
1/11

April 7, 2022

Looking Inside Pandora’s Box
fortinet.com/blog/threat-research/looking-inside-pandoras-box

In Greek mythology, opening of the infamous Pandora’s box (jar) introduced terrible things to
the world. That can also be said about today’s ransomware. The newly emerged Pandora
ransomware that crowned the name is no exception. It steals data from the victim’s network,
encrypts the victim’s files, and unleashes the stolen data if the victim opts not to pay. The
Greek myth says hope was left in the box. Does that hold true for Pandora ransomware, an
emerging malware that shows all techniques used by modern ransomware? In this blog we
are taking a hammer and crowbar to look inside today’s Pandora’s box to find out what
mysteries it holds. We will discuss:

How this ransomware tries to evade detection
The numerous obfuscation and anti-analysis techniques that are used to hinder
analysts
How multi-threading is used to speed up processing
How the filesystem is processed

https://www.fortinet.com/blog/threat-research/looking-inside-pandoras-box

2/11

How and which files are encrypted.

Affected Platforms: Windows
Impacted Users: Windows users
Impact: Most files on the compromised machines are encrypted
Severity Level: Medium

Pandora Group

The Pandora ransomware group emerged into the already crowded ransomware field as
early as in mid-February 2022 and targets corporate networks for financial gain. The group
got recent publicity after they announced that they acquired data from an international
supplier in the automotive industry. The incident came as surprise as the attack came two
weeks after another automotive supplier was reportedly hit with unknown ransomware, which
resulted in one of the world’s biggest car manufacturers suspending factory operations. The
threat group uses the double extortion method to increase pressure on the victim. This
means that they not only encrypt the victim’s files, but also exfiltrate them and threaten to
release the data if the victim does not pay.

The Pandora Group has a leak site in the Dark Web (TOR network), where they publicly
announce their victims and threaten them with the data leak. There are currently three
victims listed on the leak site (see Figure 1), a U.S.-based real estate agency, a Japanese
technology company, and a U.S. law firm.

Figure 1 - Pandora's leak site

Malware Analysis

We analyzed the sample with the SHA-256 hash
5b56c5d86347e164c6e571c86dbf5b1535eae6b979fede6ed66b01e79ea33b7b, which is a
64-bit Windows PE file. It is the ransomware itself, so by the time this file is executed during
an attack, the attackers probably already had extensive access to the victim’s network, and
they had already exfiltrated the data they will use for the extortion. This sample does not
have the capability to communicate with the threat actors. Its sole purpose is to find and
encrypt files. However, it does this in an interesting and complex manner.

In the following sections these interesting aspects of the malware will be discussed.

Execution Flow

The sample goes through the following steps:

Note that “T” followed by numbers within brackets refers to MITRE ATT&CK technique ID,
which are summarized at the end of the post.

3/11

 1) Unpacking: The sample is packed with a modified UPX packer (T1027.002), so the first
step is to unpack the real content to memory and jump to it. This will be discussed later.

 2) Mutex: It creates a mutex called ThisIsMutexa.

 3) Disable Security Features: It can delete Windows shadow copies (T1490), bypass AMSI
(T1562.001), and disable Event Logging (T1562.002). More on these features later.

 4) Collects system information: GetSystemInfo()is used to collect information about the
local system.

 5) Loads Hardcoded Public Key: A public key is hardcoded in the malware sample. This is
used to set up the cryptography for encryption.

 6) Store Private and Public Keys in Registry: A private key is generated, and both the
hardcoded public key and the newly generated private key are stored in the registry
 (T1112).

 7) Search Drives: It searches for unmounted drives on the system and mounts them to
encrypt them as well (T1005).

 8) Setup Multi-Threading: The sample uses worker threads to distribute the encryption
process. More on this later.

 9) Enumerate Filesystem: The worker threads start to enumerate the filesystems of the
identified drives (T1083).

10) Drop Ransom Note: The ransom note is dropped in every folder in
Restore_My_Files.txt.

11) Check File Name Blacklist: For every file and folder a blacklist of file/folder names is
checked. If the file/folder is on the blacklist it will not be encrypted. More on this later.

12) Check File Extension Blacklist: Each file is checked against a file extension blacklist. If
the extension is on the list, it will not be encrypted.

13) Unlock File: If the file is locked by a running process, the sample will try to unlock it
using the Windows Restart Manager(T1489).

