
1/24

March 29, 2022

From the Front Lines | Hive Ransomware Deploys Novel
IPfuscation Technique To Avoid Detection

sentinelone.com/blog/hive-ransomware-deploys-novel-ipfuscation-technique/

By James Haughom, Antonis Terefos, Jim Walter, Jeff Cavanaugh, Nick Fox, and Shai
Tilias

Overview

In a recent IR engagement, our team happened upon a rather interesting packer (aka crypter
or obfuscator) that was ultimately utilized to construct and execute shellcode responsible for
downloading a Cobalt Strike Beacon. The sample at the end of this chain is not necessarily
sophisticated or particularly novel, but it does leverage an interesting obfuscation technique
that we have dubbed “IPfuscation”.

In this post, we describe this novel technique as it is used across several variants of malware.
Along with the IPfuscation technique, we have identified a number of markers which have
allowed us to pivot into additional discoveries around the actor or group behind this campaign.

https://www.sentinelone.com/blog/hive-ransomware-deploys-novel-ipfuscation-technique/


2/24

Technical Details

The samples in question are 64-bit Windows Portable Executables, each containing an
obfuscated payload used to deliver an additional implant. The obfuscated payload
masquerades itself as an array of ASCII IPv4 addresses. Each one of these IPs is passed to
the RtlIpv4StringToAddressA function, which will translate the ASCII IP string to binary. The
binary representation of all of these IPs is combined to form a blob of shellcode.

The general flow is:

1. Iterate through “IPs” (ASCII strings)
2. Translate “IPs” to binary to reveal shellcode
3. Execute shellcode either by:

Proxying execution via callback param passed to EnumUILanguagesA
Direct SYSCALLs

Using byte sequences, sequences of WinAPI calls, and some hardcoded metadata affiliated
with the malware author, we were able to identify a handful of other variants of this loader
(hashes provided below with the IOCs), one of which we have dubbed “UUIDfuscation” and
was also recently reported on by Jason Reaves. A Golang Cobalt Strike loader was also
discovered during the investigation, which had a hardcoded source code path similar to what
we have already seen with the ‘IPfuscated’ samples, suggesting that the same author may be
responsible for both.

Tools, COTS, LOLBINs and More

https://docs.microsoft.com/en-us/windows/win32/api/ip2string/nf-ip2string-rtlipv4stringtoaddressa
https://docs.microsoft.com/en-us/windows/win32/api/winnls/nf-winnls-enumuilanguagesa
https://medium.com/walmartglobaltech/cobaltstrike-uuid-stager-ca7e82f7bb64


3/24

The TTPs uncovered during the incident align with previous reporting of the Hive
Ransomware Affiliate Program, with the attackers having a preference for publicly available
Penetration Testing frameworks and tooling (see TTPs table). Like many other ransomware
groups, pre-deployment Powershell and BAT scripts are used to prepare the environment for
distribution of the ransomware, while ADFind, SharpView, and BloodHound are used for
Active Directory enumeration. Password spraying was performed with SharpHashSpray and
SharpDomainSpray, while Rubeus was used to request TGTs. Cobalt Strike remains their
implant of choice, and several different Cobalt Strike loaders were identified including:
IPfuscated loader, Golang loader, and a vanilla Beacon DLL. Finally, GPOs and Scheduled
Tasks are used to deploy digitally signed ransomware across the victim’s network.

IPfuscated Cobalt Strike Loader

Our team discovered and analyzed a 64-bit PE
(4fcc141c13a4a67e74b9f1372cfb8b722426513a) with a hardcoded PDB path matching the
project structure of a Visual Studio project.

C:\Users\Administrator\source\repos\ConsoleApplication1\x64\Release\ConsoleApplication1

This particular sample leverages the IPfuscation technique. Within the binary is what appears
to be an array of IP addresses.



4/24

Each of these “IP addresses” is passed to RtlIpv4StringToAddressA  and then written to
heap memory.



