
1/80

Betabot in the Rearview Mirror
krabsonsecurity.com/2022/03/28/betabot-in-the-rearview-mirror/

AKA Alpha reverse engineer vs Betabot

Betabot is a malware that by now should be familiar to most, if only in name. Initially
developed in 2013, the last version, 1.8.0.11, was released around 2015-2016 and a crack
was made around September 2016 which eventually became public. Rumors of a 1.9 version
were heard of, however no binaries were ever seen that corroborated this, so it is safe to say
that development has ceased completely since then. Despite this lack of updates, Betabot is
still widely used – a recent Kaspersky report suggests that it accounts for 3.5% of their
banking malware detections in 2020, up from 2019’s 2.4%. Comprehensive deep dives into
the malware is lacking – the closest thing to this is the excellent 2013 analysis by Zhongchun
Huo – and as such this series will aim to provide such a comprehensive overview covering
everything notable that is in the binary.

In this post, we’ll be analyzing a cracked 1.8.0.11 binary, which is also known as “Neurevt”
due to the string being present in the binary. What is great about this crack is that unlike a lot
of cracks where integrity checks and anti-RE code are either entirely removed or
circumvented by patching deeper inside the binary, the reverse engineer has kept them
entirely intact and generated the correct checksums instead, meaning that the binary we get
from the crack is effectively identical to what the original malware author would’ve given us.
There are at least 10 different integrity checks for the config spread throughout the binary – if
any of these fails, the bot will not function properly. In addition, this is the main crack that is
floating around, so virtually all Betabot binaries that are observed in the wild will be identical
to this (with the exception of configuration values changing of course). Another implication of
analyzing this binary is that the specific protocol version (Betabot has had several
incremental protocol updates throughout its history) is version 1.8.0.6 for the response, and
1.8.0.5 for the bot request. This should not matter much at the end of the day however – as
there are no other relevant copies of Betabot available.

We will start out with the general methodology of reverse engineering Betabot and the basic
building blocks of the malware, and then start looking at the most important parts of Betabot.

The first layer

We first start with the initial Betabot binary, which is a loader of sorts. The first layer is a fairly
typical packer. It sets an exception handler to relaunch itself upon a crash, and also detects
debuggers through the PEB.

https://krabsonsecurity.com/2022/03/28/betabot-in-the-rearview-mirror/
https://securelist.com/financial-cyberthreats-in-2020/101638/
https://www.virusbulletin.com/virusbulletin/2013/11/neurevt-bot-analysis

2/80

The packer then xors an encrypted buffer and decompresses it using aplib, before finally
mapping and executing it. The mapping is a bit special as the PE header at the beginning of
the buffer is fake, while the real PE header is semi-custom and encrypted.

3/80

The inner payload

In order to analyze this payload, I simply dumped it directly from memory at the OEP to avoid
dealing with the PE header issues and then used fasm to generate a PE file that would allow
me to analyze the dump in IDA. The simple FASM template is included in the appendix.
From this point on, all analysis is done statically using IDA Pro.

Entrypoint(s) and import handling

The payload has 3 entrypoints, a primary one and two others that are executed by the
injector for other functionalities (I believe it is for the botscript loader and the ring3 kit, which
is discussed in the later section). All entrypoints call the same common-entrypoint function,

4/80

however they differ in that they store their own address to a variable that is used to
determine which entrypoint was called, in addition to setting two other flags to indicate to
other functions which entrypoint was used.

One of the things the common entrypoint does is initializing the imports, which are stored in a
global structure. This structure is initialized from a table of hashes (which I named
ImportHashTable) which takes the following form.

Hash, apiNameLen and indexDll should be fairly self-evident, however ptrStore is a very
strange entry – it points to members in another structure (which I named
ImportTableRegular) that receives the final pointer. This structure is simply a bunch of
pointers to imported APIs.

DLLs are loaded from a similar struct which is stored in an array – and then APIs are loaded
from a custom hash which combines the DLL name and API name together.

5/80

6/80

The most interesting part is in how Betabot does not just load the pointers for some APIs – it
also creates a table of thunks for them. The first thunk for LdrGetProcedureAddress is a
simple push-ret stub and is not stored in the global thunk region. For all other thunked
functions, the thunk is placed in the global thunk region and has a small structure appended
marked with the magic value (0xF820AB06) containing the original pointer. The thunk itself
depends on the kind of function – if the function is a service function (for example a syscall
stub, or a thunk itself), it is copied in its entirety to the new thunk region. If the function
appears hooked, a special thunk stub is used instead.

7/80

Service functions are directly copied

8/80

Thunking of hooked functions

Code for retrieving the original pointer of a thunked function pointer
Code for automatic handling of the imports will be attached in the appendix after it is cleaned
up.

9/80

After initializing the import table, Betabot creates the registry key
“HKCU\\Software\\AppDataLow\\Software\\MyMailClient”, which is used to track the crash
count (more on this later).

Thread manager

Betabot has a slot-based system for managing its threads. This thread tracker supports
tracking either 256 or 45 threads depending on whether the current process is Betabot’s
main process or not.