14) Encrypt File: The worker threads will encrypt(T1486) the file and write it back to the
original file.

15) Rename File: Once the encryption is finished the file is renamed
to[original_filename].pandora.

Anti-Reverse Engineering Techniques

4/11

One of the most significant aspect of the Pandora ransomware is the extensive use of anti-
reverse-engineering techniques. This is not new for malware, but Pandora lies on the
extreme side of how much is invested in slowing analysis down. In this section we will go
through the different techniques that were identified.

Packed

The sample is packed with a modified UPX packer, which can be easily detected with Detect
It Easy (see Figure 2).

Figure 2: Detect It Easy can identify UPX

However, the standard UPX unpacker does not work, which indicates that the packer was
modified to make sure that off-the-shelf tools cannot be used to unpack it.

Unpacking is still relatively easy, by scrolling down from the entry point to the end of the code
in a debugger. The code will end with a jump (Figure 3). This is typical with packers, that
after unpacking the original code somewhere in memory they will jump there, instead of
returning from the main function.

Figure 3: Tail jump at the end of the unpacking

By putting a breakpoint to the tail jump we can dump the PE file from memory including the
unpacked code. With the dumped file we can analyze the ransomware statically as well.

Control-Flow Flattening

Control-Flow Flattening is an obfuscation technique that can hide the structure of the
program by modifying the control-flow. In the simplest case, it replaces the normal control
flow of each function with a state machine, thus it makes harder for an analyst to quickly
understand how each function works. Pandora uses a more complex control-flow flattening
combined with opaque predicates, to complicate the control flow even further.

Figure 4: Graph view of main()

Figure 4 shows the graph view of the main function in the unpacked code. We can see that it
does not resemble a normal function’s control flow. It looks like a huge switch-case
statement, which is the result of the control-flow flattening that implements a state machine.
However, in Pandora’s case most of the basic blocks are not connected at all. This is the
result of the opaque predicates. Most of the jumps between basic blocks are calculated at
runtime, as shown in Figure 5.

Figure 5: Calculating the address for the jmp in runtime

5/11

The first cmp instruction checks the current state of the state machine and depending on that
calculates the value of the rdx register for the jmp at the end of the basic block. Because of
this static analysis tools, such as IDA Pro cannot understand where the control flow will
continue, and thus cannot connect the basic blocks in Figure 4.

Emulation can be used to understand the control flow to a limited degree but debugging had
to be applied extensively to be sure how the execution flows.

String Encoding

Some strings can be found in the unpacked binary, but most of them are from the statically
linked libraries. However, the strings that would help us understand what is happening in the
code are encoded. Figure 6 shows how one of the string decryption functions is called.

Figure 6: Calling one of the string decryption functions

Both the address of the decryption function, which is called through rax, and the address of
the encoded string, are calculated at runtime. This way, when looking at this code statically,
there is no way to know what is happening here. The comment on the right side is the result
of an IDAPython script that uses the flare-emu project to emulate the code and calculate the
addresses of the function call, as well as emulate the decryption function. This solution was
very effective in recovering the encoded strings in the binary. The decryption function
implements an XOR decoding. The decryption keys are stored together with each encoded
string. As a bonus, the malware uses multiple decryption functions. We identified 14
separate functions that are used for string decoding.

Function Call Obfuscation

It was already mentioned in the previous section that most function calls are not calling a
direct address, but a register. Its value is calculated at runtime.

If we use Figure 6 as an example the address in rax is calculated like this:

rax = *(*address_table_base + 638300900) - 1426601284)

As mentioned, this was solved using emulation. By emulating the execution of a function, we
could calculate the register values at CALL instructions. This allowed us to resolve function
calls at scale.

Windows API Call Obfuscation

Contrary to other malware, the Windows API function names are not encoded, but another
obfuscation technique is used to hide their usage. As shown in Figure 7, the Windows API
functions are organized in a jump table. At each address there is a jmp instruction that
redirects to the library function.

https://github.com/mandiant/flare-emu

6/11

Figure 7: Windows API function jump table

Resolving the API functions was implemented in the same flare-emu IDAPython script that
resolves the function calls. Whenever a CALL [register] points to a jmp instruction (see
Figure 8), instead of the beginning of a function, then we assumed that it points to the API
function jump table. So we took the name of the operand of the jump and used that to
generate the comments for the function call (see Figure 9).

