
1/18

Ghidra script to handle stack strings
maxkersten.nl/binary-analysis-course/analysis-scripts/ghidra-script-to-handle-stack-strings/

This article was published on the 12th of April 2022.

The usage of stack strings within malware is frequent, especially when analysing shellcode
or more advanced samples. This article will provide insight into stack strings, the endianness
of values, how to handle (encrypted) stack strings, and the step-by-step creation of a Ghidra
script which handles (wide) stack strings, which may or may not be encrypted. At last, the
complete script is given.

The analysis in this article is done with a self-built version of Ghidra 10.2, based on the
publicly available source code of the first of February 2022. The samples have been
analysed using all analysers.

Table of contents

Stack strings explained

In general, strings are not stored within the text segment of the binary. When a string is used
in a local variable in source code, the compiler generally places the string in a different
segment. A pointer to the string’s location is used to access or alter the data.

To obfuscate strings, one can create a string on the stack, character for character, or in small
groups of characters. The concatenation of these characters lead to the existence of the
complete string on the stack. When viewing the strings of a binary, the characters might not
show up.

As an example, GNU strings only shows human readable strings with a length of 4 or longer
by default, meaning that smaller groups do not show up, or might show up in parts. The third
crack me in this course is based on this technique. Note that Mandiant’s FLOSS also aims to
detect stack strings in binaries.

Additionally, stack strings can also be encrypted. This would make the use of tools harder,
although FLOSS attempts to also decrypt stack strings if a simple encryption scheme is
used.

Note that the character set and size of the used encoding matters. To make the script more
generic, the obtained stack string bytes will be printed out using multiple encodings. The
wrong encoding is likely to be displayed as garbage, making it fairly easy for an analyst to
pick the string that looks correct.

https://maxkersten.nl/binary-analysis-course/analysis-scripts/ghidra-script-to-handle-stack-strings/
https://maxkersten.nl/binary-analysis-course/assembly-basics/practical-case-crack-me-0x03/
https://github.com/mandiant/flare-floss

2/18

Endianness

The endianness defines where the most significant bit is, which is either the first or the last.
The basic CPU architecture article explains the endianness in more detail. With stack strings,
it is important to understand if several characters need to be read right-to-left, or left-to-right.

Stack string example: CaddyWiper

CaddyWiper is a wiper which was used by a pro-Russian actor against Ukrainian victims in
March 2022, after the Russian invasion, as reported by ESET. It contains a lot of stack
strings, including wide strings. The hashes of the sample are given below. The sample can
be downloaded from Malware Bazaar and MalShare.

MD-5: 42e52b8daf63e6e26c3aa91e7e971492

SHA-1: 98b3fb74b3e8b3f9b05a82473551c5a77b576d54

SHA-256: a294620543334a721a2ae8eaaf9680a0786f4b9a216d75b55cfd28f39e9430ea

The excerpt below shows a wide stack string, which can be seen due to the frequent
occurrence of 0x00, and the double zero to terminate the string.

MOV byte ptr [EBP + local_20],0x6b
MOV byte ptr [EBP + local_1f],0x0
MOV byte ptr [EBP + local_1e],0x65
MOV byte ptr [EBP + local_1d],0x0
MOV byte ptr [EBP + local_1c],0x72
MOV byte ptr [EBP + local_1b],0x0
MOV byte ptr [EBP + local_1a],0x6e
MOV byte ptr [EBP + local_19],0x0
MOV byte ptr [EBP + local_18],0x65
MOV byte ptr [EBP + local_17],0x0
MOV byte ptr [EBP + local_16],0x6c
MOV byte ptr [EBP + local_15],0x0
MOV byte ptr [EBP + local_14],0x33
MOV byte ptr [EBP + local_13],0x0
MOV byte ptr [EBP + local_12],0x32
MOV byte ptr [EBP + local_11],0x0
MOV byte ptr [EBP + local_10],0x2e
MOV byte ptr [EBP + local_f],0x0
MOV byte ptr [EBP + local_e],0x64
MOV byte ptr [EBP + local_d],0x0
MOV byte ptr [EBP + local_c],0x6c
MOV byte ptr [EBP + local_b],0x0
MOV byte ptr [EBP + local_a],0x6c
MOV byte ptr [EBP + local_9],0x0
MOV byte ptr [EBP + local_8],0x0
MOV byte ptr [EBP + local_7],0x0

https://maxkersten.nl/binary-analysis-course/introduction/basic-cpu-architecture/
https://www.welivesecurity.com/2022/03/15/caddywiper-new-wiper-malware-discovered-ukraine/
https://bazaar.abuse.ch/sample/a294620543334a721a2ae8eaaf9680a0786f4b9a216d75b55cfd28f39e9430ea/
https://malshare.com/sample.php?action=detail&hash=42e52b8daf63e6e26c3aa91e7e971492

