Obfuscated obfuscation

blog.lexfo.fr/dexguard.html

Introduction

During a Red Team, we stumbled upon a device running Android. Next to the battery
slot, a pin header providing access to a debug UART and an USB port were present.
After improvising a custom USB cable by crimping bullet terminals since we didn't have
access to a soldering iron, we gained access to the device through MTP:

8-pin connector A mouse had to be sacrificed

USB Connector :
Improvised USB Cable

Using MTP, we could retrieve a configuration file containing only ASCII characters,
however they didn't make sense. Best guess we had was it could be some Base64 with
a custom charset randomly selected.

Since we supposed these configuration files would only be obfuscated, we wanted to
reverse engineer the application that can read them. Based on the name of a service
displayed on the device, we knew what to search for on Google Play to find an APK that
would use, and thus decode, such configuration files. As a matter of fact, the application
is a Mobile Device Management.

Obviously, the APK was all obfuscated. We quickly found the Java interface used for the
decoding of the configuration:

1/23

https://blog.lexfo.fr/dexguard.html

public interface AbstractC3001 {
/* renamed from: 1 */
String mo20891(String str) throws MissingDataForEncryptionException;

}

However, no implementation of this interface could be found in what we had. Obviously,
the implementation must have been encrypted and dynamically loaded at runtime.

Decompiling the APK

First, we need to decompile the APK. Jadx can work quite well to get some Java-esque
output. Getting the smali for reference with Apktool is also a good idea.

$ jadx --show-bad-code --deobf -d out/ target.apk
$ apktool d target.apk

One of the packages is heavily obfuscated in the application. In our case it is named
pO14o . The use of Dexguard can be recognized with its Class Manager (CM) that

resolves class and method names at runtime. The prototype for the CM is basically
String $$c(argl, arg2, arg3) . We can find it easily:

$ grep -r 'private static String $$c(' out/sources/
out/sources/p0140/C2958. java: private static String $$c(int r7, short r8,
short r9) {

Now we need to find "strange" resources. Two resources at the root of the application
folder have non-printable names that end in '-'. They also start with a Java reference and
are followed by a high-entropy blob of data.

$ 1s out/resources/*-

out/resources/ -

'out/resources/'$'\342\200\251"" '$'\342\200\251""'-"
$ strings -n 10 out/resources/*-
java/io/Serializable

java/io/Serializable-

These resources are actually encrypted with custom versions of well-known
cryptographic algorithms. One will be the Class Loader (CL), and the other one the
Protected Classes. In order to decrypt the Protected Classes (PC), we first need to
decrypt the Class Loader which will contain the key and some parameters for the
Protected Classes decryption.

In the CM (in our case: out/sources/p0140/C2958. java), there is a huge static
initialization. This is where the Protected Classes will be decrypted and then loaded.

Last time we checked, the Dexguard mode of operation was:

2/23

https://github.com/skylot/jadx
https://ibotpeaches.github.io/Apktool/

load a resource as an InputStream;
feed the result to a class inheriting from FilterInputStream to decrypt it;

do some useless obfuscation to waste a few minutes of time from a reverser;
feed the decrypted result to a ZiplnputStream to get a DEX file;

finally load the resulting DEX as a Resource using the loadDex method.

So let's find what classes extend FilterInputStream using grep:

$ grep -r 'extends FilterInputStream' out/sources/p014o0/
extends FilterInputStream {

out/sources/p0140/C1538.java:
out/sources/p0140/C1489. java:
out/sources/p0140/C2081. java:
out/sources/p0140/C1207.java:
out/sources/p0140/C0991.java:
out/sources/p0140/C1742.java:
out/sources/p0140/C1209.java:

public
public
public
public
public
public
public

class
final
final
final
final
final
final

C1538
class
class
class
class
class
class

C1489
Cc2081
C1207
Co991
Cl742
C1209

extends
extends
extends
extends
extends
extends

FilterInputStream
FilterInputStream
FilterInputStream
FilterInputStream
FilterInputStream
FilterInputStream

out/sources/p0140/C4315CoN. java:public final class C4315CoN extends

FilterInputStream {

N e R R s

The class in C1207 strongly resembles some fast AES implementation, as can be seen
from its dependency 1210 with a static initializer computing AES lookup tables:

3/23

static {
byte[] bArr;
int 1i;
byte b = 1;
byte b2 = 1;
do {
b = (byte) (((b & 128) !'= 0 ? 27 : 0) N ((b << 1) A b));
byte b3 (byte) (b2 N (b2 << 1));
byte b4 (byte) (b3 N (b3 << 2));
byte b5 = (byte) (b4 N (b4 << 4));
b2 (byte) (b5 A ((b5 & 128) != 0 ? (byte) 9 : 0));
bArr = f1476;
i=Db & 255;
int i2 = b2 & 255;
bArr[i] = (byte) (((((b2 A 99) A ((i2 << 1) | (i2 >> 7))) N ((i2 << 2) |
(i2 >> 6))) N ((i2 << 3) | (i2 >> 5))) N ((i2 >> 4) | (12 << 4)));
} while (i '= 1);
bArr[0] = 99;
for (int i3 = 0; i3 < 256; i3++) {
int i4 = f1476[i3] & 255;
f1471[i4] = (byte) 1i3;
int i5 = i3 << 1;
if (i5 >= 256) {
i5 A= 283;

