
1/7

April 5, 2022

Incident report: From CLI to console, chasing an attacker
in AWS

expel.com/blog/incident-report-from-cli-to-console-chasing-an-attacker-in-aws/

Recently, our SOC detected unauthorized access into one of our customer’s Amazon Web
Services (AWS) environments. The attacker used a long-term access key to gain initial
access. Once they got in, they were able to abuse the AWS Identity and Access
Management (IAM) service to escalate privileges to administrative roles and create two new
users and access keys — creating a foothold in their environment. However, we stopped
them before the attacker was able to get any further.

In this post, we’ll walk you through how we spotted unauthorized access, the investigative
steps we took to understand what the attacker did in AWS, and share our lessons learned
and key takeaways from the incident.

Quick background

Before we tell you how it went down, for this customer we’re ingesting AWS CloudTrail logs
and applying our own custom detections. This customer did not have AWS GuardDuty
enabled for their monitored AWS accounts — nor did we have any visibility beyond the AWS
control plane.

Our initial lead

Our first clue into the incident was an AWS alert based on CloudTrail logs for a console login
from an IAM user originating from an atypical country.

From the AWS alert (screenshot below), our SOC was able to extract the following details
about the console login:

The authentication originated from Indonesia
The type of AWS account was an IAM user
Multi-factor authentication (MFA) was not used for the authentication

https://expel.com/blog/incident-report-from-cli-to-console-chasing-an-attacker-in-aws/


2/7

The details about the AWS console login prompted our SOC to ask the following questions:

Does this IAM user typically login from Indonesia?
Why is this IAM user authenticating to the console directly and not via an identity
provider?
Why wasn’t MFA used?

These questions combined certainly raised our suspicion.

SOC pro-tip: IAM accounts typically have long-term access keys associated with them. You’ll
see these long-term access keys start with “AKIA.” Most of the AWS incidents we detect
were the result of a publicly exposed long-term access key.

The first step in our investigative process was to understand what happened after the
successful AWS console login. We used one of our bots, Ruxie™, to gain some more insight.
As a quick refresher, our robot Ruxie (yes – we give our robots names) automates
investigative workflows to surface up more details to our analysts.

We used Ruxie to list the most recent interesting API calls from the AWS account in the initial
lead (interesting in this context is mostly anything that isn’t Get*, List*, Describe*, and
Head*). API calls that are sometimes associated with attacker activities in AWS are
highlighted in orange. We highlight these actions in orange to provide a visual cue to our
analysts that something may be amiss here.

https://expel.com/buy/managed-detection-response/


3/7

The list of API calls returned by Ruxie showed us that the source IP address associated with
the atypical console login also issued API calls to CreateUser, CreateAccessKey, and
AttachUserPolicy. For the AWS defenders out there, it’s important to note that AWS accounts
are assigned temporary access keys when authenticating to the AWS console (these access
keys typically start with “ASIA”).

Now this activity really has our attention. But why?

The CreateUser API call is used to create a new IAM user. The CreateAccessKey API call
creates a new long-term access key for a specific user. AttachUserPolicy attaches a
specified policy to a specified user.

Therefore, an attacker can use these API calls to:

Create a new IAM user
Create a new long-term access key for the user
Attach a highly privileged policy to the user for elevated access

This series of API calls can give an attacker persistent and elevated access in an AWS
environment — yep, this activity certainly has our attention.

The next question our SOC asked was, “where does this IAM user typically authenticate
from?” Ruxie to the rescue. Ruxie provided our analysts with a list of login activity by region
and frequency for the IAM user listed in our lead alert.

Bottom line? Logins from Indonesia are highly suspicious.

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-unique-ids


4/7

Recently authenticated regions Ruxie action for the source IAM user
OK, so at this point we have an IAM user logging in to the AWS console, from a location
we’ve confirmed is atypical, and that account is issuing API calls to create new users, long-
term access keys, and to attach highly privileged policies to users for elevated access.

At this point our SOC declared an incident, issued a recommendation to our customer to
reset the (arn:aws:iam::123456789012:user/comp_user1) account credentials, and in
parallel began working to answer:

How did the attacker obtain AWS console creds?
What else did the attacker do in AWS?

How did the attacker obtain AWS console creds?

The next step in our investigative process was to get a more detailed timeline of all AWS API
calls issued by the source IP address associated with the lead alert for the console login.
This investigative step helps us better understand the actions performed by the attacker.

API calls in AWS triage timeline
When examining the detailed timeline of API calls, the attacker first issued a ListUsers API
call using the arn:aws:iam::123456789012:user/comp_user2 IAM user from the AWS
command line interface (aws-cli). Note that this is a different IAM user from the lead alert. We
inferred the arn:aws:iam::123456789012:user/comp_user2 IAM user was also
compromised since the API call originated from the same IP address recorded in the console
login. More on this in a second.

