
1/18

PlugX: A Talisman to Behold
trellix.com/en-us/about/newsroom/stories/threat-labs/plugx-a-talisman-to-behold.html

By Max Kersten, Marc Elias, Leandro Velasco, and Alexandre Mundo Alguacil · March 28,
2022

For over a decade, the PlugX malware has been observed internationally with different
variants found around the world. This blog covers a PlugX variant that we have named
Talisman, a name we based on comparisons with other PlugX variants, and its rather long
life since it first emerged in 2008. First, the malware’s technical details will be discussed,
after which the infrastructure, attribution, and victimology will be covered.

Executive Summary

Talisman is a newly discovered PlugX variant which follows the usual execution process by
abusing a signed and benign binary which loads a modified DLL to execute shellcode. The
shellcode is used to decrypt the PlugX malware which then serves as a backdoor with plug-
in capabilities. Unlike other versions, the malware’s internal configuration’s signature is
different, as well as other minor changes within the code.

We want to mention that a change within the PlugX malware alone does not mean a new
threat actor has emerged. The PlugX source code has allegedly circulated online already.
This also means that not all PlugX samples are necessarily tied to Chinese actors, although
it a prevalent tool in their kit. In the case of Talisman, there is more evidence which points
towards a Chinese state-backed actor than a simple change in the malware’s codebase,

https://www.trellix.com/en-us/about/newsroom/stories/threat-labs/plugx-a-talisman-to-behold.html
https://www.trellix.com/en-us/about/newsroom/stories/contributors/max-kersten.html
https://www.trellix.com/en-us/about/newsroom/stories/contributors/marc-elias.html


2/18

such as the overlaps in the used infrastructure, which is also present in Recorded Future’s
research. Based on this, Trellix attributes this campaign with medium confidence to the
Chinese state-backed RedFoxtrot group.

The victims were in South Asia in the Telecommunication and Defense sectors, and align
with China’s geopolitical interests. One such initiative is the Belt and Road Initiative, via
which China aims to establish strong social economical relationships across Europe, Asia,
and Africa via trade.

Technical details

Within the analysis of the PlugX Talisman variant, we will reference the THOR variant of
PlugX, which was discovered by Unit42, as well as an earlier version of PlugX documented
by DrWeb. These articles describe other versions of PlugX and were of help to us during the
analysis of this variant to both understand and compare the different iterations of the
malware. Talisman has some differences with other PlugX versions. In the coming sections,
we will highlight interesting segments of the malware. Below, a visual overview of the
malware’s stages is given.

Figure 1. Talisman PlugX execution flow
Stage 1 – The signed and benign executable

Filename SNAC.EXE

SHA-1 dc40970a3c8f03866e0b700460d3b1f7afa6a433

SHA-256 c09ff32519f112674bd5f4b1687feadf18844c5423e6f28df8be50eb9503e606

MD-5 8e886df3cb6160188f9748f14f249063

The first stage of the malware is a benign executable which is used to evade the prying eyes
of security products as valid signatures often help to indicate the trustworthiness of a binary.
The signed executables in this campaign have been created by security companies. The
sole purpose of the first stage is to load a DLL which has been modified by the attacker.

https://go.recordedfuture.com/hubfs/reports/cta-2021-0616.pdf
https://unit42.paloaltonetworks.com/thor-plugx-variant/
https://vms.drweb.com/virus/?i=21512304


3/18

Sideloading a DLL is a commonly seen technique in various PlugX variants, as is also
described on the respective MITRE ATT&CK page. Lastly, a third binary file, containing the
encrypted Talisman payload, is decrypted by the DLL to complete the full chain of execution.

In the sample we are analyzing, the legitimate executable has the name SNAC.exe, the
Talisman DLL Loader is named WGXMAN.DLL, and the encrypted and compressed
Talisman payload is named SNAC.LOG.

 Figure 2.

Talisman execution files
Most Talisman PlugX samples we analyzed consist of three-file long execution chains
abusing the DLL sideloading technique, which is consistent with the tactics, techniques, and
procedures of Chinese state-sponsored threat actors that use this type of execution to
launch their malware to evade detection by security solutions.