}

int i6

if (ie6
i6

i5 << 1;
= 256) {
= 283;

> Vol

}

int 17

if (i7
i7

i6 << 1;
= 256) {
= 283;

> Vol

}
int i8
int 19

i7 A i3;
((i5 A (i6 A i7)) << 24) | (i8 << 16) | ((i8 A i6) << 8) | (i8 A

i5);
f1475[14]
f1470[i4]
f1472[1i4]
£1474[i4]

i9;

(19 >>> 8) | (19 << 24);
(19 >>> 16) | (19 << 16);
(19 << 8) | (19 >>> 24);

3
f1473[0] = 16777216,

int i10 = 1;
for (int i11 = 1; il11 < 10; il1++) {
ile <<= 1;
if (i10 >= 256) {
ile A= 283;
}
f1473[111] = i10 << 24;

4/23

The class C1209 looks like a broken stream cipher loosely based on Mersenne twisters
with 64-bits word size and two 4-words internal states, as can be deduced from its
dependency class 1208 :

public final class C1208 {
/* renamed from: 1 */
static long[] m1400(int i, int i2) {
long[] jArr = new long[4];
JArr[0] = (((long) i2) & 4294967295L) | ((((long) i) & 4294967295L) <<

32);
for (int i3 = 1; i3 < 4; i3++) {
long j = jArr[i3 - 1];
JArr[i3] = ((j M (j >> 30)) * 1812433253) + ((long) i3);
}
return jArr;
}
}

In the past, we also found TEA, XTEA and Blowfish.

Because the encryption algorithm implemented in C1209 is severely broken, we could
directly guess the missing bits of key that are present in the Class Loader and decrypt
the Protected Classes. However, in some cases it is still necessary to decrypt the Class
Loader to retrieve them. In order to cover all the cases we will do like if we couldn't
directly decrypt the Protected Classes with the information we already have.

Decrypting the Class Loader

In order to decrypt the Class Loader, we have to find a reference to one of the two
decryption algorithms implemented in C1209 and C1207 . By looking into the CM
(class €2958), we can find a call to the C1207 constructor:

5/23

byte[] bArr3 = new byte[16];

bArr3[0] = -29;
bArr3[1] = -87;
bArr3[2] = -61;
bArr3[3] = 81;
bArr3[4] = -30;
bArr3[5] = -71;
bArr3[6] = -19;
bArr3[7] = -31;
bArr3[8] = 123;
bArr3[9] = -74;
bArr3[10] = 119;
bArr3[11] = -37;
bArr3[12] = -12;
try {

bArr3[13] = -75;

bArr3[14] = 65;

bArr3[15] = -104;

byte[] bArr4 = (byte[]) bArr3.clone();
C1203.m1385(bArr4, f5121, f5116);
inputStream = new C1207(inputStream2, 8, bArr4, C1210.m1404(518096760));

The first argument is an InputStream, we will take a look at it later. The second is
actually the number of rounds, 8 instead of 10 for AES128; the third argument is the key,
notice that it is modified by a call to €1203.m1385() . Finally, the last argument is the
ShiftRow matrix that is obviously different than the one in normal AES. It is generated
through a call to C1210.m1404() . The actual prototype would look like that:

public C1207(InputStream inputStream, int numRound, byte[] aesKey, byte[][]
shiftRowMatrix);

AES Key

The key can be easily identified in the code snippet above. Although, we need to take a
look at C1203.m1385 to see how it is actually modified before it is used:

/* renamed from: o.kl */
public class C1203 {
/* renamed from: v */
public static void m1385(byte[] bArr, byte b, long j) {
for (int 1 = 0; i < bArr.length; i++) {
if (((1 << 1i) &) '=0) {
bArr[i] = (byte) (bArr[i] A b);
}

}

As we can see, a XOR operation with 5121 is applied for bytes whose index matches
abitsetto1in f5116 , LSB first.

6/23

private static long f5116 = 2459692291946227616L;
VA
private static byte f5121 = -89;

We can obtain the final key using a small C code:

static uint8_t key[] = { -29, -87, -61, 81, -30, -71, -19, -31, 123, -74, 119,
-37, -12, -75, 65, -104 };

uint8_t *modif_key(uint8_t* ikey, uint8_t m, uint64_t mask, size_t 1len)
{
int 1i;
for (1 = 0; i < len; i++) {
if (((1 << i) & mask) !'=0) {
ikey[i] A= m;

}
}
return ikey;
}
The result is:

Before: E3A9C351E2B9EDE17BB677DBF4B54198
After: E3A9C351E21EED46DC11DODBF412413F

AES Shift Row matrix

Next, we need to compute the actual shift row matrix used. Normally the Shift Row
operation for AES decryption uses this matrix:

Md Ld O

3
2

1
g Matrix - original

= = D

12 3 0
Let's take a look at C1210.m1404 :

