
1/9

Cristian Popa April 1, 2022

BERT Embeddings Part 2: A Modern ML Approach For
Detecting Malware

crowdstrike.com/blog/bert-embeddings-new-approach-for-command-line-anomaly-detection-part-2/

A novel methodology, BERT embedding, enables large-scale machine learning model
training for detecting malware
It reduces dependency on human threat analyst involvement in training machine
learning models
Bidirectional Encoder Representation from Transformers (BERT) embeddings enable
performant results in model training
CrowdStrike researchers constantly explore novel approaches to improve the
automated detection and protection capabilities of machine learning for Falcon
customers

CrowdStrike data science researchers recently explored and experimented with the use of
Bidirectional Encoder Representation from Transformers (BERT) for embedding command
lines, focusing on anomaly detection, but without detailing the model itself. Diving deeper into
that research, CrowdStrike researchers explain the reasons for using BERT for command
line representation and how to train the model and assess its performance.

https://www.crowdstrike.com/blog/bert-embeddings-new-approach-for-command-line-anomaly-detection-part-2/
https://www.crowdstrike.com/blog/bert-embeddings-new-approach-for-command-line-anomaly-detection/


2/9

The purpose of this experimental research was to leverage self-supervised deep learning
methods to obtain better representations of the string fields that show up in CrowdStrike
Falcon® telemetry. CrowdStrike constantly tests the latest advancements in the field to see
whether they fit the existing machine learning toolkit. This research ultimately demonstrates
that a deep learning approach for embedding strings of this nature (command line) is feasible
and can produce satisfactory results.

Defining Objectives

An embedding is a representation of an input, usually into a lower-dimensional space.
Although embeddings are in scope for various input types, string embeddings are a common
choice for representing textual inputs in numeric format for machine learning models. An
essential trait of embedding models is that inputs similar to each other tend to have closer
latent space representations. This similarity is a consequence of the training objective, but
researchers are often interested in lexical similarity when strings are involved.

This experiment aimed to better represent string fields encountered in a large stream of
event data. The focus was on two such fields: “command line” and “image file name.” The
first field was discussed extensively in the previous blog — it consists of an instruction that
starts a process that is then recorded as an event and sent to the CrowdStrike Security
Cloud. The second field is the name for the executable starting the process, which is a
substring of the corresponding command line. Two main factors dictated the pursuit of such
an embedding model: First, we aimed to improve the string processing in our models, and
second, we wanted to benefit from the significant developments achieved in the area of
natural language processing (NLP) in the last few years.

Building the Model

Data

The experiment started by collecting data for training the model from events related to
process creation. To ensure variety, it was collected from all of the supported platforms
(Windows, Mac, Linux) and sampled from long spans of time to ensure that the processes
are not biased by temporary events (e.g., the Log4j vulnerability).

Model Architecture

For the model architecture, BERT was the primary candidate. The end-to-end model consists
of two main components that will be discussed separately: the tokenizer and the neural
network (which is what people generally refer to when talking about BERT).

A tokenizer is a simple mapping from strings, called tokens, to numbers. This numeric
representation of the inputs is necessary because the BERT neural network, like any other
machine learning algorithm, cannot use textual data directly in its computations. The

https://www.crowdstrike.com/blog/bert-embeddings-new-approach-for-command-line-anomaly-detection/
https://www.crowdstrike.com/blog/crowdstrike-services-launches-log4j-quick-reference-guide/
https://arxiv.org/pdf/1810.04805.pdf


3/9

tokenizer’s job is to find the optimal tokens given a vocabulary size, which, in this case, was
30,000 tokens. Another advantage of using a tokenizer is that unknown strings from the
training set can still be composed out of tokens learned from other strings. This is important
because English has a well-defined set of words, while command lines can theoretically
feature any character combination. In Figure 1, there is an example of a tokenized command
line in the data set.

Figure 1. Example of a tokenized command line

The BERT model is an extensive neural network that relies on an NLP concept called “self-
attention mechanism.” The concept, introduced by Vaswani et al., 2017, has gained
significant traction in the research community, to the point where almost all modern NLP
solutions use it. To briefly explain how it works, Figure 2 shows how tokens passed through
the network pay attention to other relevant tokens in the input. BERT can compute the
attention of tokens and use it to build an understanding of the language. Another important
concept used by BERT is masked language modeling (MLM). This is the training objective
used by the network. Tokens in the input are randomly masked, and the model has to predict
the initially masked tokens.