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html


5/7

Next, the attacker issued two calls to the UpdateLoginProfile API; one for the
arn:aws:iam::123456789012:user/comp_user1 IAM user (succeeded) and one for the
arn:aws:iam::123456789012:user/comp_user2 IAM user (failed with the
NoSuchEntityException reason).
Finally, CloudTrail logs recorded a ConsoleLogin from the
arn:aws:iam::123456789012:user/comp_user1 account.

So as a quick recap, our investigation revealed the attacker took the following steps to gain
access to the AWS console:

Used the AWS access keys for arn:aws:iam::123456789012:user/comp_user2 to
issue a ListUsers API call.

The results of the ListUsers API call returned
arn:aws:iam::123456789012:user/comp_user1 in the results.

Issued an API call to UpdateLoginProfile to change the AWS console password for the
arn:aws:iam::123456789012:user/comp_user1 account.
Authenticated into the AWS console using the
arn:aws:iam::123456789012:user/comp_user1 account.

It’s our working theory that the AWS access keys for the
arn:aws:iam::123456789012:user/comp_user2 account were discovered by the attacker in
a publicly available code repository.

What else did the attacker do in AWS?

SOC pro-tip: At this point in our investigation, CloudTrail logs indicate the attacker has
access to the AWS console for this customer. Therefore, we’re expecting to see attacker
activity recorded from different IP addresses associated with AWS. (Don’t exclude these in
your search!)

Immediately following the authentication to the AWS console, the attacker issued the
following API calls:

CreateUser
CreateAccessKey
AttachUserPolicy
CreateLoginProfile

This allowed the attacker to create two new IAM users with accompanying long-term access
keys and attached a policy that allowed one of the new users to create and change their
AWS console password. For one of the newly created IAM user accounts, the attacker
issued an AttachUserPolicy API call to attach an AdministratorAccess policy to the newly
created IAM user — allowing the attacker to elevate their privileges in AWS.

https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html#jf_administrator


6/7

Lastly, the attacker used one of the newly created IAM users to make a call to the
RequestServiceQuotaIncrease API in order to increase the EC2 quota. It’s our opinion that
this action was taken in preparation for starting multiple large EC2 instances for
cryptocurrency mining. It is at this point that we worked with the customer to begin
remediation.

Crisis averted!

Here’s the final play-by-play of the actions taken by the attacker in AWS mapped to the
MITRE ATT&CK framework:

MITRE tactics mapped to AWS API calls
You can check out additional AWS API calls we’ve seen associated with attacker activity in
our AWS mind map.

Remediation in AWS

With the scope of the compromise understood, we provided our customer with the following
remediation recommendations:

1. Delete the two created accounts and accompanying access keys for
arn:aws:iam::123456789012:user/created_user1 and
arn:aws:iam::123456789012:user/created_user2

2. Deactivate the long term access keys associated with the
arn:aws:iam::123456789012:user/comp_user1 and
arn:aws:iam::123456789012:user/comp_user2 IAM users

3. Reset the AWS console password for the
arn:aws:iam::123456789012:user/comp_user1 and
arn:aws:iam::123456789012:user/comp_user2 IAM users

We also recommended that the customer ensure AWS access keys are not being
accidentally released to the public and implement least privilege with regards to AWS users.
Additionally, we recommended the customer implement MFA for IAM user AWS console
authentications.

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/service-quotas/request-service-quota-increase.html
https://expel.io/blog/mind-map-for-aws-investigations/


7/7

Lessons learned

What stood out the most in this incident was the attacker’s technique to use an exposed
long-term access key to gain access to the AWS console — potentially for ease of access
and persistence. Simply put, the attacker wants to go from the aws-cli to the AWS console.
To achieve this, the attacker issued API calls UpdateLoginProfile or CreateLoginProfile from
an IAM user. We now have a detection based on CloudTrail logs that alerts our SOC anytime
we see these specific API calls originating from an IAM user where the User-Agent is the
aws-cli. We’ve added some additional logic to reduce benign noise associated with AWS IP
addresses.

We’re also exploring additional detections based on CloudTrail logs where we see newly
created IAM users issue API calls to RequestServiceQuotaIncrease to increase the EC2
quota. This could be a signal of potential unauthorized activity in EC2.

While we detected unauthorized activity early in the attack lifecycle, we’re a learning
organization and always looking for opportunities to improve our detection and response
capabilities in AWS.

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/service-quotas/request-service-quota-increase.html