/* renamed from: v */
public static byte[][] m1404(int i) {
byte[][] bArr = new byte[4][];
for (int i2 = 0; 12 < 4; i2++) {
int i3 = i >>> (i2 << 3);
bArr[i2] = new byte[]{(byte) (i3 & 3), (byte) ((i3 >> 2) & 3), (byte)
((1i3 >> 4) & 3), (byte) ((i3 >> 6) & 3)};
}

return bArr;

}

It is called with 518096760 , converting to base-4 (©132320120131320) and
rearranging as done in the snippet above would give the following matrix:

7/23

o 2 3 1|

31 0 2 . .
10 2 3 Matrix - intermediate
2 3 1 0

Now let's take a look at the C1207 constructor. Although useless, there is another
transformation applied to this matrix. This is useless because if we want to make things
quick, based on what we already have we can simply compile the 1207 class with
javac and call it with the arguments we already have computed. So, it doesn't add any
value to the obfuscation. Anyway, here is the final transformation:

/* renamed from: 1 */
private static byte[][] m1399(byte[][] bArr) {
byte[][] bArr2 = new byte[bArr.length][];
for (int i = 0; i < bArr.length; i++) {
bArr2[i] = new byte[bArr[i].length];
for (int i2 = 0; 12 < bArr[i].length; i2++) {
bArr2[i][bArr[i][i2]] = (byte) 1i2;
}
}

return bArr2;

}

For each row, the cell values and their indices are exchanged, giving the final Shift Row
matrix used:

21

L =

g Matrix - final
1

Md 2 = Ll
0 b L =

Input Stream

We now have the algorithm to decrypt the Class Loader, which is a modified AES128
with 8-rounds and a custom Shift Row matrix, as well as the decryption key. We also
know that the encrypted Class Loader is one of the two resource files with non-printable
characters in their names.

If we backtrack the InputStream argument, we obtain it after this call:

8/23

i6 = 20;

VA

int length4 = bArr.length;

int i90 = -i6;

int i91 = (length4 & i90) + (length4 | 190);
/* o0t/

Object[] objArr22 = new Object[3];

objArr22[2] = Integer.valueOf(i91);
objArr22[1] = Integer.valueOf(i6);
objArr22[0] = bArr;

short s30 = (short) 135;

InputStream inputStream2 = (InputStream) Class.forName($$c((byte) f5118[35], s30,
(short) ((s30 N 376) | (s30 & 376)))).getDeclaredConstructor(byte[].class,
Integer.TYPE, Integer.TYPE).newInstance(objArr22);

Note that the formula (a & b) + (a | b) isequivalentto a + b . While we could
decrypt the class name by reimplementing the $$c method, it seems quite obvious that
the constructor is simply:

ByteArrayInputStream(byte[] buf, int offset, int length);

The offset is 20 and the length is the whole buffer length minus 20. Since the resources
we found started with java/io/Serializable which is 20 bytes long, it actually
makes sense.

We need to take a look at what operation is done to bArr before being used in the
ByteArrayInputStream constructor. We have this code snippet above in the code:

i6 20;
i7 = 8664;
str3 = str2;
cls = null;
while (true) {
int i89 = ((i6 | 210) << 1) - (i6 A 210);
try {
byte bl19 = bArr[((i6 | 4167) << 1) - (16 N 4167)];
bArr[i89] = (byte) ((b19 A 9) + ((b19 & 9) << 1));

Note that the formulae ((a | b) << 1) - (a2~ b) and (a A b) + ((a & b) <<
1) are equivalentto a + b . The code above can be reduced to:

bArr[20 + 210] = bArr[20 + 4167] + 9;

Getting the Class Loader Dex

The resource files were 8708 and 4188 bytes long respectively. Since AES works on 16-
bytes blocks, the best candidate is thus the file whose length is 8708 since itis 243 *
16 + 20 .

9/23

By replacing the 230th byte by the 4187th added with 9 (which gives 0x4 + 0x9 =
0x0d), we can finally decrypt the CL using the key
OXE3A9C351E21EED46DC11DODBF412413F with a slightly modified version of the AES
implementation to take into account the reduced round number and the custom Shift
Row matrix. A diff based on the reference implementation of AES can be found in the
annex.

The decryption can be obtained using this C code, for example:

int main(int argc, char **argv)
{
int fd, outfd, i;
uint8_t buf[20], obuf[16];
uint32_t keyexp[4*9];

fd = open(argv[1], O_RDONLY);
read(fd, buf, 20);
outfd = open(argv[2], O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);

modif_key(key, -89, 2459692291946227616ULL, 16);
m1404(518096760) ;
m1399();

rijndaelKeySetupDec(keyexp, 8, key, 128);

while (read(fd, buf, 16) == 16) {
rijndaelDecrypt(keyexp, 8, buf, obuf);
write(outfd, obuf, 16);

}
close(outfd);

}
We can now obtain the JAR file in plaintext:

$ gcc -0 main main.c rijndael-alg-fst.c
$./main encfilel cl.jar

KEY: E3A9C351E21EED46DC11DODBF412413F
ShifRow Matrix:

