
1/4

April 13, 2022

Qakbot Series: Configuration Extraction
malwarology.com/2022/04/qakbot-series-configuration-extraction/

2022-04-13

Malware Analysis , Qakbot
In late March 2022, I was requested to analyze a software artifact. It was an instance of
Qakbot, a modular information stealer known since 2007. Differently to other analyses I do
as part of my daily job, in this particular case I can disclose wide parts of it with you readers.
I’m addressing them in a post series. Here, I’ll discuss about the configuration extraction
based on this specific sample.

The configuration of recent Qakbot samples is often stored in two distinct resources of the
unpacked payload. Each resource contains a different part of the configuration. A first
resource, usually the shortest one in size, contains general settings such as the botnet
identifier and the campaign timestamp. A second resource, usually bigger in size, contains
the list of command and control IP addresses and ports. Both resources are encrypted and
this post is all about discussing how Qakbot decrypts its configuration.

Figure 1

-
Qakbot resouces storing the malware configuration

As you may notice from Figure 1, our sample contains two encrypted sections. The smaller
in size is labelled “524” and the bigger in size is labelled “118”. Those two sections labels
aren’t new to the malware research community since the existence of other Qakbot samples
sharing the same resource labels is documented (see, as an example, Tavares - 2021). Both
resources are encrypted with a custom implementation of the RC4 algorithm. The RC4 key-

https://www.malwarology.com/2022/04/qakbot-series-configuration-extraction/
https://www.malwarology.com/categories/malware-analysis
https://www.malwarology.com/categories/qakbot
https://www.virustotal.com/gui/file/8565e3e213572cbd7c3df45ae3fadd094831aef7b63d3b389e57097c1b8602d6/detection
https://seguranca-informatica.pt/a-taste-of-the-latest-release-of-qakbot/amp/


2/4

scheduling algorithm is implemented in the function starting at 0xb339f9. The RC4 pseudo-
random generation algorithm is implemented in the function starting at 0xb33924. The key
used to decrypt the resources is the SHA1 of the string:

\System32\WindowsPowerShell\v1.0\powershell.exe 

Notice that you won’t find that string into the sample because it is obfuscated. If you are
interested in the Qakbot strings obfuscation technique, I discuss it in this post.

Figure 2

-
Decompiled listing of the Qakbot general configuration extraction

Qakbot contains a custom implementation of the SHA1 algorithm. The implementing function
is located at 0xb3745c. Figure 2 shows the listing of the function responsible for the
configuration extraction from the resource “524” located at 0xb234bb. As you may notice, the
resource label and the key string are obfuscated and we added their de-obfuscated

https://www.malwarology.com/2022/04/qakbot-series-string-obfuscation/


3/4

counterpart as comments . Moreover, you may notice an example of junk API call (BitBlt)
placed into the code just to distract the analyst. I’ll pospone a general discussion about junk
code injection and other Qakbot anti-analysis techniques in a dedicated post.

Figure 3

-
Decompiled listing of the Qakbot resource decryption and validation

The actual decryption and validation is accomplished by the function located at 0xb2f7ac and
showed in Figure 3. From that listing you may notice that the sample decrypts the resource
by calling the RC4 functions. The format of the decrypted resource is composed of two fields:
a first field sized in 20 bytes containing the expected SHA1 of the content and a second field
consisting of the actual content of the resource. The validation is accomplished by computing
the SHA1 of the content field and then by comparing it with the expected SHA1 in the first
field. If the validation succeeds, the just decrypted content is placed in a buffer.

Figure 4

-
Decrypted content of resource "524"



4/4

As already mentioned, the two resources contain different aspects of the Qakbot
configuration. The content of resource “524” is structured in key-value pairs where each pair
represent a configuration field. The key component is an integer identifier of the field. The
value is unstructured since it may contain strings, integers, or even timestamps. As you may
notice from Figure 4, showing the decrypted content of resource “524”, the configuration
contain just two fields: field 10, containing the botnet identifier, and field 3 containing what is
often referred as the campaign identifier. Actually, field 3 is a Unix timestamp probably
indicating the creation date of the campaign. Older Qakbot samples were used to contain a
richer configuration (Kremez - 2018).

Figure 5

-
Structure of the network configuration resource (decrypted)

Resource “118” contains the network configuration of the sample. It is structured in records
separated by the byte 0x01. Each record is composed of four bytes each one representing
an IP address octet and additional two bytes representing the port. The network
configuration for the sample object of analysis contains 150 command and control IP
addresses and ports. Figure 5 shows the format of the unencrypted network configuration
resource. You may find all the C2 addresses here.

As always, if you want to share comments or feedbacks (rigorously in broken Italian or
broken English) do not esitate to drop me a message at admin[@]malwarology.com.

https://www.vkremez.com/2018/07/lets-learn-in-depth-reversing-of-qakbot.html
https://www.malwarology.com/text/2-qakbot-conf-extraction/c2ips.txt