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/pdf/1706.03762.pdf


4/9

Figure 2. The “it” token in the sentence “The animal didn’t cross the street because it was too tired” comes
into focus. The attention is supposed to make sense from a syntactic point of view and is used in machine

learning models. Source: https://jalammar.github.io/illustrated-transformer/

The MLM objective allows for self-supervised learning, meaning that researchers do not
need to explicitly label data, but instead they only need the input strings themselves. This
technique presents an advantage for cybersecurity as it removes the need to involve threat
analysts in this initial training step.

Diving deeper, there are some appropriate training steps for BERT: pre-training and fine-
tuning. First, the model is pre-trained using MLM on a large dataset consisting of command
lines and image file names. The model is then fine-tuned with a malware classification
objective, on a different dataset, for example. With this approach for pre-training, it becomes
easy to collect a large dataset from which the model will learn the representation of the data.
Hence, the second phase requires significantly fewer labeled samples in the dataset.
Learning from smaller amounts of labeled data constitutes an obvious advantage that
becomes applicable in this case. Additionally, the first step is task-agnostic, meaning that the
pre-trained model can be fine-tuned later for any task needed — malware classification,
malware family identification, anomaly detection, etc.

Experiments

After getting the model ready for training, one of the first steps is sifting through the data for a
diverse subset of samples because the tens of billions of events collected from Falcon
telemetry were too many for training BERT from scratch in a reasonable amount of time.



5/9

Small embedding models were repeatedly trained briefly to identify the samples they were
performing worse on, excluding them from the subset.

Afterward, modeling efforts mainly revolved around finding the right hyper-parameters. Focus
was placed on the performance for malware classification using a holdout set from the fine-
tuning data, as this was a good measurement of the added benefit of using the embeddings
over previous features.

The hyper-parameter that brought the most significant improvement was the change to the
maximum number of tokens that can get into the BERT model. This is relevant because
while image file name strings, which are shorter, would often fit fine into the default token
limit, command lines would not. As a result, a huge chunk of information is lost due to the
truncation of the tokens, which was intended to bring all inputs to the same size. Increasing
this limit to a calibrated value was crucial in the modeling process. The other experiments
focused on the embeddings’ size and the number of hidden layers in the neural network.
Optimal values were found for them according to the evolution of the classification metrics.
Figures 3 and 4 show the fine-tuning process and its rationale.

Figure 3. Classification performance while varying the hidden (embedding) size



6/9

Figure 4. Classification performance while varying the number of hidden layers

In the end, our experiment resulted in an embedding model whose embeddings seem on par
with the original features for two of CrowdStrike’s existing machine learning models that used
strings. These models use not only command lines or image file names for classification, but
also other fields coming from the event data, such as execution flags and start times. Results
can be observed in Figures 5 and 6.



7/9

Figure 5. Weighted* true positive rate (TPR) and false positive rate (FPR) for different versions of one of
our classification models. “Finetuned_v5” is the version using the embeddings from our latest (and best)

fine-tuned BERT model, while “v3” is an earlier version of the model.
* Note: “Weighted” means that the frequency of samples in the dataset is accounted for when computing

the metrics, as the data used is guaranteed to contain duplicates



8/9

Figure 6. TPR vs. FPR for another one of our classification models

One observation was that the fine-tuned model shows better performance, which makes
sense because it was specifically trained to separate between clean and dirty samples.

Future Research Opportunities

Future areas of research interest involve training an end-to-end neural network for
classification that incorporates BERT for the string-type features. Currently, the embeddings
are computed and used in our gradient boosted tree models. Putting everything together into
a single neural network would probably improve the efficiency of the BERT embeddings, as
they are trained along with the rest of the features. There is significant potential that the



9/9

embeddings would be better used by a deep learning algorithm than a tree-based one, since
the latter makes predictions based on higher or lower features than a trained value, while the
deep learning algorithm can process the input more freely.

CrowdStrike researchers constantly explore novel approaches to improve the efficacy and
the automated detection and protection capabilities of machine learning for customers. 

Additional Resources

Learn more about the CrowdStrike Falcon® platform by visiting the product webpage.
Learn more about CrowdStrike endpoint detection and response on the Falcon Insight
webpage.
Test CrowdStrike next-gen AV for yourself. Start your free trial of Falcon Prevent™
today.

https://www.crowdstrike.com/endpoint-security-products/falcon-platform/
https://www.crowdstrike.com/endpoint-security-products/falcon-insight-endpoint-detection-response/
https://go.crowdstrike.com/try-falcon-prevent.html