3/18

If one were to rename and retype the first variable, originally named local_20, to a 26
character long array named s_kernel32.dll, the string’s memory lay-out becomes apparent,
as can be seen below.

MOV byte ptr [EBP + s_kernel32.dll[0]],0x6b
MOV byte ptr [EBP + s_kernel32.dll[1]],0x0
MOV byte ptr [EBP + s_kernel32.dll[2]],0x65
MOV byte ptr [EBP + s_kernel32.dll[3]],0x0
MOV byte ptr [EBP + s_kernel32.dll[4]],0x72
MOV byte ptr [EBP + s_kernel32.dll[5]],0x0
MOV byte ptr [EBP + s_kernel32.dll[6]],0x6e
MOV byte ptr [EBP + s_kernel32.dll[7]],0x0
MOV byte ptr [EBP + s_kernel32.dll[8]],0x65
MOV byte ptr [EBP + s_kernel32.dll[9]],0x0
MOV byte ptr [EBP + s_kernel32.dll[10]],0x6c
MOV byte ptr [EBP + s_kernel32.dll[11]],0x0
MOV byte ptr [EBP + s_kernel32.dll[12]],0x33
MOV byte ptr [EBP + s_kernel32.dll[13]],0x0
MOV byte ptr [EBP + s_kernel32.dll[14]],0x32
MOV byte ptr [EBP + s_kernel32.dll[15]],0x0
MOV byte ptr [EBP + s_kernel32.dll[16]],0x2e
MOV byte ptr [EBP + s_kernel32.dll[17]],0x0
MOV byte ptr [EBP + s_kernel32.dll[18]],0x64
MOV byte ptr [EBP + s_kernel32.dll[19]],0x0
MOV byte ptr [EBP + s_kernel32.dll[20]],0x6c
MOV byte ptr [EBP + s_kernel32.dll[21]],0x0
MOV byte ptr [EBP + s_kernel32.dll[22]],0x6c
MOV byte ptr [EBP + s_kernel32.dll[23]],0x0
MOV byte ptr [EBP + s_kernel32.dll[24]],0x0
MOV byte ptr [EBP + s_kernel32.dll[25]],0x0

The generic stack string handling suffices to deal with these kind of (wide) stack strings.

Stack string example: PlugX

Talisman is a variant of PlugX, which is a remote access trojan which is generally used by
Chinese related actors. This backdoor contains encrypted stack strings, of which the hashes
are given below. The samples can be downloaded from Malware Bazaar and MalShare. Note
that the referenced sample is dumped from memory, as it is initially encrypted. Details about
the Talisman variant can be found in a corporate blog I co-authored.

MD-5: c6c6162cca729c4da879879b126d27c0

SHA-1: 80e5fd86127de526be75ef42ebc390fb0d559791

SHA-256: 344fc6c3211e169593ab1345a5cfa9bcb46a4604fe61ab212c9316c0d72b0865

One of the encrypted stack strings within the sample can be found at the offset of
0x100002401. The assembly instructions at the given offset is given below.

https://bazaar.abuse.ch/sample/344fc6c3211e169593ab1345a5cfa9bcb46a4604fe61ab212c9316c0d72b0865/
https://malshare.com/sample.php?action=detail&hash=c6c6162cca729c4da879879b126d27c0
https://www.trellix.com/en-in/about/newsroom/stories/threat-labs/plugx-a-talisman-to-behold.html

4/18

MOV dword ptr [ESP + local_cc],0x55615596
MOV dword ptr [ESP + local_c8],0x5573555e
MOV dword ptr [ESP + local_c4],0x55615574
MOV dword ptr [ESP + local_c0],0x55995571
MOV dword ptr [ESP + local_bc],0x55615578
MOV dword ptr [ESP + local_b8],0x55785582
MOV dword ptr [ESP + local_b4],0x55775561
MOV dword ptr [ESP + local_b0],0x5538553d
MOV dword ptr [ESP + local_ac],0x551f552d
MOV dword ptr [ESP + local_a8],0x558d552d
MOV dword ptr [ESP + local_a4],0x5555553c
MOV word ptr [ESP + local_a0],0x5555