0, 3, 1, 2,

2, 1, 3, 0,
1, 0, 2, 3,
3, 2, 0, 1

r r r r

And finally get the Dex file:

$ unzip cl.jar

Archive: «cl.jar

warning [cl.jar]: 22 extra bytes at beginning or within zip file
(attempting to process anyway)
inflating: classes.dex

Decrypting the Protected Classes

10/23

https://web.archive.org/web/20060618010435/http://www.iaik.tu-graz.ac.at/research/krypto/AES/old/~rijmen/rijndael/rijndael-fst-3.0.zip

We can now feed this classes.dex to Jadx along with the one from the APK we are
analyzing so that both are integrated:

$ mv classes.dex classes2.dex
$ unzip target.apk classes.dex
Archive: target.apk
inflating: classes.dex
$ jadx --show-bad-code --deobf -d cl/ classes*.dex
INFO - loading ...
INFO - processing ...
ERROR - finished with errors, count: 26

We now have the Class Loader decompiled with the renaming matching the other
decompiled classes, thanks to Jadx. The classes have now all be renamed because of
the deobfuscation flag given to Jadx. The Class Manager, formerly C2958 is now

named C2274 . The second decryption class identified, C1209 is now named C1081 .

The newly obtained Class Loader is named 2257 .

Identifying the Class Loader call to decrypt the Protected Classes

If we go back to the Class Manager (now renamed C2274), there is one use of an
InputStream object that we didn't investigate:

clsArr7[0] = Class.forName($$c(b20, s31, (short) ((1i94 & 415) | (194 N 415))));
clsArr7[1] = Short.TYPE;
clsArr7[2] = Integer.TYPE;

clsArr7[3] = Integer.TYPE;
inputStream = (InputStream) cls6.getMethod($$c8, clsArr7).invoke(obj25,
objArr23);

The argument objArr23 can be found some few lines above:

Object[] objArr23 = new Object[4];
objArr23[3] = -1541368241;

objArr23[2] = -197155059;
objArr23[1] = (short) 8;
objArr23[0] = inputStream2;

This means the method signature looks like this:

InputStream method(InputStream, short, int, int);

If we take a look at the Class Loader we just decrypted (named C2257 in our case),
only one method has this specific signature. Looking for InputStream gives us this code
snippet:

11/23

/* renamed from: ! */
public InputStream mol19845(InputStream inputStream, short s, int i, int i2)
throws IOException {

try {
try {
C1081 r7 = new C1081(inputStream, this.f3561, i, s, this.f3560, i2);
try {
int i3 = f3551;
int i4 = (i3 A 61) + ((i3 & 61) << 1);
try {
3548 = i4 % 128;
int i5 = i4 % 2;
return r7;
} catch (Exception e) {
throw e;
}
} catch (ClassCastException e2) {
throw e2;
}
} catch (Exception e3) {
throw e3;
}
} catch (IndexOutOfBoundsException e4d) {
throw e4;
}

}

We can see the call to the second decryption algorithm, with some interesting
arguments:

C1081(inputStream, this.f3561, i, s, this.f3560, i2);

Decryption key

The value we were missing to call c1081 (formerly Cc1209 that we identified as a
cipher loosely based on Mersenne twisters) can now be recovered from the Class
Loader C2257 :

this.f3560 = -1658185820;
this.f3561 = -1460155994;

As is usual for DexGuard, we had to decrypt the Class Loader in order to find the key to
decrypt the Protected Classes. However, note that in this instance, because the second
encryption algorithm used is broken, we could have directly guessed those two missing
32-bits values.

The call to the decryption class is then:

C1081(inputStream, -1460155994, -197155059, 8, -1658185820, -1541368241);,

Stream cipher

12/23

The €1081 constructor uses the 4th argument (8) as a block size. Although, looking at
the code it could be used as a stream cipher directly.

The int arguments are transformed through another class during initialization:

this.f1021 = C1080.m1121(i A i4, i5 A i4);
this.f1022 = C1080.m1121(i2 A i4, i3 A i4);

This is the seeding method identified at the beginning of this analysis that actually
helped understand on what was based this algorithm. The implementation of this
method is as follows:

public final class C1080 {
/* renamed from: 1 */
static long[] mi1121(int i, int i2) {
long[] jArr = new long[4];
JArr[0] = (((long) i2) & 4294967295L) | ((((long) i) & 4294967295L) <<

32);
for (int i3 = 1; i3 < 4; 1i3++) {
long j = jArr[i3 - 1];
JArr[i3] = ((j N (j >> 30)) * 1812433253) + ((long) i3);
}
return jArr;
}
}

You might notice the constant 1812433253 which is the value for f used in the 32-
bits version of the Mersenne-Twister MT19937. This class actually implements the
initialization part of a Mersenne twister with w = 64 and n = 4 . Since it is called
twice, we have two internal states. One is initialized with 0xcd75fe9a4209647 and the
other one is initialized with 0x501f3142390a81eb . Without decrypting the Class
Loader, we would only have the lower part of the first initialization and the upper part of
the second.