As we can see, there are either 45 or 256 slots available in the thread tracker. The first 31
(starting from slot 0) are reserved for special usage, slot 31 and 32 are markers indicating
that the thread is a “free” thread without a hardcoded index, and will be dynamically allocated
a space starting from slot 34.

10/80

When Betabot creates a new thread, it fakes the thread starting address as either being in
Kernel32 or being in Ntdll. It chooses the address as follows.

11/80

To fake the thread start address, it creates the thread suspended at the address, and then
change the Eax register to a custom stub which will receive the threadInfo structure and do
the final processing to call the desired function. This works because the thread is still in
BaseThreadInitThunk and hasn’t called the target function yet – it will do so by reading Eax
which contains the new thread’s function.

The new stub it is set to a function I called EaxProc, which first hides itself from debuggers
by using NtSetInformationThread, and then finally register itself in the thread tracker
structure.

12/80

13/80

Back to the creator thread, it waits for it for 2 seconds and then sets the appropriate ACL if
requested and then returns.

Registry manager

Betabot has a two-level registry structure that uses a pseudorandom algorithm to generate
registry names from seed values. A value is referred to by two strings, its group and
subidentifier. Known groups are CS1 and CG1. The registry path is identified as follow
(where str1 is the group ID):

14/80

The registry value name is generated from the subidentifier as follow:

The appendix contains information on known subidentifiers and their meanings.

Anti-analysis

15/80

Betabot employs several methods for the detection of virtual machines, sandboxes and
debuggers. Detection of sandboxes and debuggers result in the bot artificially
crashing/exiting, whereas VM detections are stored in some variables and do not result in a
crash – however it will result in behaviors being modified in some specific code paths.

Several antidebug tricks are also littered throughout regular functions – for example the
following detection and crash appears in the middle of the initialization of the Dynamic
Context structure.

VM detection is done as follows.

16/80

17/80

There also appears to be a bug in the isVirtualMachine routine – the result of isInVM is
discarded. Regardless, if a VM is detected, it sets 2 variables and the bot attribute flag for
VMs.

In addition to this, Betabot also detects the presence of Ollydbg, Regmon, ImmunityDbg,
Rohitab’s API Monitor, Procmon, IDA Pro. It also checks whether the disk contains the string
VMWare or VBox.

18/80

19/80

It also tries to see whether its parent process is suspicious, and logs the information found
inside the dynamicCTX and registry.

20/80

AV handling

Betabot detects AVs and modifies its behaviors based on what AV is installed. In addition to
this, it also is capable of attempting to kill AV solutions. To detect AVs, Betabot has several
signature packs with the format below, which are used to search in various places such as
services, Run key entries, and SOFTWARE registry keys.

21/80

Betabot is also capable of terminating AVs. The orchestrators’ logic is quite simple and
repetitive.

22/80

To see how it attacks an AV solution, let’s look at ESET.

23/80

Here, we see that it tries to block the AV executables from launching using the IFEO key. It
does not do so from its own context, instead it spawns a new process and injects into it to
perform the registry operation from there. Some AVs do have a custom process that gets
spawned and injected to (this is specifiable in the regWriteInjectedCall) but by default it is
regedit.

24/80

If the attempt to set the IFEO key fails, Betabot attempts to prevent the executable from
launching by creating a manifest/config file for it that contains invalid content. How it does
this is most interesting: it creates a pagefile there, which would get filled with random (and
thus invalid) data.

25/80

This method originated probably from KernelMode.info in 2012. Interestingly enough – I don’t
think this idea has gained much prominence since then, as this is the first that I’ve seen it in
practice or mentioned anywhere at all.

LPE and UAC bypass

Betabot employs 2 CVEs as well as several other tricks to gain administrator privilege. The
first thing we will be discussing are the LPEs. Currently, there are only 2 LPEs available,
however the exploit orchestrator is designed in a module-based fashion so that more LPEs
can be added with little code change.

https://www.kernelmode.info/forum/viewtopic4b8c.html?t=1926

26/80

As we can see, Betabot checks for the presence of the KB that patches the exploit and the
OS version checked prior to exploitation. The two exploited vulnerabilities are CVE-2015-
1701 (KB3045171) and CVE-2015-0003 (KB3013455), and both are only exploited on 32-bit
machines. The first is exploited on Windows 7 and Vista whereas the second is exploited
only on Windows 7. The KB check is done as follows.

27/80

For both exploits, Betabot retrieves the base address of Ntoskrnl by using
NtQuerySystemInformation with SystemModuleInformation.

28/80

The goal for both are to eventually be able to replace the current process’s token with a
token from either explorer.exe or printui.exe (which would be launched as admin using
ShellExecute with runas), however in practice the code path for using printui is never
reached so the token is always stolen from explorer.

29/80

Both exploits are public, ancient and well documented so I will not go into details about how
they each function here. However, an interesting little detail that I discovered while reversing
this exploit is that back in Windows 7, one is able to allocate memory at the address 0, which
is then used to exploit the null pointer dereference vulnerability in CVE-2015-0003. This is
done by passing a value between 1 and 0x1000 (page size) as the base address to
NtAllocateVirtualMemory.

For gaining administrator privileges, Betabot also has some other tricks, some interesting
and some less so. The first simply tries to force the user to accept the administrator prompt
by spamming it while faking the executed file as cmd.exe with some custom texts.