The table below lists the different observed filenames for the legitimate executables, the
Talisman DLL loader and the encrypted Talisman in the analyzed samples.

Legitimate executable Talisman DLL Loader Encrypted Talisman

SNAC.EXE WGXMAN.DLL SNAC.LOG

RasTls.exe RasTls.dll RasTls.dll.res

msvsct.exe TmDbgLog.dll TmDbgLog.dll.obj

msrers.exe TmDbgLog.dll TmDbgLog.dll.tsc

In addition to the filenames, we detected another type of execution chain consisting of a self-
extracting SFX RAR file with the name “sys.exe” that drops the three related RasTls files to
disk and executes them.

Stage 2 – The modified DLL

Filename WGXMAN.DLL

SHA-1 ef3e558ecb313a74eeafca3f99b7d4e038e11516

SHA-256 1c0cf69bce6fb6ec59be3044d35d3a130acddbbf9288d7bc58b7bb87c0a4fb97

https://attack.mitre.org/techniques/T1574/002/


4/18

MD-5 b4f12a7be68d71f9645b789ccdc20561

The DLL is loaded by the benign executable, as it normally would. In this case, the DLL has
only a single purpose: execute shellcode to decrypt a fake log file. The shellcode is called in
the “DllMain” function the moment the DLL is attached to the executable. Once decrypted, a
new PE file is uncovered, which is PlugX’ main component, to which the execution is then
transferred.

The configuration decryption routine that is used within PlugX’ modified DLL to decrypt
Talisman differs from both aforementioned samples. The decryption routine is a piece of
shellcode which can be launched as-is, as it resolves all the required functions before using
them. The decryption logic differs as the used decryption constants have been altered, which
can be seen in the screenshot below.

 Figure 3. The decryption routine to decrypt Talisman

Contrary to the other samples, the shellcode’s decryption loop contains 5 sleep calls, which
slows the decryption down, albeit barely noticeably. The decrypted buffer is then
decompressed using “RtlDecompressBuffer”, after which the PE module is accessible in-



5/18

memory.

Filename SNAC.LOG

SHA-1 2294ecbbb065c517bd0e01f3f01aabd0a0402f5a

SHA-256 6dc98a3c771f9f20d099e2d64995564dd083be9ac6ed9586a6e57c20ebd4176c

MD-5 60cb70545fbe3c96a0f82eeb54940553

Filename - (decrypted and decompressed SNAC.LOG)

SHA-1 80e5fd86127de526be75ef42ebc390fb0d559791

SHA-256 344fc6c3211e169593ab1345a5cfa9bcb46a4604fe61ab212c9316c0d72b0865

MD-5 c6c6162cca729c4da879879b126d27c0

This section will deep dive into the used obfuscation techniques, briefly cover the execution
flow, and provide insight into the used decryption routines, as well as the internally used
structures within the malware.

Obfuscation techniques

The used obfuscation techniques attempt to make the analysis harder, but one can quite
easily deobfuscate the sample. The used Windows API functions are loaded dynamically,
based on the CRC32 hash of the function name. Note that the name’s terminating null byte
must be included when hashing the function name.

The image below shows a wrapper function for WSAIoctl, which is resolved based on the
given hash, as can be seen in the third function argument. Additionally, the second argument
is a handle to the module which contains the given function. It returns a pointer to the
requested function, which can then be invoked as a function.

Figure 4. Dynamic function resolving based on API hashing, as seen within Talisman



6/18

Secondly, some of the internally used strings are encrypted, but not all. The string encryption
is based on simple XOR cipher, where the encrypted string is first created on the stack. The
characters of the encrypted string are then decrypted and stored at the location of the
encrypted character. Once the decryption loop has finished, the decrypted string will be
stored on the stack. The image below shows the decryption of a string. Note that both ascii
and wide strings are used within the program, which can cause some confusion when
decrypting the strings with the wrong encoding.

Figure 5. Stack strings, as seen within Talisman
The qmemcpy function is an assumption that is made by IDA, since the assembly view
contains mov instructions for the complete encrypted string. The loop that follows uses
addition, bitwise exclusive or, and subtraction operators to decrypt the string, one byte at a
time. The string decryption keys are the same for all encrypted strings within the binary. Note
that not all strings within the sample are encrypted.