The local variable named local_cc is the start of the stack string, where all of the encrypted
characters are placed on the stack in order. The code below, as seen in the decompiled
code, decrypts the given stack string.

do {
 bVar4 = (*(char *)((int)&local_cc + uVar2) + 0x22U ^ 0x33) + 0xbc;
 param_1 = param_1 & 0xffffff00 | (uint)bVar4;
 *(byte *)((int)&local_cc + uVar2) = bVar4;
 uVar2 = uVar2 + 1;
} while (uVar2 < 0x2e);

The decompiled code is a bit cluttered, but can easily be cleaned up. The variable named
uVar2 is the loop’s counter, which can be renamed to i. The line with the reference to
param_1 can be omitted, and the local variable bVar4 can be renamed to decryptedByte.
Upon doing so, the code is becomes much more readable, as can be seen below.

do {
 decryptedByte = (*(char *)((int)&local_cc + i) + 0x22U ^ 0x33) + 0xbc;
 *(byte *)((int)&local_cc + i) = decryptedByte;
 i = i + 1;
} while (i < 0x2e);

There is, however, a mistake in the decompiled code. The decryption routine seems straight
forward: add 0x22, xor with 0x33, and add 0xbc. However, when looking at the assembly
instructions, one can easily spot the difference, as can be seen in the code below.

ADD param_1,0x22
XOR param_1,0x33
SUB param_1,0x44

The used variable names in the decompiler differ somewhat from the disassembly view, but
the param_1 variable in the code above, is the current byte in the loop. The last instruction
subtracts 0x44, rather than adding 0xbc. Knowing this, the decryption routine can be re-
made, as can be seen below.

5/18

/*
* Decrypts the string based on the algorithm within the sample (SHA-256
* 344fc6c3211e169593ab1345a5cfa9bcb46a4604fe61ab212c9316c0d72b0865, offset
* 0x10002460)
*/
private byte[] decrypt(List<Integer> input) {
 // Initialise the output variable
 byte[] output = new byte[input.size()];
 // Loop over the input and decrypt the given byte
 for (int i = 0; i < input.size(); i++) {
 output[i] = (byte) (((input.get(i) + 0x22) ^ 0x33) - 0x44);
 }
 // Return the decrypted output
 return output;
}

Writing the Ghidra script

The script is based on Mich‘s Python based SimpleStackStrings Ghidra script. The script in
this article is written in Java, as this is Ghidra’s native way of scripting.

This script will use the currently selected address in Ghidra as a variable, rather than
requesting input from the user to provide the address via one of the ask-related functions.
The code for which is given below, where currentAddress is inherited from the GhidraScript
class.

Next, the script needs to iterate over all instructions that are part of the stack string. The
Instruction object has a function which returns the instruction that is directly below it, which is
getNext. This function returns null if there is no instruction. As such, a while-loop with the
condition that the instruction is not null. The skeleton code is given below.

while(instruction != null) {
 //TODO: implement the logic

 instruction = instruction.getNext();
}

Instructions can contain a value, known as a scalar value. The value can be in the first or
second part of the instruction. The code below provides two examples.

MOV dword ptr [ESP + local_var], 0x41414141

PUSH 0x41414141

In the first example, the value of 0x41414141 is the second scalar value, which resides at
index 1. In the second example, there is no second scalar value, meaning the value resides
at index 0.

https://twitter.com/0x6d696368
https://github.com/0x6d696368/ghidra_scripts/blob/master/SimpleStackStrings.py
https://ghidra.re/ghidra_docs/api/ghidra/app/script/GhidraScript.html

6/18

As such, one can attempt to obtain the second scalar value, using the getScalar(int index)
function within the Instruction class, of the current instruction. If there is no such value, null is
returned. As such, one can always attempt to fetch the second scalar value.

If the returned value is null, an attempt needs to be made to fetch the first scalar value. If this
also returns null, the instruction is not part of the stack string, at least not in a format that this
script supports. The code below resembles the logic that is described above.

