Qakbot Series: String Obfuscation

malwarology.com/2022/04/qakbot-series-string-obfuscation/
April 10, 2022

2022-04-10

Malware Analysis , Qakbot

In late March 2022, | was requested to analyze a software artifact. It was an instance of
Qakbot, a modular information stealer known since 2007. Differently to other analyses | do
as part of my daily job, in this particular case | can disclose wide parts of it with you readers.
I’m addressing them in a post series. Here, I'll discuss about the string obfuscation techinque
based on this specific sample.

Looking at the strings embedded into a software artifact is one of the first approaches an
analyst may attempt during the triaging stage. For those of you don’t know what I'm talking
about, strings are sequences of bytes that, once interpreted as characters, form meaningful
words. During the process that starts with a program source code and ends with that
program being compiled and ready to run, strings are usually preserved. What does that
mean? It means that if you have a string in the source code, e.g. a path or a function name,
then that string will lie into the object code after the compilation of the sources. Strings may
be an useful source of information to quickly understand the capabilities of a piece of
software and immediately focus on specific areas of the artifact deserving a closer look.
Strings can be statically extracted, i.e. you don’t need to exectute the software to obtain
them.

Naturally, malware developers know the importance of the strings during the analyis process.
Therefore, they tend to hide this source of information from their products. One easy and
cheap technique to hide strings like variable names and function names is to stripe them
from the binary. This is acheavable simply by compiling the source with particular flags.
Another technique aimed at hiding the most valuable strings is called string obfuscation.
String obfuscation consists in storing the strings in encrypted or obfuscated form so that they
cannot be recognized and extracted from the artifact. Those strings are decrypted at runtime
and consumed by the software when they are needed. The Qakbot sample | analyzed
implements a string obfuscation technique.

Indeed, the strings analysis for the sample object of analysis wasn'’t really fruitful when | tried
to do it. There were not so many meaningful strings overall and most of them were
unreferenced or, in general, not providing any insight. There was only one exception: the
presence of 18 very long and apparently meaningless strings. We postpone a discussion
about their purpose to another post since it regards another anti-analysis technique. The
reason why the string analysis wasn’t so effective is that the vast majority of them are
obfuscated to hide evidence of the malware capabilities.

1/3


https://www.malwarology.com/2022/04/qakbot-series-string-obfuscation/
https://www.malwarology.com/categories/malware-analysis
https://www.malwarology.com/categories/qakbot
https://www.virustotal.com/gui/file/8565e3e213572cbd7c3df45ae3fadd094831aef7b63d3b389e57097c1b8602d6/detection

undefined * _ thiscall deobfuscate_string(undefined *blob,uint blob_size,undefined *key,uint offset)

{
int iVarl;
undefined *puVarz;
uint uvar3;
byte *pbVard;
uint local_B8:

local 8 = 0;
uvar3 = offset;
1f (offset < blob_size) {
do {
if (keyluvar3 % 0x5al == blob[uvar3]) {
local_8 = uVar3 - offset;
break;
}
uvar3 = uVar3 + 1;
} while (uVar3 < blob_size);
}
puvar2 = (undefined *)allocate_heap(local_8 + 1);
uvar3 = 0;
if (puvar2 == (undefined *)ox0) {
puVar2 = &NULL;
}
else {
if (local 8 !=0) {
do {
pbVard = puVar2 + uVar3;
iVarl = uvar3 + offset;
uVar3 = uVar3 + 1;
*pbvard = key[(uint) (pbvard + (offset - (int)puVar2)) % 0xSa]l = blob[ivarll;
} while (uVar3 < local_8);
}
1
return puVarz;

Figure 1

Qakbot string deobfuscation function

All the meaningful and relevant strings are stored in obfuscated form in two continuous
blobs. The first blob is located at 0xb542b8 and the second blob is located at 0xb557f8. A
string is de-obfuscated by xor-ing the specific part of the blob with a key stored as a
continuous sequence of bytes. Each blob is xor-ed with a different key. There are two
instances of the function implementing the string de-obfuscation, one starts at 0xb302¢6 and
another one starts at 0xb227a1. As you may notice from Figure 1, showing the decompiled
code for one of those instances, it expects four arguments: the blob where the string is
contained, the size of the blob, the xoring key, and the starting offset of the obfuscated string
within the blob.

2/3



def deobfuscate_string(blobil: bytes, pl: int, blob2: bytes, p3: int) -> bytes:
18 = 0
i=p3
if p3 <= pi:
while i <= pi:
if blob2[i % 0x5a] == blobi[i]:

18 =i - p3
break
i+=1
lc = bytearray([0] * (18))
i=0
if 18 > 0:

while i < 18:
1c[i] = blob2[(p3 + i) % Ox5a] A blobi[p3:][i]
i+=1
return bytes(1lc)

Listing 1

Python translation of the string deobfuscation function

Listing 1 shows a Python3 translation of the Qakbot string deobfuscation function. | had to
code it since the offset of many strings into the sample code is computed at runtime instead
of being hardcoded. That function replicates the algorithm implemented in the sample. Here
you will find a complete list of the de-obfuscated strings produced by our script. For each
string | mention the containing blob and the starting offset within the blob. In that list you'll
find a lot of potentially interesting elements regarding the malware capabilities. I'll discuss
about some of them in the coming blog posts.

As always, if you want to share comments or feedbacks (rigorously in broken lItalian or
broken English) do not esitate to drop me a message at admin[@]malwarology.com.

3/3


https://www.malwarology.com/text/1-qakbot-strings-obfuscation/strings.txt