Now let's take a look at the decryption implementation:

long[] jArr = this.f1021;
long[] jArr2 = this.f1022;
short s = this.f1017;
int 1 = (s + 2) % 4;
int i2 = (s + 3) % 4;
jArr2[i2] = ((JjArr[i2] * 2147483085) + jArr2[i]) / 2147483647L;
JArr[i2] = ((JArr[s % 4] * 2147483085) + jArr2[i]) % 2147483647L;
for (int i3 = 0; i3 < this.f1019; i3++) {

byte[] bArr = this.f1018;

bArr[i3] = (byte) ((int) (((long) bArr[i3]) A ((this.f1021[this.f1017] >> (i3
<< 3)) & 255)));

b
this.f1017 = (short) ((this.f1017 + 1) % 4);

13/23

The two MT-like internal states are first updated with one another, then the current 8-

byte block from the ciphertext is XOR'd with the current word from the first internal state.

The internal state update puts the integer part of a division by 2231-1 in the second
internal state and the remainder in the first one. Because of that, after the 4th update,
we will have a maximum of 31 bits per word in the first internal state and 33 in the
second.

Because the operations are done on signed integer, we have to take into account that
the remaining upper bits will be either all Os or all 1s. This means that blocks of ~32 bits
are either the same as the cleartext or have all their bits reversed in the resulting
ciphertext. This is particularly inefficient.

Moreover, because we know that the plaintext will start with the string java/ , we can
directly recover the missing upper part of the seed for the first internal state. The
remaining missing 32-bits can then be easily bruteforced or computed by guessing the
rest of the starting string in the plaintext (based on a dictionary).

Input Stream

As for the Class Loader, a byte in the ciphertext is actually incorrect. The exact same
operation is applied with the Protected Class ciphertext, that is, replacing the 230th byte
by the 4187th added with 9. Note that it is always the second-to-last byte of the smaller
resource that is taken as a reference to modify a byte close to the beginning of the
resources.

Note that if we look at the control flow, we should have noticed that the member 3601
from the Class Manager will actually hold the Class Loader. There are checks such as:

if (!1(f3601 == null)) {

This is to determine if we are decrypting the Class Loader (when not null) or the
Protected Classes.

Getting the Protected Classes Dex

We will need to do the same byte modification before "decrypting". By replacing the
230th byte by the 4187th added with 9 (which gives 0x1 + 0x9 = 0x0a), we can
finally decrypt the Protected classes using the "double key" 0xcd75fe9a4209647
0x501f3142390a81eb .

Since the output of Jadx can be directly compiled, we can use the original
implementation in Java. We can also quickly reimplementitin C :

14/23

int64_t twisteri[4];
int64_t twister2[4];

void init(int64_t seed, int64_t *state)
{

int 1i;

state[0] = seed;

for (1 =1; i< 4; i++) {

state[i] = (Ox6c078965 * (state[i - 1] N (state[i - 1] >> 30)) + 1i);

}

int main(int argc, char **argv)

int idx = 0;
int i, fd, outfd,;
uint8_t buf[20];

fd = open(argv[1], O_RDONLY);
read(fd, buf, 20);

outfd = open(argv[2], O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);

init (Ox0cd75fe9a4209647, twisterl);
init (0x501f3142390a81eb, twister2);
while (read(fd, buf, 8) == 8) {

twister2[(idx + 3) % 4] = ((twisterl[(idx + 3) % 4] * OX7FFFFDCD) +

twister2[(idx + 2) % 4]) / OX7FFFFFFF;

twister1[(idx + 3) % 4] = ((twisteri[(idx + 0) % 4] * OX7FFFFDCD) +

twister2[(idx + 2) % 4]) % OX7FFFFFFF;
for (1 =0; i< 8; i++) {

buf[i] A= (twisteri[idx] >> (8 * 1)) & OXFF;

}
idx++;
idx %= 4,
write(outfd, buf, 8);
}
close(outfd);
close(fd);

}
Then we can obtain the Dex file:

$ unzip pc.jar
Archive: pc.jar

warning [pc.jar]: 22 extra bytes at beginning or within zip file

(attempting to process anyway)
inflating: classes.dex

Decompiling the whole project

We can now feed this new classes.dex to Jadx along with the one from the APK we

are analyzing so that both are integrated:

15/23

$ mv cl/classes.dex classes3.dex

$ jadx --show-bad-code --deobf -d project/ classes™.dex
INFO - loading

INFO - processing

ERROR - finished with errors, count: 26

Note that this time the class name didn't change, since we only added two additional
classes with no direct dependency over the rest of the decompilation. We can find the
additional classes using diff:

$ diff -rq project/sources/p010o/ cl/sources/p010o/ | grep Only

Only in project/sources/p010o/: C3157.java
Only in project/sources/p0100o/: C3158.java

The first class implements an AES encryption with a hardcoded key to communicate

with the MDM server, and the second one is used to deobfuscate the configuration files.