5/24

What is interesting is that these “IP addresses” are not used for network communication, but
instead represent an encoded payload. The binary representation of these IP-formatted
strings produced by RtlIpv4StringToAddressA  is actually a blob of shellcode.

For example, the first hardcoded IP-formatted string is the ASCII string “252.72.131.228”,
which has a binary representation of 0xE48348FC (big endian), and the next “IP” to be
translated is “240.232.200.0”, which has a binary representation of 0xC8E8F0. Together, they
create the below sequence of bytes.

Disassembling these “binary representations” shows the start of shellcode generated by
common pentesting frameworks.



6/24

Once the shellcode has finished being deobfuscated in this manner, the malware proxies
invocation of the shellcode by passing its address to the EnumUILanguagesA  WinAPI
function. This is achieved by supplying the shellcode address as the UILanguageEnumProc ,
which is a callback routine to be executed.

The shellcode is the common Cobalt Strike stager to download and execute Beacon. Here is
a look at the PEB traversal to find one of the modules lists, followed by the ROT13 hash being
calculated for target WinAPIs to execute.

Hell’s Gate Variant



7/24

A handful of additional samples were found with a similar sequence of functions and static
properties, including the same error message. The Hell’s Gate variant
(d83df37d263fc9201aa4d98ace9ab57efbb90922) is different from the previous sample in that
it uses Hell’s Gate (direct SYSCALLs) rather than EnumUILanguagesA  to execute the
deobfuscated shellcode. This sample’s PDB path is:

E:\Users\PC\source\repos\HellsGate+ipv4\x64\Release\HellsGate+ipv4.pdb 

In this variant, the IP-formatted strings are procedurally placed in local variables, rather than
being looped through as seen previously.

https://github.com/am0nsec/HellsGate


8/24



9/24

Once all the IP strings have been defined within the scope of this function, memory is
allocated with NtAllocateVirtualMemory  via a direct SYSCALL, and the deobfuscation
loop commences.



10/24

Following the loop, a few SYSCALLs are made to pass control flow to the deobfuscated
shellcode.

IPfuscation Variants

Among the discovered variants were three additional obfuscation methods using techniques
very similar to IPfuscation. Rather than using IPv4 addresses, the following were also found
being used to hide the payload:

IPfuscation – IPv6 addresses
UUIDfuscation – UUIDs & base64 encoded UUIDs
MACfuscation – MAC addresses

Here we can see the original IPfuscated sample versus the UUID variant being translated via
UuidFromStringA .



11/24

The UUID variant stores the obfuscated payload in the same manner as IPfuscated samples.

The MAC address variant translates the shellcode via RtlEthernetStringToAdressA  and
then uses a callback function, a parameter to EnumWindows , to pass control flow to the
shellcode. Again, the MAC addresses forming the payload are stored the same as with
previous variants.



12/24

The IPv6 variants operate almost identically to the original IPfuscated sample. The only
difference is that IPv6-style address are used, and RtlIpv6StringToAddressA  is called to
translate the string to binary data.

Golang Cobalt Strike Loader

Among other samples discovered during the incident was a Golang-compiled EXE
(3a743e2f63097aa15cec5132ad076b87a9133274) with a reference to a source code Golang
file that follows the same syntax as one of the identified IPfuscated samples.

[0x0045d2c0]> iz~go~Users 
4542 0x000d62e9 0x004d78e9 27   28   .rdata  ascii    
C:/Users/76383/tmp/JzkFF.go 



13/24

GetProcAddress  is called repeatedly, with 8 byte stack strings being used to form the
WinAPI names to be located in memory.



14/24



15/24

The shellcode is stored as a cleartext hexadecimal string in the .rdata  section.

This string is read into a buffer and translated into binary, somewhat similar to the IPfuscated
flow.



16/24



17/24

Before translation into binary:

After translation into binary:

Control flow is then passed to the shellcode, which is yet another Cobalt Strike stager
attempting to download Beacon.