Scalar scalar = instruction.getScalar(1);
 if (scalar == null) {
 scalar = instruction.getScalar(0);
 if (scalar == null) {
 println("Stack string ended, since no suitable scalar value could be
found at 0x"
 + Long.toHexString(instruction.getAddress().getOffset())
+ "!");
 break;
 }
 }

Following on that, the scalar’s value needs to be obtained in hexadecimal format. The value
then needs to be converted due to the endianness. The code is given below, where the
convert function will be described afterwards.

long value = scalar.getValue();
String valueString = Long.toHexString(value);
valueBytes.addAll(convert(valueString));

The convert function, which is given below, takes a String as argument, and returns a list of
boxed integers. Due to the endianness, the bytes need to be read from right-to-left. A byte is
two characters from the string in size. To clarify, the value 0x41414141 consists of four bytes:
0x41 0x41 0x41 0x41. In this case, the string does not contain the leading 0x. To split the
string up in bytes that are equal in value to their character counterpart (the value they
portray, not their char value).

7/18

private List<Integer> convert(String input) {
 List<Integer> scalarValue = new ArrayList<>();
 if (input == null || input.isEmpty()) {
 return null;
 }

 int remainder = input.length() % 2;

 if (remainder != 0) {
 input = "0" + input;
 }

 for (int i = input.length(); i > 0; i = i - 2) {
 int j = i - 2;
 if (i == 0 || j < 0) {
 break;
 }
 String b = input.substring(j, i);
 Integer conversion = Integer.parseInt(b, 16);
 scalarValue.add(conversion);
 }
 return scalarValue;
}

If the amount of characters is not even, a leading zero needs to be added to the byte which
is missing it, which is the least significant byte. The code responsible to do so is the within
the if-body where the value of the remainder is checked.

The decryption function takes a list of integers as input, and returns an array of bytes. The
code is given below.

private byte[] decrypt(List<Integer> input) {
 byte[] output = new byte[input.size()];
 for (int i = 0; i < input.size(); i++) {
 output[i] = (byte) (((input.get(i) + 0x22) ^ 0x33) - 0x44);
 }
 return output;
}

In the generic script, which does not handle string decryption, the decrypt function signature
is the same, but the body is not. Instead, it simply converts the given list of integers into an
unboxed byte array. This leaves the decryption function as a template for future use-cases in
the generic script. The code is given below.

private byte[] decrypt(List<Integer> input) {
 byte[] output = new byte[input.size()];
 for (int i = 0; i < input.size(); i++) {
 output[i] = input.get(i).byteValue();
 }
 return output;
}

8/18

At last, the returned unboxed byte array is converted into multiple strings, all of which are
based on a different character set. Since the character set is unknown to the script itself,
numerous types are included. The analyst can then easily see which of the strings are
garbage, and which is the correct string. The strings are then printed, together with some
identifying information with regards to the character set. Additionally, the amount of bytes of
the stack string is printed. This helps when changing the data type into an array of (wide)
characters, where one knows the number of characters that is required for the string.

String usAscii = new String(output, StandardCharsets.US_ASCII);

String isoLatin1 = new String(output, StandardCharsets.ISO_8859_1);

String utf16be = new String(output, StandardCharsets.UTF_16BE);

String utf16le = new String(output, StandardCharsets.UTF_16LE);

String utf8 = new String(output, StandardCharsets.UTF_8);

println("--
---");
println("US-ASCII: " + usAscii);
println("ISO-LATIN-1: " + isoLatin1);
println("UTF-16BE: " + utf16be);
println("UTF-16LE: " + utf16le);
println("UTF-8: " + utf8);
println("Length in bytes: " + output.length);
println("--
---");

Do note that if the stack string consists of multiple strings before an invalid instruction is hit,
all of them are shown at once. The analyst can see which string is what size, and rename
and retype the variables accordingly. The following screenshots include such a case.

When viewing this in Ghidra’s console, it is apparent that some spaces that should be there,
are not properly shown in the console. Note that this might not be the case in future Ghidra
versions.

The images below show the output of Ghidra’s console, for one stack string from both
CaddyWiper and PlugX Talisman respectively

9/18

The script’s output in Ghidra’s console

The script’s decrypted output in Ghidra’s console
When viewing the same stack strings in Eclipse’s console, the missing spaces are clearly
visible, which is a clear indication that some of the stack strings are wide strings, whereas
others are not.