PlugX execution flow

Upon executing, the main function will resolve some functions, as these are used later.
Additionally, the malware adjusts the SeDebugPrivilege and SeTcbPrivilege tokens of its own
process. These two tokens ensure that the malware can, respectively, debug processes
which aren’t owned by the current process’ owner, and the malware can create access
tokens as if they are made by any user. Both instances allow the malware to act as the
SYSTEM user, allowing free roam around the machine. The malware then creates its main
thread, which is named “bootProc”.

The screenshot below shows the pseudo code of the token adjustment, and the creation of
the main thread. Note the plaintext “bootProc” string, as well as the token names, are prime
examples to show that not all strings within the sample are encrypted.



7/18

Figure 6. Set-up prior to the main thread creation within Talisman
The first noteworthy action the main thread performs, is the unloading of the modified DLL
from memory, minimising the amount of malicious artefacts in-memory. The rest of the
malware’s execution is in-line with other PlugX variants’ behaviour, one example being the
number of command-line arguments which decide the persistence method, as well as the
persistence methods themselves: varying from the creation of a key in the register’s start-up
folder, the creation of a scheduled task, or the creation of a service.

Additionally, the malware connects with the command-and-control server, as is stored in the
internal configuration structure. The usage of plug-ins is possible, much like other PlugX
variants, if the correct signature is present in the plug-in. The following sections will highlight
interesting segments of the sample.

Internal structures

A piece of shellcode is used to decrypt Talisman, a pointer to which is stored within a custom
structure within the binary. The shellcode resolves all functions it requires and handles the
decryption and the decompression of the given data blob. Additionally, the MZ-header and
PE-header are verified using the offsets of 0 and 0x4550 respectively, which correspond to
fields named e_magic and e_lfanew. The entry point of the newly decrypted PE file is stored
in the custom structure as well. The image below shows the checks and structure field
assignments in the pseudocode overview.



8/18

Figure 7. Internal configuration allocation
Our findings regarding the custom structure differ when comparing them to the analysis of
DrWeb. Since the sample where DrWeb refers to is unavailable, we could not compare the
two samples. In 2014, Takahiro Haruyama and Hiroshi Suzuki presented “I Know You Want
Me - Unplugging PlugX” at Black Hat Asia. On slide 10, one can see the shellarg structure
matches our findings. The image below shows DrWeb’s version of the structure, as well as
the version that is found within Talisman.

 Figure 8. Two versions of the internal structure which

is used when loading Talisman

https://twitter.com/cci_forensics
https://twitter.com/herosi_t
https://www.blackhat.com/docs/asia-14/materials/Haruyama/Asia-14-Haruyama-I-Know-You-Want-Me-Unplugging-PlugX.pdf


9/18

Within the custom structure, the signature field often corresponds to PLUG. In other variants,
a different value is used, such as the THOR version that Unit42 wrote about. The Talisman
variant uses the constant value 0xCF455089 as a signature, which decodes to the Chinese
characters “䗏襐” using the UTF16-LE encoding and translates to “crotch” in English. Other
versions are named based on their signature but given Talisman’s rude signature word we
opted for a different name.

Config decryption

Before decrypting the configuration, the malware will check for the presence of the Talisman
signature and ensure that the configuration length matches. In the observed Talisman
variants, the configuration size equals 0x1924 bytes, as passed by the “shellarg_talisman”
structure, which is located at the start of the binary.

 Figure 9. The length

and signature check of the config
If those checks are met, Talisman will call the decryption routine to decrypt the configuration
with the well-known PlugX algorithm, as is shown in the image below.