30/80

I wish I could fix my issues so easily
The second abuses the ISecurityEditor interface to overwrite eudcedit.exe’s Image File
Execution Options with the path to the current module. The ISecurityEditor interface did not
have proper security checks, allowing an unprivileged user to modify the ACL of an object
that they should not have access to. This was fixed on Windows 10 build 10147.

31/80

32/80

If this operation is successful, Betabot will attempt to launch eudcedit.exe, the debugger for
which is now hijacked to be the Betabot payload.

33/80

USB Spreader

The USB spreader runs as a Betabot managed thread if the feature is enabled in the C2. It
uses RegisterDeviceNotificationA to register a notification whenever a new drive is inserted.

34/80

35/80

Upon receiving a window callback, Betabot ensures that the message is one for a new
volume being inserted, and ensures that it can get the drive letter for the drive.

Then, it checks whether the drive was already infected or not. This is done by checking for
the presence of a file called usb20.sys which Betabot will create as Hidden + Read-Only
after the infection process has completed.

After this, the betabot binary is copied to Drive:\\pp.exe, and files on the drive are replaced
with malicious .lnk files that launch betabot along with the original files.

36/80

37/80

If a file has been successfully replaced, the usb20.sys marker file is created.

Later on, if this shortcut is executed, Betabot is able to tell that it was spreaded like this by
checking whether its drive is removable.

38/80

Persistence

Betabot has persistence for both its file and process. Process protection is achieved via a
Ring3 userkit that filters process access, as well as a watchdog that monitors both the file
and process.

39/80

40/80

41/80

42/80

Crash handling

43/80

Early in the execution flow, Betabot registers an exception handler. Interestingly enough, this
is used not for anti-debugging purposes but quite the opposite – it is used to help the
developer debug issues and to increase stability.

If the exception handler is ever called, it first logs this in the registry in the CD1\ECC values.

44/80

Then, it writes the crash count to the MyMailClient registry key, or increments it if it already
exists.

Finally, if there is less than 24 crashes logged, it’ll relaunch itself with the /exc parameter
corresponding to the number of retries, and then terminates itself.

45/80

Hooking engine

Betabot features an impressive ring-3 system wide hooking mechanism for persistence. As
described by Zhongchun Huo, it utilizes TLS slots to detect its own threads where hooking
behavior should not be applied. There are several “classes” of hooks, which I will detail
below.

The first class of hooks is defensive hooks, meant to prevent access to files/registry keys
that are deemed protected by Betabot. Generally speaking, they take the following form:

46/80

47/80

The second class of hooks are hooks designed to sniff information for the stealer. The first
example of this are the hooks placed inside Putty’s process.

Hooks being applied

48/80

Data being saved temporally

49/80

Data finally being queued for sending via IPC to main process in savePuttyLog for sending to
the C2 server
There are also hooks for NtDeviceIoControl, PR_Write, EncryptMessage and SSL_Write.

50/80

The hook for NtDeviceIoControl is extremely fascinating, it is designed to intercept
operations to the AFD device to filter unencrypted traffic directly. Major filtered operations are
AFD_CONNECT where the hostname is checked against Betabots’ internal blacklist, and
AFD_SEND where the buffer is scanned and sniffed for passwords. This is also where the
mysterious strings “neurevt” comes into play 😉

As we can see, it searches each packet inside the AFD_SEND request for usernames and
passwords to log, but then curiously also performs another operation where it checks
whether the string “windowsupdate” or “neurevt” is inside the buffer. If so, it forces the
connection to be disconnected. Unfortunately however, we do not know where the string
came from. Searches of intelligence feeds yielded no results, and there is no indicator as to
whether this is a competing malware variant or something else entirely. No mentions of

51/80

neurevt can be found that is not from an analysis where the malware is referred to by the
alias. If anyone from back then knew what this string is, please DM me on twitter, I would
love to hear the behind-the-scenes of this.

The hook for SSL_Write and EncryptMessage is fairly simple, both call the
searchForPasswordAndUsername routine to find usernames and passwords in ports for
protocols like FTP, SMTP, SMTPS, etc.

52/80

Likewise, PR_Write just tries to parse the HTTP data for credentials.

Lastly in this group, there are hooks for Chrome. Here there are two variants of hooks – one
intercepting SSL_Write (which is located via scanning for the VMT), and the other
intercepting IPC via hooking NtReadFile. The SSL_Write hook is similar in practice to the
hook for Firefox.

53/80

The other hook for NtReadFile tries to find interesting strings inside the IPC buffer (namely
POST/post and HTTP/http), and tries to extract usernames and passwords out of the buffer if
this is found.

The final notable detail of Betabot’s hooking subsystem is its blocking of MBR bootkit
installation via hooking NtOpenFile – file operations on the physical drive without going
through the filesystem are prohibited.

54/80

Termination of older versions of the bot

Betabot finds and kills threads belonging to older versions of itself by checking the TLS slots
belonging to threads inside its own process.

55/80

56/80

Communication cycle and protocol

Betabot’s protocol is binary-over-HTTP. RC4 is used for encryption. First, the URL is
generated from the config, and then a random parameter is appended.