We indeed found what looks like a base64 decoding using an obfuscated custom
charset:

int indexOf = m6296(new char[]{56674, /*[...]*/
40470%}).intern().index0f (substring2.charAt(1i));
if ((indexO0f < m6296(new char[]{29383, 11261, 45856, 8033, 10541, 22108, 25214,
30659, 58107, 55254, 14618, 58864, 14018, 44529, 7991, 15470, 19635, 39717,
39670, 16382, 48010, 15556, 55341, 57354, 38037, 11242, 4227, 54049, 48270,
19667, 812, 6934, 28332, 14278, 47363, 20756, 57729, 41508, 31548, 11732, 20431,
31561, 33119, 61383, 24025, 58306, 18241, 30904, 52967, 36982, 32032, 40856,
34637, 20511, 4255, 54644, 53525, 56183, 24255, 22493, 27537, 12587, 31638,
39543, 20593, 21294}).intern().length() ? 'z' : 'X') 1= 'X") {

int i4 = 5309 + 111;

5312 = i4 % 128;

char[] cArr = {29383, 11261, 45856, 8033, 10541, 22108, 25214, 30659, 58107,
55254, 14618, 58864, 14018, 44529, 7991, 15470, 19635, 39717, 39670, 16382,
48010, 15556, 55341, 57354, 38037, 11242, 4227, 54049, 48270, 19667, 812, 6934,
28332, 14278, 47363, 20756, 57729, 41508, 31548, 11732, 20431, 31561, 33119,
61383, 24025, 58306, 18241, 30904, 52967, 36982, 32032, 40856, 34637, 20511,
4255, 54644, 53525, 56183, 24255, 22493, 27537, 12587, 31638, 39543, 20593,
21294} ;

String obfuscation

Obviously, DexGuard also provides some level of string obfuscation. The class
responsible for the deobfuscationis C1107 (formerly C1236 in the original
decompilation output):

16/23

public final class C1107 {
/* renamed from: v */
public static void m1192(char[] cArr, char c, char c2, char c3, char c4) {
char c5 = 58224,
for (int 1 = 0; i < 16; i++) {
cArr[1] = (char) (cArr[1] - (((cArr[0@] + c5) N ((cArr[0] << 4) + c3))
N ((cArr[0] >>> 5) + c4)));
CArr[0] = (char) (cArr[0] - (((cArr[1] >>> 5) + c2) N ((cArr[1] + c5)
N ((cArr[1] << 4) + ¢))));
c5 = (char) (c5 - 40503);
}

}

Four wide char are necessary, they change in each class that uses this obfuscation.
In our class the values are:

static void m6297() {

5307 = 34125;
5310 = 13075;
5311 = 49843;
5306 = 58803;

}
The method is invoked with the constant in this order:

C1107.m1192(cArr3, 5306, 5311, f5307, f5310);

The first element gives the string size, since there is some garbage at the end. The
deobfuscation can be called directly in java, or reimplemented in another language to
decode all obfuscated strings. As a matter of fact, in its latest version, JEB will directly
give the decoded string, saving us some precious time.

Originally, we used the following code to deobfuscate the strings:

17/23

https://www.pnfsoftware.com/

unsigned short cArr[2];
unsigned char out[256];
int i, str_idx, str_sz;
unsigned short c = 58803, c2 = 49843, c3 = 34125, c4 = 13075;

for(i=0;i<sizeof str;i+=2) {
unsigned short c5 = 58224;
CArr[0] str[i];
CArr[1] = str[i+1];
for (int 1 = 0; i < 16; i++) {
CArr[1] = (unsigned short) (cArr[1] - (((cArr[@] + c5) N ((CArr[0] << 4)
+ ¢c3)) N ((CcArr[0@] >> 5) + c4)));
CArr[0] = (unsigned short) (cArr[0] - (((cArr[1] >> 5) + c2) N ((cArr[1]
+ ¢c5) N ((cArr[1] << 4) + ¢))));
c5 = (unsigned short) (c5 - 40503);

}
if (1 == 0) {
str_sz = cArr[0];
str_idx = 0;
out[str_idx++] = (unsigned char) cArr[1];
} else if (str_idx < str_sz) {
out[str_idx++] = (unsigned char) cArr[0];
if (str_idx < str_sz) {
out[str_idx++] = (unsigned char) cArr[1];
} else {
out[str_idx++] = 0;
}
} else if (str_idx == str_sz) {
out[str_idx++] = 0;
}

}
printf("%s\n", out);

Which gives the following Java code for the decoding of our configuration files:

int index0f = "[REDACTED]".indexOf(substring2.charAt(i));;

if(index0f <
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=".1ength()) {

sb.append(((char)"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

}

As we originally guessed, it was indeed a Base64 encoding with a custom charset.

Deobfuscating the configuration file

There is some additional obfuscation after that. The buffer is reversed and each byte is
added with a value incremented at each index and reset every 5 characters.

In the end, we obtain some useful credentials to play a bit more with the device:

<user username="admin" password="[REDACTED]" group="ADMIN" />

18/23

With these credentials, it is possible to reach the Android configuration and activate
ADB, as well as the BlueTooth tethering in order to bounce on an internal network.