Figure 8: Recovering API function name in the emulation script

Figure 9: The script recovered that this is a function call to OpenMutexA

Multi-Threading

Pandora uses multiple threads to speed up the encryption process. For that it uses
Windows’s IO Completion Ports concept. This allows threads to wait for a file/network handle
to appear in the IO Completion Port queue and process them. Pandora uses unassociated
IO Completion Ports and sends any data through it using the OVERLAPPED structure. In
this case drives and file paths will be passed to threads to process (enumerate or encrypt)
them. The IO Completion Port is set up using the CreateIOCompletionPort() API function as
shown in Figure 10. By passing INVALID_HANDLE_VALUE as the first parameter (rcx =
0xFFFFFFFFFFFFFFFF) and NULL as the second (rdx = 0x0) an unassociated IO
Completion Port is created. The fourth parameter is the NumberOfConcurrentThreads, which
is set to 4 (r9 = 0x4), defines that maximum 4 threads are allowed to work with this IO
Completion Port.

Figure 10: Initializing an IO Completion Port

After this, the main function will start the new threads. The communication between the
threads is done using the GetQueuedCompletionStatus() and PostQueuedCompletionStatus
API functions. Figure 11 shows how a discovered file (pydisas.py) is put in the queue with
PostQueuedCompletionStatus(). Another thread will pick up this task with
GetQueuedCompletionStatus(), and since it receives a full path to a file it will encrypt and
rename it.

Figure 11: Posting the file path to the IO Completion Port's queue

Restart Manager

The Restart Manager is a Windows feature to reduce the number of restarts needed during
installation and updates. The reason for a restart is usually because a file that needs to be
updated is locked by a running process. The Restart Manager can save the state and stop

https://docs.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports

7/11

the locking process to unlock the target file. Once the update is finished, it can restore the
locking process again. Pandora uses the Restart Manager to make sure that even files that
are currently locked will be encrypted. For each file the following process is executed:

1) Create Restart Manager session with RmStartSession()

2) Register the target file as a resource with RmRegisterResource()

3) Check if the target file is locked by any process with RmGetList()

4) If so, terminate locking processes

5) End Restart Manager session with RmEndSession()

Encryption

Before a file is encrypted, Pandora does the following checks to make sure that it does
not render the machine inoperable. Each target file is checked against the following
blacklist of file and folder names. If the target file is on the list, Pandora will not encrypt
it.

AppData

Boot

Windows

Windows.old

Tor Browser

Internet Explorer

Google

Opera

Opera Software

Mozilla

Mozilla Firefox

$Recycle.Bin

ProgramData

All Users

autorun.inf

boot.ini

bootfont.bin

bootsect.bak

bootmgr

bootmgr.efi

bootmgfw.efi

desktop.ini

iconcache.db

ntldr

ntuser.dat

ntuser.dat.log

ntuser.ini

thumbs.db

Program Files

Program Files (x86)

#recycle

..

.

Each target file is compared to the following list of file extensions. If the file’s extension
is on the list, the file will not be encrypted:

.hta .exe .dll .cpl .ini .cab .cur .drv .hlp .icl .icns .ico .idx .sys .spl .ocx

8/11

The ransom note, shown in Figure 12, promises an RSA-2048 encryption. The fact that
malware is shipped with a hardcoded RSA-2048 public key (Figure 13) confirms this claim.

Figure 12: Ransom note

Figure 13: Hardcoded RSA public key

A private key is also generated and both of these keys are stored in the registry under
HKCU\SOFTWARE\[Private,Public] (see Figure 14).

Figure 14: Cryptographic keys are stored in the Registry

The unpacked binary contains the Mbed TLS cryptographic library statically linked.

Once a file is encrypted in memory, it is written to disk. After that the file is renamed to have
the .pandora extension.

Disabling Security Features

The Pandora ransomware has the capabilities to disable some of the security measures on
the target machine.

Deleting Shadow Copies

Like a lot of other ransomware, Pandora deletes the Windows Shadow Copies, which could
help the operator restore the machine to a state before the infection. Figure 15 shows the
call to ShellExecuteW() with the parameters from runtime(T1059). We can see that it uses
the vssadmin.exe.

Figure 15: Deleting shadow copies with ShellExecuteW

AMSI Bypass

The Antimalware Scan Interface (AMSI) allows security products to integrate better with
Windows to be able to scan all kinds of different objects, such as PowerShell scripts,
JavaScript, VBScript, etc. By bypassing AMSI, the malware can take away significant
capabilities from the security products running on the machine. Pandora bypasses AMSI by
patching the AmsiScanBuffer() function in the amsi.dll in memory.