57/80

Then, depending on the stage of its lifecycle, Betabot chooses a type of request to perform,
and depending on the specific requests, some streams might be added.

After the information streams are built, the generic request is constructed.

58/80

59/80

It encrypts and formats this data and then finally sends the request to the server. If a
response is available, it tries to receive it and then parse it.

60/80

First, the response’s disposition value is checked and if it is set to
BB_DISPOSITION_UNINSTALL, the bot uninstalls itself. This might be of particular interest
to those who want to write tools to terminate Betabot, since simply executing the function will
be enough to disable the bot permanently 😉.

61/80

Then, it processes and propagates the new general flags, minor flags, and custom flags via
its windows-based IPC mechanism. It also tries to kill old betabot versions if told to do so by
the C2 server.

It then saves these values to the registry.

62/80

Then, if proactive defense is enabled, it tries once to elevate privileges.

The knock interval is also saved to the dynamic context.

Then, commands are processed. The structure of the commands are already described in
two previous writeups on VB, so I will focus on the higher level details here:

For each command, first, the command ID is retrieved from a table by hashing the command
string.

63/80

64/80

The table is as follows:

After that, the command ID is used to find out how to parse the parameters, and then finally
the handler inside the table is called.

Finally, after all the commands are processed, the configuration streams are saved to the
registry and updated in-memory. Interestingly, the stream CF07 has no identified uses and
seems to be reserved for future functionalities (that likely will never arrive).

65/80

Interesting commands

Most of the commands are self-explanatory and as such I will not discuss them in detail. The
first interesting command that people would likely notice is “Botscript”. What exactly is a
botscript? Does Betabot have an embedded scripting engine? As it turns out, this is not the
case. Botscript is simply the developers name for injecting wscript into another process using
RunPE and then using that to execute a script.

66/80

Translated sales thread describing Botscript
Botscript operations run inside a new thread with index 3.

In the new thread, the botscript is downloaded and then injected.

67/80

68/80

69/80

The other interesting feature is support for running a SOCKS proxy server. The server config
is parsed and then started in a new thread.

70/80

Outside of attempting to port forward using COM’s functionalities, it is a fairly bog standard
proxy server.

An interesting detail is that the VB analysis considers the two following commands to be
handlers for Skype spamming operations.

71/80

Interestingly, the handler for the hash 30A2060Dh currently seems to point to the same
handler as the hash for the command “sys”, which is essentially just the shellexecute
operation. The reason for this is unknown and I do not know what the original value before
hashing might be. The handler for the hash 6EE4094Dh is no longer present.

Another thing you might notice is that a lot of commands are pointing to null handlers and are
entirely missing. Unfortunately, these are now lost to time.

Inaccuracy in past public research

While looking at some past materials on Betabot, I noticed some inaccuracies by other
reverse engineers. For example, this post by CyberReason claims that the following code is
used for anti-debugging reasons.

https://www.cybereason.com/blog/betabot-banking-trojan-neurevt

72/80

The code snippet above, when fully annotated, is as follows.

This is then used as part of the hooking/filtering mechanism for NtCreateFile/NtOpenFile
APIs and is not used for anti-debugging reasons as suggested by CyberReason, but rather
as a defensive feature as stated in the section on hooking.

An even bigger inaccuracy is in this post by Talos where they analyze a binary they consider
Neurevt. They claim that “the dropped payload ends up in a benign location of the filesystem
and runs, thereby elevating its privilege by stealing service token information”. Problem is,
the binary they disassembled is not Neurevt at all, and none of the screenshot shown
belongs to Neurevt. The claim that this is a “new version of the Neurevt” appears entirely
false to me – Neurevt has been abandoned by the author since 2016 and this is unlikely to
change any time soon. As for how this misconception came to be – it looks like multiple
binaries are dropped and the reverse engineer mixed them up, as the last request shown
that contains logout.php is indeed a Betabot knock request and the drop path
(C:\ProgramData\Google Updater 2.09\q99ig1gy1.exe) is indeed betabot-like, however other
than that none of the details described in the post matches Betabot.

When publishing public information, reverse engineers should strive to verify their findings to
avoid unintentionally disseminating inaccurate information.

Appendix

The IDC and sample for analysis will be uploaded within the next few days. Be warned that
the IDA database is NOT CLEAN, while it has enough information to give a solid overview of
the malware, I have not had the time to tidy it up in its entirety, as such it is not up to my
usual standards. There is around 15% of the binary left that is unlabelled, and there are

https://blog.talosintelligence.com/2021/08/neurevt-trojan-takes-aim-at-mexican.html

73/80

some portions of the binary that is more clearly seen by simply looking at the code than at
my description – as such, it is highly encouraged that readers toy around with Betabot and
see for themselves.