The script’s output in Eclipse’s console

The script’s decrypted output in Eclipse’s console

Conclusion

10/18

To conclude, the usage of encrypted stack strings is an efficient way to evade more generic
detection, but does not slow analysis down much. The automation to swiftly see what the
string is by selecting the string’s start in the assembly view, whose decrypted value is then
printed when the script is executed via a hotkey takes very little time.

Recreating the decryption routine might consume some time, but in most cases, encrypted
stack strings are generally decrypted using the same routine within a single sample. As such,
the time to recreate the decryption routine is likely to end up saving time overall.

Complete script

The complete script to handle encrypted (wide) stack strings is given below. The generic
stack strings script is given first, after which the PlugX Talisman script is given.

11/18

//A script to recreate (wide) stack strings in PlugX Talisman samples, based on
Mich's SimpleStackStrings
(https://github.com/0x6d696368/ghidra_scripts/blob/master/SimpleStackStrings.py)
//@author Max 'Libra' Kersten
//@category deobfuscation
//@keybinding
//@menupath
//@toolbar

import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.List;

import ghidra.app.script.GhidraScript;
import ghidra.program.model.listing.Instruction;
import ghidra.program.model.scalar.Scalar;

public class StackStrings extends GhidraScript {

 @Override
 protected void run() throws Exception {
 // Get the starting instruction
 Instruction instruction = getInstructionAt(currentAddress);

 // Check if there is an instruction at the current location
 if (instruction == null) {
 // Print the error message
 println("No instruction found at 0x" +
Long.toHexString(currentAddress.getOffset()));
 // Return, thus ending the execution of the script
 return;
 }

 // If an instruction is found, print the starting offset
 println("Stack string starting at 0x" +
Long.toHexString(currentAddress.getOffset()));

 // Initialise the list to store the stack string bytes in
 List<Integer> valueBytes = new ArrayList<>();

 /*
 * Loop over the current instructions (and the ones thereafter) until no
 * instruction is found, or the loop is broken
 */
 while (instruction != null) {
 /*
 * Get the second scalar value from the instruction. When encountering
 * instructions such as "MOV dword ptr [ESP + local_var], 0x41414141",
the
 * second scalar value is the second value.
 */
 Scalar scalar = instruction.getScalar(1);

 // If the second scalar value is null, revert to the value of the first
scalar

12/18

 if (scalar == null) {
 /*
 * Store the first scalar value, which is present instructions such
as
 * "PUSH 0x41414141"
 */
 scalar = instruction.getScalar(0);
 /*
 * If there is no scalar value, the encountered instruction is not
part of the
 * (wide) stack string
 */
 if (scalar == null) {
 /*
 * Print the error, along with the address of the instruction
which contains no
 * suitable scalar value
 */
 println("Stack string ended, since no suitable scalar value could
be found at 0x"
 + Long.toHexString(instruction.getAddress().getOffset())
+ "!");
 // Break the loop, continuing the decryption and string re-
creation process
 break;
 }
 }

 // Get the scalar's value
 long value = scalar.getValue();
 // Get the value in hexadecimal format
 String valueString = Long.toHexString(value);

 // Add all the bytes to the list once they are converted
 valueBytes.addAll(convert(valueString));

 // Gets the next instruction
 instruction = instruction.getNext();
 }

 /*
 * Decrypt the collected bytes. If no decryption is required when re-using
this
 * script, simply convert the list of bytes into an unboxed byte array, after
 * which the existing logic will handle the rest
 */
 byte[] output = decrypt(valueBytes);

 /*
 * Create a variety of strings, based on the given bytes. If multiple stack
 * strings are present in sequence, it is possible that the strings represent
 * more than a single stack string. This is left to the analyst's
 * interpretation.
 *
 * To make the script more generic, the strings are recreated using a variety

13/18

of
 * character sets. Some stack strings might consist of wide strings, whereas
 * others might be of a more unique format. Generally, the common formats
such
 * as UTF-8 and UTF-16 will be used, as the Windows API uses those.
 */
 String usAscii = new String(output, StandardCharsets.US_ASCII);

 String isoLatin1 = new String(output, StandardCharsets.ISO_8859_1);

 String utf16be = new String(output, StandardCharsets.UTF_16BE);

 String utf16le = new String(output, StandardCharsets.UTF_16LE);