Bonus

Once ADB was activated, we could dump a lot of files from the device, such as all the
applications installed. From there, finding a command injection run as root is just a
matter of time. This is useful to dump the WiFi credentials in order to not depend on the
device to bounce on the internal network.

Conclusion

The aim of this blog post was to present a method for reverse engineering Android
application protected by DexGuard using opensource tools, in the context of a real-world
example. Using JEB can however speed up the process of deobfuscation, but as far as
we know, the most "technical" parts must still be made separately to obtain the
decrypted DEX files.

While the device in itself seemed innocuous, it ended up being a great way to gain
access to a sensitive network. Stacking layers upon layers of obfuscation doesn't help
against a motivated attacker.

Annex

Diff between AES reference implementation and DexGuard
implementation

19/23

diff -ru aes/rijndael-alg-fst.c code/rijndael-alg-fst.c
--- aes/rijndael-alg-fst.c 2000-12-06 22:48:16.000000000 +0100
+++ code/rijndael-alg-fst.c 2022-04-05 15:23:49.400531669 +0200
@@ -725,7 +725,7 @@

*

* @return the number of rounds for the given cipher key size.

*/
-int rijndaelKeySetupEnc(u32 rk[/*4*(Nr + 1)*/], const u8 cipherKey[], int
keyBits) {
+int rijndaelKeySetupEnc(u32 rk[/*4*(Nr + 1)*/], int Nr, const u8 cipherKey[],
int keyBits) {

int i = 0;
u32 temp;

@@ -745,8 +745,8 @@
rk[5] = rk[1] A rk[4];

rk[6] = rk[2] A rk[5];
rk[7] = rk[3] N rk[6];
- if (++1 == 10) {
- return 10;
+ if (++1i == Nr)
+ return Nr;
}
rk += 4;
}
@@ -765,8 +765,8 @@
rk[7] = rk[1] ~ rk[6];
rk[8] = rk[2] ~ rk[7];
rk[9] = rk[3] ~ rk[8];
- if (++1 == 8) {
- return 12;
+ if (++i == (3 * Nr) >> 2) {
+ return Nr;
}
rk[10] = rk[4] ™ rk[9];
rk[11] = rk[5] ™ rk[10];
@@ -787,8 +787,8 @@
rk[9] = rk[1] ~ rk[8];
rk[10] = rk[2] ~ rk[9];
rk[11] = rk[3] A rk[10];
- if (++1 ==7) {
- return 14;
+ if (++1 == Nr >> 1) {
+ return Nr;
}

temp = rk[11];
rk[12] = rk[4] A
@@ -811,12 +811,12 @@
*
* @return the number of rounds for the given cipher key size.
*/
-int rijndaelKeySetupDec(u32 rk[/*4*(Nr + 1)*/], const u8 cipherKey[], int
keyBits) {
- int Nr, 1i, J;
+int rijndaelKeySetupDec(u32 rk[/*4*(Nr + 1)*/], int Nr, const u8 cipherKey[],

20/23

int keyBits) {
+ int i, j;
u32 temp;

/* expand the cipher key:

- Nr = rijndaelKeySetupEnc(rk, cipherKey,

*/

+ rijndaelKeySetupEnc(rk, Nr, cipherKey,
/* invert the order of the round keys:

for (1 =0, j=
temp = rk[1i
@@ -1125,27 +1125,27
for (;7) {
to =
TdO[(s0O
- Td1[(s3
- Td2[(s2
- Td3[(s1
+ Td1[(s2
+ Td2[(s1
+ Td3[(s3
rk[4];
tl =
- TdO[(s1
- Td1[(sO
- Td2[(s3
+ TdO[(s3
+ Td1[(s1
+ Td2[(s0O
Td3[(s2
rk[5];
t2 =
- TdO[(s2
- Td1[(s1
- Td2[(s0O
- Td3[(s3
+ TdO[(s1
+ Td1[(s3
+ Td2[(s2
+ Td3[(s0O
rk[6];
t3 =
- TdO[(s3
- Td1[(s2
- Td2[(s1
- Td3[(s0O
TdO[(s2
Td1[(sO
Td2[(s3
Td3[(s1
rk[7];

rk += 8;
@@ -1155,27 +1155,27

sO =

ee

>>
>>
>>

>>
>>

>>
>>
>>
>>
>>
>>

>>
>>
>>

>>
>>
>>

>>
>>
>>

>>

>>
>>

@@

1;

24)
16)
8)

16)
8)

24)
16)
8)
24)
16)
8)

24)
16)
8)

24)
16)
8)

24)
16)
8)

24)
16)
8)

R R0 R0 Ro Qo Ro

]

Oxff]
Oxff]
Oxff]
Oxff]
Oxff]
Oxff]

Oxff]
Oxff]

Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
OxFf]

> > > > > > > > > > > > > >

> > > > > > > >

> > > > > > > >

rk[j

1;

keyBits);
keyBits);

4*Nr; 1< j; 1+=4, 3 -=4){
rk[i

rk[j

]

temp;