FASM for making a fake PE file out of the dumped payload:

real_addr = 2560000h
real_ep = 259848Bh

format PE GUI at (real_addr - 1000h)
entry section_begin + real_ep - real_addr

section '.text' code readable writable executable
section_begin:
 file 'bbdump0x2560000.bin'

List of registry key seeds and their identified meanings (some are previously identified in the
original VB analysis):

utw = uac trick worked
UTWS = shim elevation
UTWIEF = ifeo reg trick
AVKR = av kill ran
BK32 = botkill run count
BIS = bot came from spreading
LCT = last communication time
BID = bot installation date
LSF = general flag
LMSF = general flag minor
LCSF = custom flags
LISF = infoblob flags
CF01 = cfg_versions_config
CF02 = cfg_versions_dns_blocklist
CF03 = cfg_versions_url_tracklist
CF04 = cfg_versions_filesearch
CF05 = cfg_versions_plugins
CF06 = cfg_versions_web
CF07 = unknown config, not used anywhere
PNR1 = persistence restore count
ECRC = crash count
ECC1 - access violation
ECC2 - privileged instruction
ECC3 - illegal instruction
ECC4 - stack overflow
ECC5 - in page error

Partial listing of significant enums and structures used by the bot

74/80

enum BB_AV_INSTALLED
{
 BB_AV_INSTALLED_NORTON = 1,
 BB_AV_INSTALLED_KAV = 2,
 BB_AV_INSTALLED_AVG = 4,
 BB_AV_INSTALLED_AVIRA = 8,
 BB_AV_INSTALLED_ESET = 16,
 BB_AV_INSTALLED_MCAFEE = 32,
 BB_AV_INSTALLED_TRENDMICRO = 64,
 BB_AV_INSTALLED_AVAST = 128,
 BB_AV_INSTALLED_MS_ESSENTIALS = 256,
 BB_AV_INSTALLED_BITDEFENDER = 512,
 BB_AV_INSTALLED_BULLGUARD = 1024,
 BB_AV_INSTALLED_RISING = 2048,
 BB_AV_INSTALLED_ARCAVIR = 4096,
 BB_AV_INSTALLED_WEBROOT = 8192,
 BB_AV_INSTALLED_EMSISOFT = 16384,
 BB_AV_INSTALLED_FSECURE = 32768,
 BB_AV_INSTALLED_PANDA = 65536,
 BB_AV_INSTALLED_PCTOOLS = 131072,
 BB_AV_INSTALLED_GDATA = 262144,
 BB_AV_INSTALLED_ZONEALARM = 524288,
 BB_AV_INSTALLED_BKAV = 1048576,
 BB_AV_INSTALLED_GBUSTER = 2097152,
 BB_AV_INSTALLED_DRWEB = 4194304,
 BB_AV_INSTALLED_SOPHOS_ENDPOINT = 8388608,
 BB_AV_INSTALLED_COMODO = 16777216,
 BB_AV_INSTALLED_AHNLAB_FREE = 33554432,
 BB_AV_INSTALLED_BAIDU_FREE = 67108864,
 BB_AV_INSTALLED_MALWAREBYTES_PRO = 134217728,
};

/* 620 */
enum BB_CURRENT_PROCESS_FLAGS
{
 BB_CURRENT_PROCESS_FLAGS_EXPLORER = 0x1,
 BB_CURRENT_PROCESS_FLAGS_BROWSER = 0x2,
 BB_CURRENT_PROCESS_FLAGS_USERPROFILE = 0x4,
 BB_CURRENT_PROCESS_FLAGS_DOTNET = 0x8,
 BB_CURRENT_PROCESS_FLAGS_HAS_SUSPICIOUS_MEM = 0x10,
};

/* 530 */
enum BB_SOFTWARE
{
 BB_SOFTWARE_STEAM = 1,
 BB_SOFTWARE_ORIGIN = 2,
 BB_SOFTWARE_RUNESCAPE = 4,
 BB_SOFTWARE_MINECRAFT = 8,
 BB_SOFTWARE_BLIZZARD = 16,
 BB_SOFTWARE_LOL = 64,
 BB_SOFTWARE_BITCOIN_RELATED = 128,
 BB_SOFTWARE_WEBCAM = 256,
 BB_SOFTWARE_JAVA = 512,
 BB_SOFTWARE_SKYPE = 1024,

75/80

 BB_SOFTWARE_VISUAL_STUDIO = 2048,
 BB_SOFTWARE_VM_SOFTWARE = 4096,
};

/* 631 */
enum BB_GENERAL_FLAGS
{
 BB_GENERAL_FLAGS_PROACTIVE_DEFENSE = 0x1,
 BB_GENERAL_FLAGS_FORMGRAB_DISABLED = 0x2,
 BB_GENERAL_FLAGS_DNS_MODIFY_DISABLED = 0x4,
 BB_GENERAL_FLAGS_USB_SPREAD_ENABLED = 0x8,
 BB_GENERAL_FLAGS_AGGRESSIVE_PROACTIVE_DEFENSE_ENABLED = 0x10,
 BB_GENERAL_FLAGS_DYNAMIC_CONFIG_DISABLED = 0x20,
 BB_GENERAL_FLAGS_LOGIN_GRAB_DISABLED = 0x40,
 BB_GENERAL_FLAGS_USERKIT_DISABLED = 0x80,
 BB_GENERAL_FLAGS_SYS_INJECTIONS_DISABLED = 0x100,
 BB_GENERAL_FLAGS_SYS_INJECTIONS_XBROWSER_DISABLED = 0x200,
 BB_GENERAL_FLAGS_ANTI_EXPLOIT_KIT_ENABLED = 0x400,
 BB_GENERAL_FLAGS_ANTI_BOOTKIT_ENABLED = 0x800,
 BB_GENERAL_FLAGS_FORCE_IE_ENABLED = 0x1000,
 BB_GENERAL_FLAGS_PRIVILEGE_ESCALATION_EXPLOITS_ENABLED = 0x2000,
 BB_GENERAL_FLAGS_PROACTIVE_MINER_DEFENSE_ENABLED = 0x4000,
 BB_GENERAL_FLAGS_PROACTIVE_LOCKER_DEFENSE_ENABLED = 0x8000,
 BB_GENERAL_FLAGS_PROACTIVE_ANTI_OLDER_BETABOT_ENABLED = 0x10000,
};