 String utf8 = new String(output, StandardCharsets.UTF_8);

 // Print all of the stack strings
 println("--
-----------");
 println("US-ASCII: " + usAscii);
 println("ISO-LATIN-1: " + isoLatin1);
 println("UTF-16BE: " + utf16be);
 println("UTF-16LE: " + utf16le);
 println("UTF-8: " + utf8);
 println("Length in bytes: " + output.length);
 println("--
-----------");
 }

 /**
 * Converts the given input string to a list of bytes. The input string should
 * be equal to hexadecimal values, without the leading "0x".
 *
 * @param input a string which contains the hexadecimal values, without the
 * leading "0x"
 * @return a list of bytes, read as little endian (right from left, per byte)
 */
 private List<Integer> convert(String input) {
 // Initialise the list of bytes
 List<Integer> scalarValue = new ArrayList<>();
 // If the input is null, or empty, null is returned
 if (input == null || input.isEmpty()) {
 return null;
 }

 // Check if the length input is a multitude of two
 int remainder = input.length() % 2;

 /*
 * If the length of the string is not equal to one, add a leading zero to the
 * last character
 */
 if (remainder != 0) {
 int offset = input.length() - 1;
 String partA = input.substring(0, offset);

14/18

 String partB = input.substring(offset, offset + 1);
 input = partA + "0" + partB;
 }

 /*
 * Iterate over the string in groups of two characters at a time, which
 * represents a single byte every time. The string is iterated over starting
in
 * the end, due to the endianness
 */
 for (int i = input.length(); i > 0; i = i - 2) {
 int j = i - 2;
 // If i is zero or j is less than zero, the loop has to be broken
 if (i == 0 || j < 0) {
 break;
 }
 // Obtain the byte in string form
 String b = input.substring(j, i);
 // Convert the byte in string form to a boxed byte object
 Integer conversion = Integer.parseInt(b, 16);
 // Add the byte to the list of bytes, in sequential order
 scalarValue.add(conversion);
 }
 // Return the obtained bytes
 return scalarValue;
 }

 /*
 * A function to hold the decryption routine for the given sample, if any
 */
 private byte[] decrypt(List<Integer> input) {
 // Initialise the output variable
 byte[] output = new byte[input.size()];
 // Loop over the input and convert the given byte
 for (int i = 0; i < input.size(); i++) {
 output[i] = input.get(i).byteValue();
 }
 // Return the converted output
 return output;
 }
}

The PlugX Talisman stack string decryption script is given below in full.

15/18

//A script to recreate (wide) stack strings in PlugX' Talisman variant, based on
Mich's SimpleStackStrings
(https://github.com/0x6d696368/ghidra_scripts/blob/master/SimpleStackStrings.py)
//@author Max 'Libra' Kersten (@Libranalysis, https://maxkersten.nl)
//@category deobfuscation
//@keybinding
//@menupath
//@toolbar

import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.List;

import ghidra.app.script.GhidraScript;
import ghidra.program.model.listing.Instruction;
import ghidra.program.model.scalar.Scalar;

public class TalismanStackStringDecryption extends GhidraScript {

 @Override
 protected void run() throws Exception {
 // Get the starting instruction
 Instruction instruction = getInstructionAt(currentAddress);

 // Check if there is an instruction at the current location
 if (instruction == null) {
 // Print the error message
 println("No instruction found at 0x" +
Long.toHexString(currentAddress.getOffset()));
 // Return, thus ending the execution of the script
 return;
 }

 // If an instruction is found, print the starting offset
 println("Stack string starting at 0x" +
Long.toHexString(currentAddress.getOffset()));

 // Initialise the list to store the stack string bytes in
 List<Integer> valueBytes = new ArrayList<>();

 /*
 * Loop over the current instructions (and the ones thereafter) until no
 * instruction is found, or the loop is broken
 */
 while (instruction != null) {
 /*
 * Get the second scalar value from the instruction. When encountering
 * instructions such as "MOV dword ptr [ESP + local_var], 0x41414141",
the
 * second scalar value is the second value.
 */
 Scalar scalar = instruction.getScalar(1);

