
B:59:00.367 PM 3 gakbot.dil Istrempi& ["chrome.exe”, "bdagent.exe”)
B:59:00.367 PM 3 gakbot.dil Istrempid ["chrome.exe”, “vsserv.exe”)
B:59:00.367 PM 3 gakbot.dil Istrempid ["chrome.exe”, “vsservppl.exe”)
B:59:00.3671 PM 3 gakbot.dil Istrempid | "chrome. exe”, "AvastSve exe”)
B:55:00.367 PM 3 gakbot.dil Istrempi/ [“chrome.exe”, “coreSenviceShell exe”)
B:5%:00.367 PM 3 gakbot.dil IstrempiA | “chrome.exe”, "PoeNTMon,. exe”)
B:5%:00.3671 PM 3 gakbot.dil lstrempiA | “chrome.exe”, "NTRTScan. exe”)

Figure 1

The API trace shows that Qakbot scans the process names on the infected system

The API logs for the sample show an interesting pattern. The malware seems to enumerate
all the processes running on the infected system and compare their name with the name of
some security processes. Figure 15 reports an excerpt from the API log that | gathered by
running the malware in a controlled environment. You can see that the Chrome process
name is compared with the name of several security processes.

| investigated the malware to find a motivation for that observed behavior and | realized that
it is doing a security assessment of the just infected system. The aim of such an assessment
consists in understanding if there are security products running in the system and what are

1/5

https://www.malwarology.com/2022/04/qakbot-series-process-injection/
https://www.malwarology.com/categories/malware-analysis
https://www.malwarology.com/categories/qakbot
https://www.virustotal.com/gui/file/8565e3e213572cbd7c3df45ae3fadd094831aef7b63d3b389e57097c1b8602d6/detection

those products. As | will discuss in a while, the malware decides what process to inject
based on the outcome of this security assessment.

Flag Process(es)

0x1 ccSvcHst.exe

0x2 avgcsrvx.exe, avgsvcx.exe, avgcsrva.exe
Ox4 MsMpEng.exe

0x8 mcshield.exe

0x10 avp.exe, kavtray.exe

0x20 egui.exe, ekrn.exe

0x40 bdagent.exe, vsserv.exe, vsservppl.exe
0x80 AvastSvc.exe

0x100 coreServiceShell.exe, PccNTMon.exe, NTRTScan.exe

0x200 SAVAdminService.exe, SavService.exe

0x400 fshoster32.exe

0x800 WRSA .exe

0x1000 vkise.exe, isesrv.exe, cmdagent.exe

0x2000 ByteFence.exe

0x4000 MBAMService.exe, mbamgui.exe

0x8000 fmon.exe

0x10000 dwengine.exe, dwarkdaemon.exe, dwwatcher.exe

Table 1

Mapping between security processes and boolean flags used during the security assessment
of the infected system

The sample groups security processes mostly by vendor. As an example, | observed that the
malware developers defined a group containing some processes related to the Dr.Web
vendor: dwengine.exe, dwarkdaemon.exe and dwwatcher.exe. This group has been recently
included since it isn’t documented in a detailed analysis of a similar specimen published in
2021 (Trung Kien - 2021). A flag is assigned to each group. The flag for a given group is true

2/5

https://blog.vincss.net/2021/03/re021-qakbot-dangerous-malware-has-been-around-for-more-than-a-decade.html

if and only if at least one of the processes belonging to that group has been found on the
infected system. The security state of a system is defined by the disgiunction of all the flags.
What i call security assessment is implemented in a function located at 0xb2f3a9. This
function defines the mapping between groups and flags. As you may notice from Table 1,
reporting the mapping between groups and flags, a group is represented as a string
composed of comma-separated process names. However, those strings are obfuscated as
discussed in the first post of the Qakbot series.

uint _ cdecl
make_security_assessment(uint *security state,undefined4 param_2,undefined4 deobfuscated_string)

{
int iVarl;
uint uvVarz;
int iVar3;
int ivVard;
undefined auStack320 [B];
undefined4 auStack3l2 [77];