/* 632 */
enum BB_MINOR_FLAGS
{
 BB_MINOR_FLAGS_DISABLE_IMAGE_EXECUTION_OPTIONS_FUNC = 0x1,
 BB_MINOR_FLAGS_DISABLE_UAC_FAKE_WINDOW = 0x2,
 BB_MINOR_FLAGS_DO_NOT_DISABLE_WINDOWS_SEC_SERVICES = 0x4,
 BB_MINOR_FLAGS_DISABLE_LUA = 0x8,
 BB_MINOR_FLAGS_DISABLE_AUTOUPDATES_ADDONS = 0x10,
 BB_MINOR_FLAGS_DISABLE_USERKIT_64BIT = 0x20,
 BB_MINOR_FLAGS_INSTALL_USE_HKLM_RUNONCE = 0x80,
 BB_MINOR_FLAGS_MINOR_FLAGS_INSTALL_ENABLE_SHELL_FOLDER = 0x100,
 BB_MINOR_FLAGS_ENABLE_DEBUG_MSG_SYSTEM = 0x200,
 BB_MINOR_FLAGS_ENABLE_DEBUG_ATTRIBUTES = 0x400,
 BB_MINOR_FLAGS_DEBUG_RESERVED_FOR_FUTURE_USE = 0x800,
 BB_MINOR_FLAGS_FORMGRAB_FILTER_USELESS_GRABS = 0x1000,
 BB_MINOR_FLAGS_FORMGRAB_RESERVED_R1 = 0x2000,
 BB_MINOR_FLAGS_FORMGRAB_RESERVED_R2 = 0x4000,
 BB_MINOR_FLAGS_DISABLE_INJECT_INTO_LOADERS = 0x8000,
 BB_MINOR_FLAGS_INJECT_RESERVED_R1 = 0x10000,
 BB_MINOR_FLAGS_INJECT_RESERVED_R2 = 0x20000,
 BB_MINOR_FLAGS_DISABLE_SSL_CERTIFICATE_WARNINGS = 0x40000,
};

/* 633 */
enum BB_CUSTOM_FLAGS
{
 BB_CUSTOM_FLAGS_DISABLE_WEB = 0x1,
 BB_CUSTOM_FLAGS_DISABLE_META_TAG_MODIFIER = 0x2,
 BB_CUSTOM_FLAGS_DISABLE_DOCTYPE_MODIFIER = 0x4,

76/80

 BB_CUSTOM_FLAGS_DISABLE_WEB_FOR_VM = 0x8,
 BB_CUSTOM_FLAGS_DISABLE_X_FRAME_OPTIONS_REMOVER = 0x10,
};
enum BB_OSVERFLAG
{
 BB_OSVERFLAG_SERVER2003 = 0x1,
 BB_OSVERFLAG_SERVER2008 = 0x2,
 BB_OSVERFLAG_SERVER2008R2 = 0x4,
 BB_OSVERFLAG_UNSUPPORTED = 0x8,
 BB_OSVERFLAG_WIN8 = 0x10,
 BB_OSVERFLAG_WIN7 = 0x20,
 BB_OSVERFLAG_VISTA = 0x40,
 BB_OSVERFLAG_XP = 0x80,
 BB_OSVERFLAG_BIT_32 = 0x100,
 BB_OSVERFLAG_BIT_64 = 0x200,
 BB_OSVERFLAG_SP1 = 0x400,
 BB_OSVERFLAG_SP2 = 0x800,
 BB_OSVERFLAG_SP3 = 0x1000,
 BB_OSVERFLAG_SERVER2012 = 0x2000,
 BB_OSVERFLAG_WIN10 = 0x4000,
 BB_OSVERFLAG_4001 = 0x8000,
 BB_OSVERFLAG_STARTER = 0x10000,
 BB_OSVERFLAG_HOMEBASIC = 0x20000,
 BB_OSVERFLAG_HOMEPREMIUM = 0x40000,
 BB_OSVERFLAG_PROFESSIONAL = 0x80000,
 BB_OSVERFLAG_ULTIMATE = 0x100000,
 BB_OSVERFLAG_BUSINESS = 0x200000,
 BB_OSVERFLAG_ENTERPRISE = 0x400000,
 BB_OSVERFLAG_DATACENTER = 0x800000,
};
enum BB_THREAD_TRACKER_INDEX : __int16
{
 BB_THREAD_TRACKER_INDEX_0 = 0,
 BB_THREAD_TRACKER_INDEX_1 = 1,
 BB_THREAD_TRACKER_INDEX_ANTIBOT = 2,
 BB_THREAD_TRACKER_INDEX_BOTSCRIPT = 3,
 BB_THREAD_TRACKER_INDEX_PERSISTENCE = 4,
 BB_THREAD_TRACKER_INDEX_5 = 5,
 BB_THREAD_TRACKER_INDEX_6 = 6,
 BB_THREAD_TRACKER_INDEX_7 = 7,
 BB_THREAD_TRACKER_INDEX_8 = 8,
 BB_THREAD_TRACKER_INDEX_9 = 9,
 BB_THREAD_TRACKER_INDEX_10 = 10,
 BB_THREAD_TRACKER_INDEX_11 = 11,
 BB_THREAD_TRACKER_INDEX_IS_BEHIND_ROUTER_CHECK = 12,
 BB_THREAD_TRACKER_INDEX_PATCH_DETECTION = 13,
 BB_THREAD_TRACKER_INDEX_LAZY_DECRYPT_MAYBE = 14,
 BB_THREAD_TRACKER_INDEX_15 = 15,
 BB_THREAD_TRACKER_INDEX_16 = 16,
 BB_THREAD_TRACKER_INDEX_17 = 17,
 BB_THREAD_TRACKER_INDEX_INTEGRITY_CHECK = 18,
 BB_THREAD_TRACKER_INDEX_19 = 19,
 BB_THREAD_TRACKER_INDEX_20 = 20,
 BB_THREAD_TRACKER_INDEX_21 = 21,
 BB_THREAD_TRACKER_INDEX_WINDOW_HANDLER_IPC = 22,