 // If the second scalar value is null, revert to the value of the first
scalar

16/18

 if (scalar == null) {
 /*
 * Store the first scalar value, which is present instructions such
as
 * "PUSH 0x41414141"
 */
 scalar = instruction.getScalar(0);
 /*
 * If there is no scalar value, the encountered instruction is not
part of the
 * (wide) stack string
 */
 if (scalar == null) {
 /*
 * Print the error, along with the address of the instruction
which contains no
 * suitable scalar value
 */
 println("Stack string ended, since no suitable scalar value could
be found at 0x"
 + Long.toHexString(instruction.getAddress().getOffset())
+ "!");
 // Break the loop, continuing the decryption and string re-
creation process
 break;
 }
 }

 // Get the scalar's value
 long value = scalar.getValue();
 // Get the value in hexadecimal format
 String valueString = Long.toHexString(value);

 // Add all the bytes to the list once they are converted
 valueBytes.addAll(convert(valueString));

 // Gets the next instruction
 instruction = instruction.getNext();
 }

 /*
 * Decrypt the collected bytes. If no decryption is required when re-using
this
 * script, simply convert the list of bytes into an unboxed byte array, after
 * which the existing logic will handle the rest
 */
 byte[] output = decrypt(valueBytes);

 /*
 * Create a variety of strings, based on the given bytes. If multiple stack
 * strings are present in sequence, it is possible that the strings represent
 * more than a single stack string. This is left to the analyst's
 * interpretation.
 *
 * To make the script more generic, the strings are recreated using a variety

17/18

of
 * character sets. Some stack strings might consist of wide strings, whereas
 * others might be of a more unique format. Generally, the common formats
such
 * as UTF-8 and UTF-16 will be used, as the Windows API uses those.
 */
 String usAscii = new String(output, StandardCharsets.US_ASCII);

 String isoLatin1 = new String(output, StandardCharsets.ISO_8859_1);

 String utf16be = new String(output, StandardCharsets.UTF_16BE);

 String utf16le = new String(output, StandardCharsets.UTF_16LE);

 String utf8 = new String(output, StandardCharsets.UTF_8);

 // Print all of the stack strings
 println("--
-----------");
 println("US-ASCII: " + usAscii);
 println("ISO-LATIN-1: " + isoLatin1);
 println("UTF-16BE: " + utf16be);
 println("UTF-16LE: " + utf16le);
 println("UTF-8: " + utf8);
 println("Length in bytes: " + output.length);
 println("--
-----------");
 }

 /**
 * Converts the given input string to a list of bytes. The input string should
 * be equal to hexadecimal values, without the leading "0x".
 *
 * @param input a string which contains the hexadecimal values, without the
 * leading "0x"
 * @return a list of bytes, read as little endian (right from left, per byte)
 */
 private List<Integer> convert(String input) {
 // Initialise the list of bytes
 List<Integer> scalarValue = new ArrayList<>();
 // If the input is null, or empty, null is returned
 if (input == null || input.isEmpty()) {
 return null;
 }

 // Check if the length input is a multitude of two
 int remainder = input.length() % 2;

 /*
 * If the length of the string is not equal to one, add a leading zero to the
 * last character
 */
 if (remainder != 0) {
 input = "0" + input;
 }

18/18

 /*
 * Iterate over the string in groups of two characters at a time, which
 * represents a single byte every time. The string is iterated over starting
in
 * the end, due to the endianness
 */
 for (int i = input.length(); i > 0; i = i - 2) {
 int j = i - 2;
 // If i is zero or j is less than zero, the loop has to be broken
 if (i == 0 || j < 0) {
 break;
 }
 // Obtain the byte in string form
 String b = input.substring(j, i);
 // Convert the byte in string form to a boxed integer object
 Integer conversion = Integer.parseInt(b, 16);
 // Add the byte to the list of bytes, in sequential order
 scalarValue.add(conversion);
 }
 // Return the obtained bytes
 return scalarValue;
 }

 /*
 * Decrypts the string based on the algorithm within the sample (SHA-256
 * 344fc6c3211e169593ab1345a5cfa9bcb46a4604fe61ab212c9316c0d72b0865, offset
 * 0x10002460)
 */
 private byte[] decrypt(List<Integer> input) {
 // Initialise the output variable
 byte[] output = new byte[input.size()];
 // Loop over the input and decrypt the given byte
 for (int i = 0; i < input.size(); i++) {
 output[i] = (byte) (((input.get(i) + 0x22) ^ 0x33) - 0x44);
 }
 // Return the decrypted output
 return output;
 }
}