Conclusion

Our incident response team is constantly intercepting early-use tactics, techniques and
artifacts, with IPfuscation just the latest such technique deployed by malware authors. Such
techniques prove that oftentimes a creative and ingenious approach can be just as effective
as a highly sophisticated and advanced one, particularly when enterprise defense is based on
security tools that rely on static signatures rather than on behavioral detection.

If you would like to learn how SentinelOne can help protect your organization regardless of
the attack vector, contact us or request a free demo.

https://www.sentinelone.com/blog/what-is-a-malware-file-signature-and-how-does-it-work/
https://www.sentinelone.com/blog/active-edr-feature-spotlight/
https://www.sentinelone.com/contact/
https://www.sentinelone.com/request-demo/


18/24

Indicators of Compromise

SHA1 Description

d83df37d263fc9201aa4d98ace9ab57efbb90922 IPfuscated Cobalt Strike stager (Hell’s
Gate variant)

49fa346b81f5470e730219e9ed8ec9db8dd3a7fa IPfuscated Cobalt Strike stager

fa8795e9a9eb5040842f616119c5ab3153ad71c8 IPfuscated Cobalt Strike stager

6b5036bd273d9bd4353905107755416e7a37c441 IPfuscated Cobalt Strike stager

8a4408e4d78851bd6ee8d0249768c4d75c5c5f48 IPfuscated Cobalt Strike stager

49fa346b81f5470e730219e9ed8ec9db8dd3a7fa IPfuscated Cobalt Strike stager

6e91cea0ec671cde7316df3d39ba6ea6464e60d9 IPfuscated Cobalt Strike stager

24c862dc2f67383719460f692722ac91a4ed5a3b IPfuscated Cobalt Strike stager

415dc50927f9cb3dcd9256aef91152bf43b59072 IPfuscated Cobalt Strike stager

2ded066d20c6d64bdaf4919d42a9ac27a8e6f174 IPfuscated Cobalt Strike stager (Hell’s
Gate variant)