 Figure 10. The decryption routine

The encrypted configuration is fetched from “SNAC.LOG”, which is decrypted by the second
stage DLL, rather than the Talisman PlugX binary. This is to ensure that the full execution
chain (the benign executable, the modified DLL, and the encrypted SNAC.LOG file) are
executed. If this is not the case, the malware will crash.

https://unit42.paloaltonetworks.com/thor-plugx-variant/


10/18

The Talisman PlugX configuration has a size of 0x1924 bytes and contains all the necessary
values and information to properly run the executable. The following fields are contained in
the Talisman configuration: a list of control panels (i.e., freewula.strangled.net), the target
process that will inject (i.e., %SystemRoot%\system32\nslookup.exe), the malware home
directory (i.e., %ALLUSERSPROFILE%\SymantecSNAC), the persist name (i.e.,
SymantecSNAC), the service display name (i.e., SymantecSNAC), the campaign id (i.e.,
TEST) and the mutex name (i.e., Global\Restart0).

Figure 11. Talisman configuration
The aforementioned config fields are very similar as the ones reported in the analysis
performed by DrWeb. Analyzing some of the different Talisman recovered configurations, we
observed the following embedded campaign ids:

TEST
RT
aop-1

We don’t exactly know how the “campaign_id” field is used by the actors, but we presume it
may be used to identify the victims, or the malware version in their operations.

Persistence

https://vms.drweb-av.es/virus/?i=21512304


11/18

Talisman has, much like the original PlugX version, several ways of persisting itself.
Depending on the number of command-line arguments, and the internal configuration, the
sample may opt to not persist using one of the following methods:

No persistence
A scheduled task
An auto-starting service

Note that the service is only created if administrative permissions are available to the
sample. If this is not the case, the auto-run registry key is created instead.

Plug-ins

Talisman has, much like other PlugX variants, the ability to use plug-ins. Some of these are
embedded by default, as also described by the United States’ CISA: Disk, Nethood, Netstat,
Option, PortMap, RegEdit, Service, Shell, SQL, and Telnet. The plug-in names are relatively
self-explanatory, as their name indicates the type of activities that can be performed with
them. The screenshot below shows the first seven of the embedded plug-ins, as listed
above.

Figure 12. A list of embedded plug-ins

https://www.cisa.gov/uscert/ncas/alerts/TA17-117A


12/18

Often, the third argument of the plug-in’s function (named “FunctionN” in the screenshot
above, where “N” is a number) indicates the date of the plugin’s creation when viewed as a
hexadecimal value. This holds true in Talisman’s case as well, albeit with a minor change:
the digits of the year are inverted per byte. As an example, the “Service” plug-in’s date
equals “0x81020315”. The first two bytes are “81 02”, which equal “20 18” when inverted per
byte, marking 2018 as a year. The specific date for this plugin would be 3 March 2018. The
table below provides the dates for all embedded plug-ins.

Plug-in Date (dd-mm-yyyy)

Disk 25-03-2018

Nethood 13-02-2018

Netstat 15-02-2018

Option 28-01-2018

PortMap 25-03-2018

RegEdit 15-03-2018

Service 17-01-2018

Shell 05-03-2018

SQL 23-03-2018

Telnet 25-02-2018

A small change like this can indicate that the actor has access to the source code of the
malware, rather than a builder with an executable stub, as these generally do not provide the
option for such granular changes.

Infrastructure

During our research we analysed three different Talisman PlugX samples, from which we
extracted the command-and-control servers. This allowed us to cluster the actors’
infrastructure. We found that one of the samples (SHA-256:
6dc98a3c771f9f20d099e2d64995564dd083be9ac6ed9586a6e57c20ebd4176c) connects to
“dhsg123[.]jkub[.]com” as the command-and-control domain. This overlaps with the
RedFoxtrot group, on which Recorded Future already reported.

Moreover, in the sample identified by the SHA256 hash
fdada5ba799bd9f5270b218cfad543d99fde3eb7898fd9e3ee79603b643b3c48, the command-
and-control domain is “final[.]staticd[.]dynamic-dns[.]net”, which resolved to
158[.]247[.]204[.]191. Pivoting on that IP, we identified two PCShare samples communicating

https://www.recordedfuture.com/chinese-apt-groups-target-afghan-telecommunications-firm/


13/18

to that IP, both of which use the same injection method into the Remote Desktop shared
clipboard (RDPclip.exe). PCShare is an open-source backdoor, which has been leveraged
by Chinese actors, as documented by BlackBerry. Additionally, the same mutex (being
“78de65b0701f3c9238a37”) is used as the ones reported by Recorded Future.

