Emotet Analysis Part 1: Unpacking

§ pl-v.github.io/plv/posts/Emotet-unpacking/
Player-V April 2, 2022

Player-V on Apr 22022-04-02T715:26:00+08:00

Updated Apr 102022-04-10722:41:15+08:00 3 min read

EMOTET

Introduction

That’s will be my first post in the blog, i will make a series of posts about Emotet.

Emotet is a Trojan that is primarily spread through spam emails (malspam), we’re going to
digg deep in the anlysis of this Trojan, the first part is about unpacking the malware then we
will try to analyse the different modules and techniques used by the malware to compromise
a machine, so fire up your virtual machine and let’s start.

Triage

The first thing i always do before opening a sample in IDA or Xdbg is opening the binary
first in a hex editor, in my case i will use CEF Explorer, so opening the sample in CFF
explorer shows that we’re dealing with 32 bit binary.

1/11

https://pl-v.github.io/plv/posts/Emotet-unpacking/
https://www.malwarebytes.com/emotet
https://www.malwarebytes.com/emotet
https://ntcore.com/?page_id=388

 Emorstan |

Member Offset Size Value Meaning
Machine 0000010C Word 014C Intel 386
MurnberOfSections | 0000010E Word 0004

TimeDateStamp 00000110 Dword 61947320
PointerToSymbolT... | 00000114 Dward 00000000
MumberOfSymbols | 00000118 Dward 00000000
SizeOfOptionalHea... | 0000011C Word 00ED

Characteristics 0000011E Word 2102 Click here

Let’s check import section, the malware use only one library which is Kernel32 that’s the
first sign which indicate that we’re dealing with packed binary.

Emaotet.dll

Madule Name Imports OFTs TimeDateStamp | ForwarderCr

D00SCBTE M/A D003CECC 0003C8D00 0003CED4

szAns (nFunctions) Dword Dword Dword
IKERMEBE.::III 09 000204 F4 00000000 00000000

OFTs FTs (IAT) Hint Mame

Dword Dword Word szhAnsi

0003D60C 0003D60C 05ED VirtualAlloc

0003061 C 0003061 C 05EG VirtualProtect

0003D62E 0003D62E 02BED GetProcAddress

00030640 00030640 0307 LoadLibraryA

00030650 00030650 0461 QueryPerformanceCounter

Two intersting API functions are used:

1. VirtualAlloc

2. VirtualProtect

The VirtualAlloc function allocate memory while the VirtualProtect function changes the
protection on a region of committed pages in the virtual address space, most of time those
two functions are used by malware during the unpacking process. To make sure that our
sample is packed Let’s open the binary on Die(Detect-It-Easy).

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://github.com/horsicq/Detect-It-Easy

Offset Size Count

00000000 100 =

packed(91%)

Offset Size Entropy Status

00000000 00000400 2.75679 not packed PE Header
00000400 00032000 749175 packed Section(0][".text']
00032400 0000900 6.02595 not packed Section(1)[".rdata']
L E] 0000000 3.29659 not packed Section(2)['.data']
0003ded0 00001400 6.48266 not packed Section(3)[".reloc']

The status bar says that it's 91% packed and .text section has a high entropy, that’s a
strong indication that the malware is packed and we should unpack it for further analysis.

IDA

Now that we’re sure that our sample is packed, let’'s open itin IDA and try to find the
function which is responsible for unpacking.

.iE IDA View-A] E@] Structures . E Enums . {:E Imports . @

iE IDA View-A . E eX N- Structures . E

Ordinal Mame

GetCurrentThread|d

Search for VirtualAlloc and double click on it.

3/11

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc

‘_E IDA View-A * Structures . E Enums . EE Imports . E’ Exports .

ze, DWORD flAllocationType, DWORD flProtect)

VirtualAlloc function is used two times by the same function sub_1001AFF0 , double click
on sub_1001AFF@ and scroll down we notice that the first function called after VirtualAlloc
is sub_10022C40 , so maybe we’ve found our unpacking function. to make sure let’s open
iton Xdbg and figure out.