77/80

 BB_THREAD_TRACKER_INDEX_USB_SPREADER = 23,
 BB_THREAD_TRACKER_INDEX_PERSISTENCE_PROCESS = 24,
 BB_THREAD_TRACKER_INDEX_UAC = 25,
 BB_THREAD_TRACKER_INDEX_26 = 26,
 BB_THREAD_TRACKER_INDEX_BROWSER_HOOK = 27,
 BB_THREAD_TRACKER_INDEX_BROWSER_DUMMY = 28,
 BB_THREAD_TRACKER_INDEX_29 = 29,
 BB_THREAD_TRACKER_INDEX_30 = 30,
 BB_THREAD_TRACKER_INDEX_FREE2 = 31,
 BB_THREAD_TRACKER_INDEX_FREE1 = 32,
 BB_THREAD_TRACKER_INDEX_33 = 33,
 BB_THREAD_TRACKER_INDEX_FREE_START = 34,
};
enum BB_COMMAND_HASH
{
 BB_COMMAND_HASH_DIE = 0x2A66058D,
 BB_COMMAND_HASH_UAC = 0x2A870594,
 BB_COMMAND_HASH_REM = 0x2A90059F,
 BB_COMMAND_HASH_SYS = 0x2AC105BA,
 BB_COMMAND_HASH_DDOS = 0x306B0605,
 BB_COMMAND_HASH_SPAM = 0x30A9060C,
 BB_COMMAND_HASH_SOCKS = 0x3726067E,
 BB_COMMAND_HASH_DWFILE = 0x3DCF06D6,
 BB_COMMAND_HASH_UPDATE = 0x3E0206DE,
 BB_COMMAND_HASH_PLUGIN = 0x3E1906EA,
 BB_COMMAND_HASH_BOTKILL = 0x4526074C,
 BB_COMMAND_HASH_BROWSER_CLEAR_CACHE = 0x4565075F,
 BB_COMMAND_HASH_DDOS_UDP = 0x4BCE077C,
 BB_COMMAND_HASH_DDOS_RUDY = 0x53D207F7,
 BB_COMMAND_HASH_BOTSCRIPT = 0x55330835,
 BB_COMMAND_HASH_DDOS_CONDIS = 0x647608B3,
 BB_COMMAND_HASH_DDOS_HTTPGET = 0x6E0A0933,
 BB_COMMAND_HASH_BROWSERVISIT = 0x794409BC,
 BB_COMMAND_HASH_DDOS_SLOWLORIS = 0x821A0A21,
 BB_COMMAND_HASH_BROWSERSETHOME = 0x8DC00A82,
};
enum BB_BOT_ATTRIBUTE
{
 BB_BOT_ATTRIBUTE_HAS_SOURCE_USB = 0x1,
 BB_BOT_ATTRIBUTE_HAS_NET_FRAMEWORK = 0x2,
 BB_BOT_ATTRIBUTE_HAS_JAVA = 0x4,
 BB_BOT_ATTRIBUTE_HAS_STEAM = 0x8,
 BB_BOT_ATTRIBUTE_HAS_ROUTER = 0x10,
 BB_BOT_ATTRIBUTE_IS_ELEVATED = 0x20,
 BB_BOT_ATTRIBUTE_IS_GOOD_FOR_BITCOIN = 0x40,
 BB_BOT_ATTRIBUTE_IS_COMPUTER_SAVVY = 0x80,
 BB_BOT_ATTRIBUTE_IS_LAPTOP = 0x100,
 BB_BOT_ATTRIBUTE_UAC_ENABLED = 0x200,
 BB_BOT_ATTRIBUTE_HAS_USED_RDP = 0x400,
 BB_BOT_ATTRIBUTE_IS_VIRTUAL_MACHINE = 0x800,
 BB_BOT_ATTRIBUTE_HAS_SAMSUNG_DEVICE = 0x1000,
 BB_BOT_ATTRIBUTE_HAS_APPLE_DEVICE = 0x2000,
 BB_BOT_ATTRIBUTE_4000_UNKNOWN = 0x4000,
 BB_BOT_ATTRIBUTE_SAFE_BOOT = 0x8000,
 BB_BOT_ATTRIBUTE_AVKILL_HAS_EXECUTED = 0x1000000,