21/23

TdO[(tO >>
- Td1[(t3 >>
- Td2[(t2 >>
- Td3[(t1
+ Tdi[(t2 >>
+ Td2[(t1 >>
+ Td3[(t3
rk[o0];
sl =
- Tdo[(t1 >>
- Td1[(tO >>
- Td2[(t3 >>
+ TdO[(t3 >>
+ Tdi[(t1 >>
+ Td2[(tO >>
Td3[(t2
rk[1];
S2 =
- Tdo[(t2 >>
- Tdi[(t1 >>
- Td2[(tO >>
- Td3[(t3
Tdo[(t1 >>
Td1[(t3 >>
Td2[(t2 >>
Td3[(t0
rk[2];
s3 =
- TdO[(t3 >>
- Tdi[(t2 >>
- Td2[(t1 >>
- Td3[(tO
+ Tdo[(t2 >>
+ Td1[(tO >>
+ Td2[(t3 >>
+ Td3[(t1
rk[3];
}
#endif /* ?FULL_UNROLL
@@ -1185,30 +1185,30 @@
*/
sO =
(Td4[(te >>
- (Td4[(t3 >>
- (Td4[(t2 >>
- (Td4[(t1
+ (Td4[(t2 >>
+ (Td4[(t1 >>
+ (Td4[(t3
rk[oe];
PUTU32(pt , S0O);
sl =
- (Td4[(t1 >>
- (Td4[(to >>
- (Td4[(t3 >>

24)
16)
8)

16)
8)

24)
16)
8)
24)
16)
8)

24)
16)
8)

24)
16)
8)

24)
16)
8)

24)
16)
8)

*/

24)
16)
8)

16)
8)

24)
16)
8)

Q0 R0 R0 RO Ro Qo

Q0 R0 R0 R0 o Qo

Oxff]
Oxff]
Oxff]
Oxff]
Oxff]
Oxff]

Oxff]
Oxff]

Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
Oxff]
Oxff]
Oxff]
Oxff]

Oxff]
Oxff]

> >

Q0 R0 R0 RO RO RO Ro

R0

OxffoO0000)
0x00ff0000)
0x0000ff00)
0X000000ff)
0x00ff0000)
0x0000ff00)
0x000000ff)

> > > > > > >

Oxffoo0000) A
0x00ffo000) A
0x0000ff00) A

22/23

+ (Td4[(t3 >> 24)
(Td4[(t1 >> 16)
+ (Td4[(te >> 8)
(Td4a[(t2)
rk[1];
PUTU32(pt + 4,
s2 =
- (Td4a[(t2
- (Td4[(t1 >> 16)
- (Td4[(te >> 8)
- (Td4[(t3)
+ (Td4[(t1 >> 24)
+ (Td4[(t3 >> 16)
+ (Td4[(t2 >> 8)
+ (Td4[(to)
rk[2];
PUTU32(pt + 8, s2);
s3 =
- (Td4[(t3
- (Td4[(t2 >> 16)
- (Td4[(t1 >> 8)
- (Td4[(to)
(Td4[(t2 >> 24)
(Td4[(te >> 16)
(Td4[(t3 >> 8)
(Td4[(t1)
rk[3];
PUTU32(pt + 12,

+

sl);

>> 24)

>> 24)

s3);
}

Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
Oxff]

R R0 R0 Ro

Q0 R0 R0 R0 RO RO Qo Ro

Q0 R0 R0 R0 RO RO RO Ro

Oxffoo0000)
0x00TT0000)
0Xx0000ff00)
0X000000ff)

0xff000000)
0x00ff0000)
0x0000ff00)
0Xx000000ff)
0xff000000)
0x00ff0000)
0Xx0000ff00)
0X000000f)

0xffo00000)
0x00ff0000)
0Xx0000Ff00)
0Xx000000ff)
0xff000000)
0x00Ff0000)
0Xx0000Ff00)
0Xx000000ff)

> > > >

> > > > > > > >

> > > > > > > >

diff -ru aes/rijndael-alg-fst.h code/rijndael-alg-fst.h
--- aes/rijndael-alg-fst.h 2000-12-06 18:50:46.000000000
+++ code/rijndael-alg-fst.h 2022-04-05 15:23:49.408531739

@@ -34,8 +34,8 @@
typedef unsigned short ul6;
typedef unsigned int u3z2;

-int rijndaelKeySetupEnc(u32
keyBits);

-int rijndaelKeySetupDec(u32
keyBits);

+int rijndaelKeySetupEnc(u32
int keyBits);

+int rijndaelKeySetupDec(u32
int keyBits);

void rijndaelEncrypt(const u32 rk[/*4*(Nr + 1)*/], int Nr, const u8 pt[16],

ct[16]);

rk[/*4*(Nr + 1)*/],
rk[/*4*(Nr + 1)*/7,
rk[/*4*(Nr + 1)*/],
rk[/*4*(Nr + 1)*/],

const u8

const u8

+0100
+0200

cipherKey[], int

cipherKey[], int

int Nr, const u8 cipherKey[],

int Nr, const u8 cipherKey[],

u8

void rijndaelDecrypt(const u32 rk[/*4*(Nr + 1)*/], int Nr, const u8 ct[16], u8

pt[16]);

23/23