Figure 13. Talisman PlugX and PCShare connection to RedFoxtrot infrastructure
One interesting note on the TTPs employed by the actors is that unused, parked, or
decommissioned domains are set to resolve to localhost (127.0.0.1), or public services such
as Google (8.8.8.8) or Cloudflare (1.1.1.11, note that the “11” at the end is not a typo).

Figure 14. Historical resolutions of Talisman command and control domain
All the domains we’ve detected are using Dynamic DNS providers. The main reason to use a
dynamic DNS provider is to quickly and easily change the IP address where the domain
resolves. An additional advantage for the actor is the lack of WHOIS contact data regarding
dynamic DNS subdomains, thus providing operational security. The main providers that the
actors used to register the domains are Afraid FreeDNS, ChangeIP, and Dynu.

https://blogs.blackberry.com/en/2019/09/pcshare-backdoor-attacks-targeting-windows-users-with-fakenarrator-malware
https://go.recordedfuture.com/hubfs/reports/cta-2021-0616.pdf


14/18

Interestingly, the vast majority of the threat actors’ infrastructure was hosted on virtual private
servers of Choopa/Vultr company (AS 20473 - AS-CHOOPA) although we’ve seen some
command-and-control servers hosted on Digital Ocean’s infrastructure (AS 14061 -
DIGITALOCEAN-ASN).

We are sharing the full list of indicators of compromise regarding the Talisman PlugX
command and control servers and the infrastructure of the actor in Appendix A of this blog.

Attribution & Victimology

We have observed the Talisman malware in a campaign which targets the
telecommunication and defense sectors in South Asia. Moreover, the targets line up with the
Chinese efforts to protect the Belt and Road Initiative, a program that aims to establish
strong socioeconomically relationships across Europe, Asia, and Africa.

The South Asian region is of strategic interest for China for various reasons. Firstly, the
stability in South Asia is a global concern, making it a logical focus area for all superpowers,
including China. Secondly, companies in the telecommunication and defense sectors provide
unique insights for attackers and are often targeted. Thirdly, given the military presence of
multiple superpowers in the region, and the geographic location in relation to China, this area
can be considered a priority for Chinese sponsored groups.

PlugX has been associated with various Chinese actors in recent years. This fact raises the
question if the malware’s code base is shared among different Chinese state-backed groups.
On the other hand, the alleged leak of the PlugX v1 builder, as reported by Airbus in 2015,
indicates that not all occurrences of PlugX are necessarily tied to Chinese actors.

However, based on our analysis of the infrastructure overlaps with Recorded Future’s related
research, we assess with medium confidence that the Talisman PlugX variant discussed in
this blog is used by RedFoxtrot/Nomad Panda, a Chinese state sponsored actor. The
victimology is in-line with the targets of this group as well. We have no evidence that this
variant is exclusively used by this threat actor, instead we believe that Talisman could be
shared among different Chinese groups to carry out their operations.

Conclusion

In this blog we have analysed the different steps the infamous PlugX RAT follows to start
execution and avoid detection. Moreover, we highlighted several interesting characteristics of
a new variant that we dubbed Talisman. During the technical analysis, we extracted various
network artifacts that allowed us to not only find new samples, but also analyse the
infrastructure overlap with a known Chinese state-backed group. This information, together
with the analysis of the victims where we observed this PlugX variant, allowed us to attribute
this campaign with medium confidence to the RedFoxtrot APT group, which is otherwise
known as Nomad Panda.

http://english.www.gov.cn/archive/publications/2015/03/30/content_281475080249035.htm
https://airbus-cyber-security.com/latest-changes-plugx/
https://go.recordedfuture.com/hubfs/reports/cta-2021-0616.pdf