/* CreateToolhelp32Snapshot */

iVarl = (**(code **)(KERNEL32_ API_ADDRESSES + 0x14))(2,0,param_2,deobfuscated_string);
uvar2 = oxffffffff;
if (ivarl != -1) {

memset (auStack312,0,0x128);
auStack312[0] = 0x128;
/* Process32First */
ivar3 = (**(code **)(KERNEL32 API ADDRESSES + 0x40))(ivarl,auStack312);
if (ivar3 == 0) {
/* CloseHandle */
(**(code **)(KERNEL32 API ADDRESSES + 0x30)) (ivarl);
uvarz = Oxfffffffe;
}
else {
uvVar2 = 0Q;
do {
uVar2 = uVar2 + 1;
} while (uvar2 < 0xf);
do {
iVar3 = update_security_state((int)auStack320,security_state);
if (iVar3 == 0) break;
/¥ Process32ZNext */
iVard = (**(code **)(KERNEL32 API ADDRESSES + 0x44))(iVarl,auStack320);
} while (ivard != 0);
/* CloseHandle */
(**(code **)(KERNEL32 API ADDRESSES + 0x30)) (ivarl);
uVar2 = (uint) (ivar3 == 0);
}
}
return uVarz;

T

Figure 2

Process enumeration function to update the security state of the system

3/5

https://www.malwarology.com/2022/04/qakbot-series-string-obfuscation/

The core of the security assessment algorithm is implemented in a function located at
Oxb2dad3. As you may notice from the listing of Figure 2, that function is responsible for the
process scan observed in the API calls logs. The malware invokes
CreateToolhelp32Snapshot, Process32First, Process32Next to iterate across the processes
running on the system. Those API calls are protected by an API hashing technique I'll
discuss about in a dedicated post. The function update security state is responsible for
checking if the name of a process on the infected system is included in some group. If that is
the case, then it activates the flag for that specific group. The security state is updated by or-
ing itself with the flag of the active group.

Qakbot scans the processes on the infected system to understand if there are security
products among them. This assessment is crucial for the malware because it influences the
processes chosen as targets for the injection. The function implementing the target selection
logic is located at Oxb2d84b and it always return three targets according to some rules. As an
example, consider the following list of processes: coreServiceShell.exe, PccNTMon.exe,
NTRTScan.exe, SAVAdminService.exe, SavService.exe, bdagent.exe, vsserv.exe,
vsservppl.exe, avp.exe, kavtray.exe, avgcsrvx.exe, avgsvex.exe, and avgcsrva.exe. If any of
those processes is running on the infected system, then the second decision driver is
whether the malware is running on an x64 processor (or under the WOWG64 Microsoft
subsystem). If that is the case, then the target processes are:

¢ %SystemRoot%\SysWOWG64\mobsync.exe
¢ %SystemRoot%\SysWOWG64\explorer.exe
* %ProgramFiles(x86)%\Internet Explorer\iexplore.exe

Otherwise, if at least one of the processes has been found and the malware is running on an
x86 processor, then the targets become:

¢ %SystemRoot%\System32\mobsync.exe
* %SystemRoot%\explorer.exe
* %ProgramFiles%\Internet Explorer\iexplore.exe

The fact that Qakbot targets mobsync and explorer is well known (Trung Kien - 2021). What |
discovered with this sample is that now Qakbot may also target msra and OneDriveSetup.
That happens, for example, if none of the processes listed before are running on the system
and the malware is running on a x86 processor. Indeed, given those conditions, the targets
become:

¢ %SystemRoot%\explorer.exe
¢ %SystemRoot%\System32\msra.exe
¢ %SystemRoot%\System32\OneDriveSetup.exe

4/5

https://blog.vincss.net/2021/03/re021-qakbot-dangerous-malware-has-been-around-for-more-than-a-decade.html

Once obtained the targets, the sample attempts to inject code into them. The overall injection
process is implemented in the function located at Oxb2d6c4. That function iterates over the
designated targets and for each of them tries to spawn a new process in suspended state by
using the target path as the application name. If the creation succeeds then the function
located at Oxb2d976 is invoked. That function is responsible for the actual injection. The
injection prologue is implemented in function 0xb2d446 and it follows the following pattern:
NtCreateSection, NtMapViewOfSection on the malware process, NtMapViewOfSection1 on
the target process, and NtWriteProcessMemory to copy the Qakbot payload into the newly
created memory area. Next, the sample tries to insert a trampoline to the payload at the
entry point of the targeted process. To do so, it invokes GetThreadContext,
NtProtectVirtualMemory, and NtWriteVirtualMemory. Finally, the malware awakens the
process in suspended state.

As always, if you want to share comments or feedbacks (rigorously in broken lItalian or
broken English) do not esitate to drop me a message at admin[@]malwarology.com.

5/5