Unpacking

Open your X32dbg and paste and paste your sample to it.

References | ' Threads | # Handes | ¥ Trace |

«| wWide FPu

@CPU @Graph .7 Log | |l Netes | ® Breakpoints | lemory Map | [call Stack: | ‘= SEH | -é’lsmhu\s | {2 Source | >
EIFP 053134F nt

~ | 5 |2] [unlocked

G

Command: Default =

Paused [INT3 breakpoint "entry breakpoint” at <emotet. EntryPoint> (7053134F)! Time Wasted Debugging: 0:00:08:37

Place a breakpoint on VirtualAlloc and hit run.

&% Dump 1 | W Dump 2 | B4 Dump 3 | Wiy Dump 4 | @4y Dump 5 | 8 watch 1 lx=| Locals é/ Struct

Command:lbp Virtualilloc I

Paused |INT3 breakpeint "entry breakpeoint™ at <emotet.EntryPoint= (7053134F)!

xdbg will keep running untill it hit the breakpoint, after click two times on Execute till
run .

4/11

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc

B cru @Graph | | .t Log | | Motes | ® Breakpoints | 9 Memory Map I [}/ call Stack | = 5EH
EIP

3| Seript I "ﬂSymbols I <2 Source 2+ References

rtualAlloc

Check the EAX register it contain the return adress address of the allocated memory by
VirtualAlloc, right click on that value and click on Follow in Dump .

ﬁ cPU

© Gaph | _itog | [notes | @ breakponts | M8 memorymep | (O calsteck | Ssen | ol saipt | @ symbois | <7 sowce | S References | S Threads | o Handes | #F Trace |

Hide FPU

Maodify value

Follow in Dump

4 Follow in Dump
Follow in Disassembler
------- Follow in Memory Map
Copy value
Copy all registers

Highlight

C
=

Zero

Increment

Decrement

TR % [7] Unlocked
Decrease 4

Push

¢« BB BB B

Fop
Display X871

Woump3 | @loump4 | Bupumps | G wathi | brelLocals
ASCII

Command: Default =

Paused |Dump: 10000000 -> 10000000 (0x00000001 bytes) Time Wasted Debugging: 0:00:11:54

As we said earlier that the function after VirtualAlloc is responsible for unpacking, step over
it and keep your eyes on the dump window at the bottom.

5/11

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc

E CPU @ Graph | | #Log | | 1 Motes ® Breakpoints =8 Memory Map | [} Call Stack &3 SEH 52| Saript |]| Symbals

EIP 15 2AF 9 C emotet. 705 32C40

emotet.70532C40

0 emotet.dl1: $1AF30 #

B4 Dump 1 B4 Dump 2 Y Dump 3 B4 Dump 4 Wy Dump 5 T watch 1 Ix=] Locals Q/J Struct

After executing sub_10022C40 function we can finally see our unpacked malware, dump it
and save it somewhere in your machine.

6/11

&3l cru @Graph | | o Log | | 1 Notes #® Breakpoints ## Memory Map | [call

Lext: FOS2AFEA emotet.dl]: $1AFEA

|%Dump1 Wooump2 | Wpump3 | Upump4 | Wpumps | B watch1 | beelie
Address | Hex ASCIT

"""" 00 FF
o0 o0 U aaaamas e s

=R R

C

8t
85 BE E: a5
8BS Ce 85 & F 20 o .
o0 | 00 o0 00 00 0D @eeeeannnnnnnnns
00 | 4C 00 . 76 y

o0 00| ED @ ? 21 |1 0 2! oo)| - T =,

1A o0 00 o 00 [.| [Jlcocoooccon coooocoo

%0 I i

00 00| &....a... text...

I

I |
[]
[]

Command:

Right click on dump windows and Follow in memory map .