15/18

Appendix A – Indicators of compromise

Talisman PlugX All execution files

e71d355dec64cbf8f02a754bf0585437ce48f7b68108cb642fb202393cd1ef90

0a00204517283c9a8d1e2d1a8743249c14de0edcec4a8292500083437735663c

45c944889a482ae2e0e0a8e260c3be737cb612c8804164badef61e8a8713b92f

f6b939dcc97c1c43f1c616174f936b6ef19c5ccc872a1a0ef14f2989cf11b02b

Talisman PlugX Loader

1c0cf69bce6fb6ec59be3044d35d3a130acddbbf9288d7bc58b7bb87c0a4fb97

ad48650c6ab73e2f94b706e28a1b17b2ff1af1864380edc79642df3a47e579bb

6cd5079a69d9a68029e37f2680f44b7ba71c2b1eecf4894c2a8b293d5f768f10

0468005682c814e7a5f07f3554e9fadbb2d2ba7527dcaee9a1a456f244c49ddb

Talisman PlugX Encrypted Payloads

a072133a68891a37076cd1eaf1abb1b0bf9443488d4c6b9530e490f246008dba

6dc98a3c771f9f20d099e2d64995564dd083be9ac6ed9586a6e57c20ebd4176c

fdada5ba799bd9f5270b218cfad543d99fde3eb7898fd9e3ee79603b643b3c48

37b3fb9aa12277f355bbb334c82b41e4155836cf3a1b83e543ce53da9d429e2f

fe18adaec076ffce63da6a2a024ce99b8a55bc40a1f06ed556e0997ba6b6d716

3c5d08f20a7bd04b1e6866344af59bec2152ec3542f2eae0c7925555e670676e

Talisman PlugX Encrypted Configuration

f44ede464f752ea3aa3595f8137945a4dee7298c8155c39f366aad05b125ac8b

PCShare

3f6102bd9add588b4df9b1523e40bb124af36a729037b8c3f2261563e4fa4be9

785ac72b10fd9cf98b5e2a40dc607e1ff735fcd8192bf71747755c963c764e2d

Mutex



16/18

Global\ReStart0

Global\DelSelf(00000000) (where the zeros are the process ID in hexadecimal format,
prepended with zeros to ensure 8 digits are used)

PDB

c:\bld_area\SESAgent70\snac_build\bin.ira\WGXMAN.pdb

Domains

freewula.strangled[.]net

szuunet.strangled[.]net

dhsg123.jkub[.]com

final.staticd.dynamic-dns[.]net

oprblemoyo.kozow[.]com

asd.powergame.0077.x24hr[.]com

w.asd3.as.amazon-corp.wikaba[.]com

randomanalyze.freetcp[.]com

darkpapa.chickenkiller[.]com

miche.justdied[.]com

Domains

209[.]97[.]166[.]143

149[.]28[.]139[.]86

159[.]65[.]152[.]7

143[.]110[.]242[.]139

158[.]247[.]204[.]191

143[.]110[.]250[.]149

202[.]182[.]111[.]249

207[.]148[.]119[.]147



17/18

149[.]28[.]128[.]117

159[.]65[.]147[.]83

143[.]110[.]241[.]54

157[.]245[.]111[.]30

207[.]148[.]64[.]239

45[.]76[.]188[.]118

45[.]77[.]16[.]91

Appendix B – MITRE ATT&CK Techniques

Within this campaign, we have observed the following MITRE ATT&CK techniques.

T1071 Application Layer
Protocol

HTTP/DNS requests are used in the C&C traffic

T1059 Command and
Scripting Interpreter

A reverse shell can be made by PlugX

T1543 Create or Modify
System Process

One persistence option is a system service

T1140 Deobfuscate/Decode
Files or Information

The API hashing and encrypted stack strings are
obfuscation types. The decrypted Talisman payload is
decompressed before it is used

T1574 Hijack Execution
Flow

The sideloading of the described DLL

T1056 Input Capture Keylogging capabilities

T1036 Masquerading The registered task/service pretends to be benign by
name

T1106 Modify Registry The runkey which is made when persisting via the registry

T1106 Native API Windows API functions are called directly

T1095 Non-Application
Layer Protocol

PlugX can work directly with TCP/UDP packets

T1057 Process Discovery Iterates over all processes

T1012 Query Registry Queries the registry to check for values



18/18

T1113 Screen Capture Can capture the screen of the victim

T1049 System Network
Connections
Discovery

Possible via the embedded “netstat” module