78/80

 BB_BOT_ATTRIBUTE_TRICK_WORKED_USED_IFEO_TRICK = 0x8000000,
 BB_BOT_ATTRIBUTE_TRICK_WORKED_USED_SHIM_TRICK = 0x10000000,
 BB_BOT_ATTRIBUTE_UAC_REQUIRES_TRICK = 0x20000000,
 BB_BOT_ATTRIBUTE_UAC_TRICK_WORKED = 0x40000000,
};

/* 532 */
enum BB_SECURITY_TOOL_INSTALLED
{
 BB_SECURITY_TOOL_INSTALLED_ADWCLEANER = 0x1,
 BB_SECURITY_TOOL_INSTALLED_COMBOFIX = 0x2,
 BB_SECURITY_TOOL_INSTALLED_ADAWARE = 0x4,
 BB_SECURITY_TOOL_INSTALLED_SPYBOTSND = 0x8,
 BB_SECURITY_TOOL_INSTALLED_BANKERFIX = 0x10,
 BB_SECURITY_TOOL_INSTALLED_HOUSECALL = 0x20,
 BB_SECURITY_TOOL_INSTALLED_HIJACKTHIS = 0x40,
 BB_SECURITY_TOOL_INSTALLED_TRUSTEER = 0x80,
};
enum BB_BOT_REQUEST_TYPE
{
 BB_BOT_REQUEST_TYPE_CHECKIN = 0x1,
 BB_BOT_REQUEST_TYPE_CHECKIN_BOOT = 0x2,
 BB_BOT_REQUEST_TYPE_UPDATE_STATS = 0x4,
 BB_BOT_REQUEST_TYPE_UPDATE_FORMGRAB = 0x8,
 BB_BOT_REQUEST_TYPE_UPDATE_STEALER = 0x10,
 BB_BOT_REQUEST_TYPE_UPDATE_INFOBLOB = 0x100,
};

struct BB_REPORT_UNK
{
 char JpegFakeHeader[8];
 __int16 size;
 __int16 magic;
 int header_crc32;
 int stringsCount;
 int exdataKey;
 int botVer;
 int reqType;
 int osVerFlag;
 int botAttribute;
 int botOS;
 int botAttribs;
 int botCustomAttrib;
 int debugAttribs;
 int currentTimeUnix;
 int currentTickCount;
 int timezoneBias;
 int botLocale;
 WORD botkillStats;
 __int16 socksPortA16MachineId;
 char hwid[16];
 int CFRegKeys[8];
 DWORD tasksStatus[8];
 int field_9C;
 int field_A0;

79/80

 int installedAV;
 int installedSoft;
 int securityToolsInstalled;
 int killedAVs;
 DWORD webAttributes;
 int screenSize;
 int exploitStatus;
 int field_C0;
 int field_C4;
 int field_C8;
 int field_CC;
 int field_D0;
 WORD RegECC[5];
 __int16 exceptionUnused1;
 __int16 exceptionUnused2;
 __int16 exceptionUnused3;
 __int16 exceptionUnused4;
 __int16 exceptionUnused5;
 __int16 exceptionUnused6;
 __int16 exceptionUnused7;
 __int16 persistenceRestoreCount;
 WORD crashCount;
 _BYTE gapF0[20];
 char stringBotGroupName[12];
 char botProcName[20];
};

/* 637 */
enum BB_ENUMS
{
 BB_REQUEST_MAGIC = 0xC1E5,
 BB_DISPOSITION_UNINSTALL = 0x10A15,
};

struct BB_RESPONSE_STRUCT
{
 int field_0;
 int field_4;
 int size;
 int statusCode;
 int knockInterval;
 int contentType;
 int disposition;
 int generalOpts;
 int minorOpts;
 int customOpts;
 int infoBlobStatus;
 int dynConfigVer;
 int dnslistVer;
 int urltrackVer;
 int filesearchVer;
 int pluginVer;
 int webVer;
 int reserved1;
 int reserved2;

80/80

 int cmdSize;
 int dnsSize;
 int trackedUrlSize;
 int dynConfSize;
 int filesearchConfSize;
 int pluginConfSize;
 int webConfSize;
 int field_68;
};

On a more personal side of things, as you might’ve noticed, the blog has been fairly inactive
and this is unlikely to change any time soon. In all likelihood, this is probably the last post on
this blog. The past years have been fun, much appreciation to all of those who stuck around,
especially those who are still doing cool research. If you have unfinished
projects/dealings/etc with me, it is best to contact me soon to get things resolved.