27b5d056a789bcc85788dc2e0cc338ff82c57133 IPfuscated Cobalt Strike stager

SHA 256 Description

065de95947fac84003fd1fb9a74123238fdbe37d81ff4bd2bff6e9594aad6d8b UUID
variant

0809e0be008cb54964e4e7bda42a845a4c618868a1e09cb0250210125c453e65 UUID
variant

12d2d3242dab3deca29e5b31e8a8998f2a62cea29592e3d2ab952fcc61b02088 UUID
variant

130c062e45d3c35ae801eb1140cbf765f350ea91f3d884b8a77ca0059d2a3c54 UUID
variant

39629dc6dc52135cad1d9d6e70e257aa0e55bd0d12da01338306fbef9a738e6b UUID
variant

5086cc3e871cf99066421010add9d59d321d76ca5a406860497faedbb4453c28 UUID
variant

56c5403e2afe4df8e7f98fd89b0099d0e2f869386759f571de9a807538bad027 UUID
variant



19/24

60cfce921a457063569553d9d43c2618f0b1a9ab364deb7e2408a325e3af2f6f UUID
variant

6240193f7c84723278b9b5e682b0928d4faf22d222a7aa84556c8ee692b954b0 UUID
variant

6a222453b7b3725dcf5a98e746f809e02af3a1bd42215b8a0d606c7ce34b6b2b UUID
variant

6bdd253f408a09225dee60cc1d92498dac026793fdf2c5c332163c68d0b44efd UUID
variant

9c90c72367526c798815a9b8d58520704dc5e9052c41d30992a3eb13b6c3dd94 UUID
variant

9cd407ea116da2cda99f7f081c9d39de0252ecd8426e6a4c41481d9113aa523e UUID
variant

a586efbe8c627f9bb618341e5a1e1cb119a6feb7768be076d056abb21cc3db66 UUID
variant

c384021f8a68462348d89f3f7251e3483a58343577e15907b5146cbd4fa4bd53 UUID
variant

c76671a06fd6dd386af102cf2563386060f870aa8730df0b51b72e79650e5071 UUID
variant

e452371750be3b7c88804ea5320bd6a2ac0a7d2c424b53a39a2da3169e2069e9 UUID
variant

e9bb47f5587b68cd725ab4482ad7538e1a046dd41409661b60acc3e3f177e8c4 UUID
variant

e9da9b5e8ebf0b5d2ea74480e2cdbd591d82cd0bdccbdbe953a57bb5612379b0 UUID
variant

efbdb34f208faeaebf62ef11c026ff877fda4ab8ab31e99b29ff877beb4d4d2b UUID
variant

f248488eedafbeeb91a6cfcc11f022d8c476bd53083ac26180ec5833e719b844 UUID
variant

e61ecd6f2f8c4ba8c6f135505005cc867e1eea7478a1cbb1b2daf22de25f36ce MAC
Address
Variant

f07a3c6d9ec3aeae5d51638a1067dda23642f702a7ba86fc3df23f0397047f69 MAC
Address
Variant

7667d0e90b583da8c2964ba6ca2d3f44dd46b75a434dc2b467249cd16bf439a0 IPv6 Variant



20/24

75244059f912d6d35ddda061a704ef3274aaa7fae41fdea2efc149eba2b742b3 x86 IPv4
Variant

7e8dd90b84b06fabd9e5290af04c4432da86e631ab6678a8726361fb45bece58 x86 IPv4
Variant

C2 Description

103.146.179.89 Cobalt Strike server

service-5inxpk6g-1304905614.gz.apigw.tencentcs[.]com Cobalt Strike server

service-kibkxcw1-1305343709.bj.apigw.tencentcs[.]com:80 Cobalt Strike server

103.146.179.89 Cobalt Strike server

1.15.80.102 Cobalt Strike server

175.178.62.140 Cobalt Strike server

84.32.188.238 Cobalt Strike server

YARA Rules



21/24

import "pe" 

rule IPfuscatedCobaltStrike 
{ 

meta: 
 description = "IPfuscated Cobalt Strike shellcode"  
 author = "James Haughom @ SentinelLabs" 
 date = "2022-3-24" 
 hash = "49fa346b81f5470e730219e9ed8ec9db8dd3a7fa" 
 reference = "https://s1.ai/ipfuscation" 

strings: 
 /* 
  This rule will detect IPfuscated Cobalt Strike shellcode
  in PEs. 

  For example: 
   IPfuscated       | binary representation | instruction 
   ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
   "252.72.131.228" | 0xE48348FC            | CLD ... 
   "240.232.200.0"  | 0xC8E8F0              | CALL ...  
 */ 
 $ipfuscated_payload_1 = "252.72.131.228" 
 $ipfuscated_payload_2 = "240.232.200.0" 
 $ipfuscated_payload_3 = "0.0.65.81" 
 $ipfuscated_payload_4 = "65.80.82.81" 
 $ipfuscated_payload_5 = "86.72.49.210" 
 $ipfuscated_payload_6 = "101.72.139.82" 
 $ipfuscated_payload_7 = "96.72.139.82" 
 $ipfuscated_payload_8 = "24.72.139.82" 
 $ipfuscated_payload_9 = "32.72.139.114" 
 $ipfuscated_payload_10 = "80.72.15.183" 
 $ipfuscated_payload_11 = "74.74.77.49" 
 $ipfuscated_payload_12 = "201.72.49.192" 
 $ipfuscated_payload_13 = "172.60.97.124" 
 $ipfuscated_payload_14 = "2.44.32.65" 
 $ipfuscated_payload_15 = "193.201.13.65" 
 $ipfuscated_payload_16 = "1.193.226.237" 
 $ipfuscated_payload_17 = "82.65.81.72" 
 $ipfuscated_payload_18 = "139.82.32.139" 
 $ipfuscated_payload_19 = "66.60.72.1" 
 $ipfuscated_payload_20 = "208.102.129.120" 

condition: 
 // sample is a PE 
 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and 
 5 of ($ipfuscated_payload_*) 