Disable Event Log

Similar to the AMSI bypass, Pandora disables the Event Tracing for Windows (ETW) feature,
by patching the EtwEventWrite() function in the Windows kernel (ntdll.dll). Figure 16 shows
that the first byte of the function is replaced with 0xC3, which is the ret instruction. This
renders the EtwEventWrite() function useless, because after every call it return immediately
without logging the event.

https://github.com/ARMmbed/mbedtls

9/11

Figure 16: Patching the EtwEventWrite function to return immediately

Conclusion

The Pandora ransomware contains all of the most important features that state-of-the-art
ransomware samples usually contain. The level of obfuscation to slow down analysis is more
advanced than average malware. The threat actor also paid attention to unlock files to
guarantee the maximum encryption coverage, while still allowing the machine to run. We can
already see anti-security product features. We can expect the threat actor to develop these
capabilities further. There is currently no proof that Pandora operates as Ransomware-as-a-
Service (RaaS), but the time investment in the complexity of the malware might indicate that
they are moving in that direction in the long term. The current attacks and leaks might be a
way to make their name in the ransomware field, which they could capitalize on if they adopt
the RaaS model later. It is worth tracking the threat actor to monitor how their malware
changes.

Fortinet Protection

The analyzed Pandora ransomware sample is detected by the following (AV) signature:

W64/Filecoder.EGYTYFD!tr.ransom

FortiEDR also detects and mitigates execution of Pandora ransomware through the
combination of behavioral analysis, and integration with machine learning and threat
intelligence feeds. Execution of the Pandora sample analyzed as part of this blog triggers
seven rules resulting in nine security events. Triggered rules were a result of pre-execution
analysis and post-execution behaviors. These security events can be observed below in
Figure 16.

Figure 16. FortiEDR security events generated following execution of Pandora ransomware
sample. Note that during this execution FortiEDR was set to only log events rather than
mitigate to properly demonstrate detections post-execution.

Pre-execution detections included; identifying the malicious file (hash based), detection of a
suspicious packer and presence of writeable code. Post-execution detections included;
detection of each file encryption attempt, detection of encrypted file rename attempt,
dropping of the ransom-note and attempts to access SMB shares.

In Protect mode FortiEDR will detect and mitigate detected behavior. In the case of Pandora
this will prevent execution of the ransomware, mitigating malicious activity before it occurs,
and will prevent subsequent file encryption attempts if the adversary is able to execute the
sample. The post exploitation detections are not dependent on signature meaning they will
effectively mitigate this activity for newer Pandora variants even with no prior knowledge of
the samples.

10/11

IOCs:

Mutex: ThisIsMutexa
Ransom note: Restore_My_Files.txt
SHA256 hash of hardcoded public key:
7b2c21eea03a370737d2fe7c108a3ed822be848cce07da2ddc66a30bc558af6b
SHA256 hash of sample:
5b56c5d86347e164c6e571c86dbf5b1535eae6b979fede6ed66b01e79ea33b7b

ATT&CK TTPs

TTP Name TTP ID Description

Obfuscated Files or Information:
Software Packing

T1027.002 Modified UPX packer

Impair Defenses: Disable Windows
Event Logging

T1562.002 Disable Event Logging

Impair Defenses: Disable or Modify
Tools

T1562.001 Bypass AMSI

Data from Local System T1005 Searches unmounted drives and
partitions

Modify Registry T1112 Cryptographic keys are stored in
the registry

Data Encrypted for Impact T1486 As a ransomware it encrypts files

Command and Scripting Interpreter T1059 Uses cmd.exe to remove the
shadow copies

System Information Discovery T1082 Collects system information with
GetSystemInfo()

File and Directory Discovery T1083 Discovers drives and enumerates
filesystems

11/11

Inhibit System Recovery T1490 Deletes shadow copies

Service Stop T1489 Terminates processes if they lock a
file

Learn more about Fortinet’s FortiGuard Labs threat research and intelligence organization
and the FortiGuard Security Subscriptions and Services portfolio.

https://www.fortinet.com/fortiguard/labs?utm_source=blog&utm_campaign=fortiguard-labs
https://www.fortinet.com/fortiguard/labs?tab=security-bundles&utm_source=blog&utm_campaign=security-bundles