7/11

Binary "',_#@fx#mgﬁg

al

Lo

L [

L] | Copy EBreakpoints | B Memory Map | [call Stadk | =7 SF|
Follow in Memory Map

% Follow in Disassembler
Setlabel

P 4 Maodify Value Space ouskh
® Breakpoint k . ._ dword

Find Pattern... Cirl+B 0w dword prr

H Find References Ctrl+R dword ptr
ush
B Syncwith expression

@ watch DWORD ord

E.-;»; Allocate Memary dwg;'gep;::r :
£ Goto *

® Hex k

A- Text r

B Integer r

Float k

Address w4 | WybDump5 | & watch1 | [x=lLocals | 5 Strw

Disassembly
1 000000 |- A N "0 FF FF

i 1 o0 00 L EEEEEEE e s
o0 00 Ul cccocoocaoeoa

00 . .
ES :
E C

Command:

Another right click on the address of the unpacked binary then Dump memory to file .

8/11

cPu | @ Graph | | Log | [HNotes | ® Breskpoints | @ Memory Map | [} call Stack | =@ SEH | | Script | &) sy

dress | 5ize Info Content Protection | Initial

Follow in Disassembler

Follow in Dump

Dump Memory to File

Comment
Find Pattern. ..
Switch View

Allocate memary
Free memary
Add virtual module
Go to
Set Page Memory Rights
Executable code
Read-only initialized data

Memory Breakpoint Initialized data
Base relocations

Executable code

only initialized data
Initialized data
Ease relocations

mmmmmMmm i immmmMmmMmi & & 00000t emi

Now that we have our sample unpacked and ready for analysis let's open it in x32dbg .

B cru

EIP

I o~ References

@Graph I | + Log | |1 Motes | ® Breakpoints I 8 Memory Map |) Call Stack | =5 SEH | l¢2] Seript I & Symbols | <2 Source
1 = —

dword
d
d
d
d
d

dwor

dwor

It seems that our unpacked binary is missed and it should be fixed.

Fixing

To fix the unpacked binary there are several methods to do that, we will use LordPE to

automate the fixing, so all we should do is to open LordPe and click on options, then
uncheck wipe Relocation and Rebuild ImportTable options, finally click on
normal then OK .

9/11

[[Options]

FPEEditar

Drag'n'dropped files are...

: i]
gEFtIDanablﬁ alutcufn-_: Size0flmage __far the PE editor
pht: azk ftor hle locations — Cancel
Feqizter zhell extenzion ..for BreaknEnter
| ...far the Rebuilder |
T azk Viewer
. R ebuilder

Full dump: paste header from dizgk .

Full durnp: fix Header Status window

|| Full durnp: force RAw mode Crurnpfiz

|| Full durnp: rebuild image Realign file...

|| Agreement required for terminations |

|| Delete temp files for PE editar

hice

General

|| Alwayz on top YWipe Relocation

Festare last directary on startup Rebuild Import T able

Festare last main window pogition aldate

Bind Imports

Break & Enter Change ImageB ase to:

Register shell extenzion Q0400000

Drag your unpacked sample to LordPe and it will be fixed automatically.
= |E] 58

" [LordPE Deluxe] by yoda

Walidate PE image...done

Mew flesize: 2366Ch
File minimized to; 88%
Riebuilding finished.

= Rebuild Stat fizo -
‘% [Rebui us | -
a’% Starting to rebuild emotet_10000000_dlI... oK | oo
i?;. Filesize: 28000k 0o
i
P3| || Dumpfix...done oo A
4] Realigring...done >
—— 1 || Currenit filesize: 2366ChH
P4 ||File minimized to; 883

PE Editar
Break & Enter
Rebuild PE
IIhzplit
Dumper Server

Options

About
E xit

e M

L=

Finally open your fixed binary in Xx32dbg and notice that it's more readble right now.

10/11

ﬁCPU @Graph | | ol

EIP

og | | U Motes ® Breakpoints B8 Memory Map | [V call Stack | =% SEH 143 Seript | &«

20 Fo T

Reference

1. New Emotet 11/2021 - Reverse Engineering VBA Obfuscation + Unpacking

2. How to Unpack Malware with x64dbg

11/11

https://www.reverse-engineer.net/view/courses/training/329541-new-emotet-11-2021-reverse-engineering-vba-obfuscation-unpacking-emotet
https://www.varonis.com/blog/x64dbg-unpack-malware