} 

rule IPfuscationEnumUILanguages 
{ 

meta: 
 description = "IPfuscation with execution via EnumUILanguagesA" 
 author = "James Haughom @ SentinelLabs" 
 date = "2022-3-24" 
 hash = "49fa346b81f5470e730219e9ed8ec9db8dd3a7fa" 



22/24

 reference = "https://s1.ai/ipfuscation" 

strings: 
 // hardcoded error string in IPfuscated samples 
 $err_msg = "ERROR!" 

condition: 
 // sample is a PE 
 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and 
 $err_msg and 
 // IPfuscation deobfuscation 
 pe.imports("ntdll.dll", "RtlIpv4StringToAddressA") and 
 // shellcode execution 
 pe.imports ("kernel32.dll", "EnumUILanguagesA") 

} 

rule IPfuscationHellsGate 
{ 

meta: 
 description = "IPfuscation with execution via Hell's Gate" 
 author = "James Haughom @ SentinelLabs" 
 date = "2022-3-24" 
 hash = "d83df37d263fc9201aa4d98ace9ab57efbb90922" 
 reference = "https://s1.ai/ipfuscation" 

strings: 
 $err_msg = "ERROR!" 

 /* 
  Hell's Gate / direct SYSCALLs for calling system routines 

  4C 8B D1               mov     r10, rcx 
  8B 05 36 2F 00 00      mov     eax, cs:dword_140005000 
  0F 05                  syscall              
  C3                     retn 
 */ 
 $syscall = { 4C 8B D1 8B 05 ?? ?? 00 00 0F 05 C3 } 

 /* 
  SYSCALL codes are stored in global variable 

  C7 05 46 2F 00 00 00 00 00 00      mov     cs:dword_140005000, 
0 

  89 0D 40 2F 00 00                  mov     cs:dword_140005000, 
ecx 

  C3                                 retn 
 */ 
 $set_syscall_code = {C7 05 ?? ?? 00 00 00 00 00 00 89 0D ?? ?? 00 00 

C3} 

condition: 
 // sample is a PE 
 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and 
 all of them and 
 // IPfuscation deobfuscation 
 pe.imports("ntdll.dll", "RtlIpv4StringToAddressA") 



23/24

} 

rule IPfuscatedVariants 
{ 
   meta: 
    author = "@Tera0017/@SentinelOne" 
    description = "*fuscation variants" 
    date = "2022-3-28" 

hash = "2ded066d20c6d64bdaf4919d42a9ac27a8e6f174" 
reference = "https://s1.ai/ipfuscation" 

   strings: 
    // x64 Heap Create/Alloc shellcode 
     $code1 = {33 D2 48 8B [2-3] FF 15 [4] 3D 0D 00 00 C0} 
     // x64 RtlIpv4StringToAddressA to shellcode 
     $code2 = {B9 00 00 04 00 FF [9] 41 B8 00 00 10 00} 
    
   condition: 
     any of them 
} 

MITRE ATT&CK – Hive Ransomware Gang

TTP Description MITRE ID

BAT/Powershell scripts Automate pre-ransomware deployment actions T1059

Scheduled Tasks Execute the ransomware payload T1053

Cobalt Strike Primary implant / backdoor S0154

ADFind Active Directory enumeration S0552 /
T1087

SharpHashSpray Password spraying T1110.003

DomainHashSpray Password spraying T1110.003

Bloodhound/SharpHound Active Directory enumeration S0521 /
T1087

Signed Ransomware Ransomware payload is digitally signed T1587.002

Domain Policy GPO Deploy ransomware via GPO T1484

Net-GPPPassword Steal cleartext passwords from Group Policy
Preferences

T1552.006

Rubeus Request Kerberos Ticket Granting Tickets T1558

Sharpview Active Directory enumeration T1087

RDP Lateral movement via RDP T1021.001



24/24

SAM Dump Credential theft T1003.002


